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Relativistic treatment of the long wavelength limit for the photon
and the multipole amplitudes of H(y, n)'H
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We derive expressions for the low energy behavior of the multipole amplitudes of H(y, n)'H.
Our results follow from the relativistic treatment of the long wavelength limit for the photon. We

enforce unitarity, point out the incompatibility of this with gauge invariance, and suggest a possible

solution. We discuss in some detail the forward dift'erential cross section.

I. INTRODUCTION

The gauge invariance property of the electromagnetic
interactions demands that the currents entering a pho-
tonuclear process be conserved. Nonrelativistically (NR)
this is implemented in the low photon energy domain
(long wavelength limit) through the use of Siegert's
theorem. ' Improvements of this theorem have been per-
formed so as to extend its regime of applicability but
maintaining however its NR nature.

The limitation of the approach can be appreciated in
the low energy forward deuteron photodisintegration.
Relativistic corrections to the electromagnetic current
have been calculated and shown to be essential in under-
standing data at energies as low as 30 MeV (Refs. 3 and
4). Needless to say, a complete understanding of the rela-
tivistic corrections is not available. Progress in this
direction requiring among other things, a consistent
treatment of the meson exchange currents.

Alternatively, it is possible to treat the gauge invari-
ance constraint relativistically. In this case the use of
electromagnetic current conservation in the low energy
limit provides information on the behavior of the
Lorentz-invariant amplitude. This results is known as
Low's low photon energy theorem. In the particular
case of the deuteron photodisintegration the theorem has
been rigorously proved by Sakita and applied in an
essentially parameter independent way in Refs. 8 and 9.
(Hereafter we will refer to this as the soft photon approx-
imation, SPA for short. )

The correct description of the total cross section is not
enough to test the reliability of the SPA (Ref. 10). Fur-
ther support to this approach comes from the relatively
good description obtained in the forward direction above
30 MeV, and from the possible evidence of relativistic
effects on the angular distribution. What we mean in the
last point is the following. The experimental data show
that the maximum of the differential cross section shifts
towards smaller angles as the photon energy is increased.
This is naturally understood in the SPA as a relativistic
propagator effect. More precisely, " the SPA predicts
that the maximum of the differential cross section is lo-
cated at O=arccos(u) (U being the velocity of the outgo-
ing proton in the center-of-mass frame) and that r,
defined as:

1 do.

o T dQ g(9

is nearly constant. Unfortunately the available data is
not enough to confirm or rule out such behavior. '

However we do not think that the value of the SPA is
an alternative to provide a detailed description of all the
observables associated with the deuteron photodisintegra-
tion. In fact we know ' ' that this is only possible in a
limited kinematical region. Instead, we believe that—
since the SPA results are derived in a model-independent
way from the relativistic treatment of the long wave-
length limit for the photon —its main utility is as a guide
to the dynamical NR calculations.

Among the limitations of this approach we can men-
tion the impossibility of incorporating the structure of
the deuteron and the failure of the amplitude to fulfill un-
itarity. These two deficiencies are reflected, as shown by
the results of Refs. 8 and 9, in the range of applicability
of the SPA. There are other problems which are not in-
herent to the SPA but to the way it is applied. Thus, for
example, it is difficult to compare the results with those
of the NR approach. In this respect it is worth mention-
ing the existing discrepancy regarding the forward direc-
tion. In the NR approach most of the contribution
comes from E1 transition whereas Low's theorem leads
to a cross section which in the NR limit reduces to a M1
transition. Moreover, as emphasized by Zieger, Grewer,
and Ziegler, ' the NR treatments predict a minimum
around 15 MeV as compared to the monotonic fall ob-
tained relativistica11y. ' '

In this paper we perform a multipolar analysis of the
SPA to the deuteron photodisintegration. Thus, we
derive model-independent expressions for the low energy
behavior of the multipole amplitudes which follow from
the relativistic treatment of the long wavelength limit for
the photon. To our knowledge the only previous at-
ternpts to derive this kind of low energy theorem for the
multipole amplitudes are those by Sakita and Goebel'
and by Le Bellac. ' In the first case the authors restrict
to the electric dipole amplitudes. On the other hand, Le
Bellac discusses both electric and magnetic dipole ampli-
tudes, however his results are incorrect because he leaves
out the 3F2 channel which is important for the low ener-

gy behavior and gauge invariance. ' In a recent publica-
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II. GAUGE INVARIANCE IN A RELATIVISTIC
CONTEXT

This section deals with Low's and Burnett and Kroll
low energy theorems. ' Although this material is well
known we have included this short section so as to stress
some points we consider particularly important.

We can describe the deuteron photodisintegration by
considering an infinite number of Feynman diagrams (in
Fig. 1 we show some of them). If we could evaluate all
those diagrams and be assured of including the off-mass
shell effects and of properly developing the resulting am-
plitude around co=0, where co is the photon energy, then
we would find (schematically)

Tf + T~ci) + T3n)+ (2)

tion, ' similar ideas are developed going beyond the SPA,
unfortunately some of the approximations (concerning
the off-mass shell NPD vertex) involved in the analysis
are not consistent with gauge invariance and Low's
theorem.

As a further step we used the multipole amplitudes
previously derived to implement unitarity. Besides their
academic interest, this excercise could be of relevance
when considering the differential cross section in the for-
ward direction, since it is known ' that the minimum
occurring there, is related to the fina1 state interaction.

Finally we also consider an extension derived from an
approximated dispersion relation which has the proper
analytical behavior. Although the agreement with the
experimental data above 30 MeV is improved, both in the
unitary, or in the dispersion relation approximation, our
conclusion is that for the 'So channel a more detailed
analysis of the singularities is required.

This paper is organized as follows. In Sec. II we make
some remarks on the relativistic treatment of gauge in-
variance. We briefly comment on Low's and Burnett-
Kroll theorems. In Sec. III we present our results for the
electric and magnetic dipole amplitudes. Those results
were derived through the use of Low's low energy
theorem and for that reason we will refer to them as the
low energy theorem for the multipoles. In Sec. IV we dis-
cuss unitarity, the approximated dispersion relation and
compare our results with the data. Finally in Sec. V we
present our conclusions. We have relegated to two ap-
pendixes the kinematics and conventions we use as well
as the general relation among the invariant and the mul-

tipole amplitudes, which to our knowledge has not been
previously given.

0+8

(b)

FIG. 1. Some of the Feynman diagrams contributing to the
invariant amplitude of H(y, n)'H. The dotted line represents a
(m, p, co, . . . , etc.) meson

Of course, we cannot accomplish such program and in

fact it is not necessary since Low has proved that gauge
invariance exactly determines T, and Tz.

For the sake of completeness let us briefly outline the

procedure to obtain T& and Tz in the case under con-

sideration.
We will use the following notations:
(i) M and m for the mass of the deuteron and the nu-

cleons. (We neglect the n pmass differen-ce. )

(ii) k, d, p, and p' for the four-momenta of the photon,
deuteron, proton, and neutron, respectively (we have thus

k +d=p +p').
(iii) s"(k) and il"(d) for the polarization four-vectors of

the photon and the deuteron.
(iv) u (p) and u„(p') for the spinor fields of the proton

and the neutron. Notice that Cu „(p')=v„(p'),where C
is the charge conjugation operator.

By covariance, the Feynman amplitude may be written
as

A=a"q'u (p,)JN„,Cu „(p, '),
According to Low's result, the first two terms, of order

(
—1) and 0, in a power series in k of the Feynman ampli-

tude, can be known exactly; they depend only on global
properties of the neutron, proton, and deuteron, and are
given completely by the Born diagrams [Fig. 1(a)] and a
contact term needed for gauge invariance to that order.

Taking then the expansion of the Born amplitude in a
power series of k, requiring gauge invariance at each or-
der (i.e., k "i)M,„„=O),it is seen that the first two terms,
of order ( —1) and 0 in k, can be exactly known.

We find then

A„,=eu (p) Ay + (p —p')o 2d g„„+2M (k g„„k„g„)—8, g 1' Pd

2m 2d 3

o ppk —k'+m 8+ P +lK Ay„+ (p —p' —k)„
2m —2p. k 2m8, yf

' —k+m . o'ppk B+ Ay+ (P —P'+k), , iK„—gp, v(P'),
2m —2k.p' " 2m 2m

(4)
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where e is the proton charge, ~ and ~„the anomalous
magnetic moments of the nucleons, pd the magnetic mo-
ment of the deuteron, and A and B the d-np form factors
with the three particles on shell.

Notice that besides the kinematical dependence on the
wave functions (i.e., polarization vectors and spinors) and
the four-momenta of the external particles, this ampli-
tude depends only on the two form factors A and B. In a
nonrelativistic approximation it is possible to relate these
to the S1 and D1 state amplitudes of the deuteron wave
function. Since this has been worked in detail in Ref. 7
we only quote the result:

—23 ——=1 ~ Ipl' 2& Ipl'
S

m 3 m

threshold (co(4 MeV) the rescattering of the final N P-
system introduces a strong momentum dependence in the
amplitude, spoiling thus the applicability of the
theorem.

Using the amplitude obtained from Low's theorem,
Burnett and Kroll derived a theorem for the square of the
invariant amplitude. This is of interest to us because for
H(y, N }'H it requires the vanishing of the interference

between T, and T2. This fact may serve as a further test
of gauge invariance once the square of the invariant am-
plitude has been taken (this requirement is not fulfilled by
the multipole amplitudes derived by Le Bellac' ).

III. MULTIPOLE AMPLITUDES

(3 +28) .
3m

Moreover, it is possible to relate A and B to more con-
ventional parameters, namely, the scattering parameters
of the neutron-proton system in a nonrelativistic ap-
proach. This is achieved by comparing the real part of
the amplitude for elastic n psca-ttering at the deuteron
pole as calculated relativistically and nonrelativistically
using the effective range approximation. The results are

A = —I (1+a), 8 =3(m /y )aI

where

gay /m

(1+2a )(1—py)

with e the asymptotic ratio of the D and 5 waves of the
deuteron, p is the triplet neutron-proton effective range
and y is related to the deuteron binding energy.

y =m —M /4.
For further details on this point we refer to the interested
reader to the appendixes of Ref. 7.

Coming back to Low's theorem, from Eq. (2) it follows
that for low photon energies we can expect that the SPA
gives reliable results. But, on the other hand, near

The aim of this section is to establish a relation be-
tween the covariant amplitude Eqs. (3} and (4) and the
more conventional multipole amplitudes. The steps in-
volved in such a program are the following.

(a) evaluate the helicity amplitudes.
(b) Write the helicity amplitudes in terms of the elec-

tric and magnetic multipole states.
(c) Using the results of (a) and (b) obtain the multipole

amplitudes in terms of the helicity amplitudes projected
on the rotation matrices (see below).

To carry out this program it is convenient to use a set
of linearly independent invariant amplitudes. The ones
we use are listed in Table I and will be denoted by I;.
Thus, any invariant amplitude describing the deuteron
photodisintegration can be written in the form

12

JM= QH, I, .

Different models will lead to different H's. In the SPA,
when JK is given by Eqs. (3) and (4), the H's are those list-
ed in Table II.

We introduce the helicity amplitudes F& &„„,where

A, z, p„and p2 are the helicities of the photon, deute-
ron, proton, and neutron, respectively. The helicity am-
plitude is defined as the matrix element of the invariant
amplitude with the helicities taking precisely the values

TABLE I. List of the twelve invariant amplitudes used in the text. Here q =(p —p')/2 and
Q=(p+p')/2.

1

2
3
4
5

6
7
8

9
10
11
12

[(e q )(g.k ) —(e.g)(q k ) ]/(2m )

[(e g )( Q k )
—{e Q )( g k ) ]/(2m ')

[(e.q)(Q k) —(e Q)(q k)]q.q/(m')
—[(~.Q)(q k) —(~ q)(Q.k)]g/(m')
[(e.g)k —{q k)/]/(2m)
[(e.Qk —Q ke)g k]/2m' —[(e q)k (q.k)t']q g/(m')—
[(e qk —q.ke)g k]/(2m )+[(e Q)k —(Q k)/]q. g/(m )

[8,k]g k /(4m ')
[8,k]q q /(2m ')
(q k[g, t'] —

q e[g, k]+2Q eg k —2e gQ k)/(2m')
(Q k[g, f] Q.e.[g, k]'+—2q eg. k —2e.gq k)/(2m')
E'p p

e"k g~y y& I(2m )
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TABLE II. Values of the twelve H's as predicted by the SPA.

1 MP~H =eBm
1 pk m d-k

H2 = —emB/p. k
BH =—H = —2em B/(p kd-k)3 g 4

A. Terms of order 1/co

The terms of order 1/co are those proportional H3 and

H4. Evaluating the helicity amplitudes associated to
these terms we find (for notation see Appendix A or Ref.
8}.

F l
=F l

= Fi
—= Fi—=f l A sin8,

H5 = —elm

H8 =0

Pp K„
pk kp'

H = BH =em
2 p k

emB
2 p k

M P~
m d.k

K„
+k.'p

Kq

k.p'

F2+ =F2 =i/2f, Acos8,

F4+ =F6 =f2A(1 —cos8),

F4 =F6+ =f,A(1+cos8),

F5+ = F5 =—v 2f2Asin8,

with

(10)

B emB PI &n

2A 2 pk kp' sin8UA=
4irv'2 1 —u cos8 '

4n Am +By 8ir A(m —1' )

co v 2m 2 co i/2mM

(, k2, p], and pq.

(8)

In order to verify the correctness of these helicity am-
plitudes let us evaluate the differential cross section. Us-
ing Eq. (1) of Appendix A it is easily found that:

Since the proton has only two helicity states, whereas
the deuteron and each of the nucleons have 3 and 2, re-
spectively, then we will have a total of 24 helicity ampli-
tudes. However due to parity conservation only 12 are
independent. In order to shorten the notation we will
work with the following 12 quantities:

F~ = &1,0I~I+-,' +-') F5 =&1,01~I+-,', +-,' &,

Notice that from each F we can read the value of
A, , A, 2, p „andp, 2 and therefore A, =A, ,

—A,2 and p, =p, —
p2

are determined.
Let us now introduce:

a, (J)=2v'2(2J+1)fFl (8,p)Di&(p, 8,p)de, (9)

where J is the total angular momentum and D&„arethe
rotation matrices.

The multipole amplitudes are given in terms of the a' s,
however the equations are so long that we have relegated
them to Appendix B.

Summarizing, in order to obtain a given multipole am-
plitude all we need is to know the a' s. These in turn de-
pend only on the H's. [This is seen by substituting Eq. (7)
in Eq. (8).] Therefore, given a covariant model for the
deuteron photodisintegration, or equivalently a set of
Feynman diagrams, we must determine the H's and from
Eq. (9) derive the a' s.

The low energy theorem for the multipole amplitudes
is obtained, of course, by using the H's given by the SPA.
In order to compare our results with the conventional
SPA (Ref. 8} we will split the calculation as follows:

do a A'm' u'sin'8

s 16ir Eco (1—u cos8)
(12)

in agreement with the conventional SPA result.
These helicity amplitudes lead to the following nonvan-

ishing multipoles [see Eq. (Bl)]:
' 1/2

1

(2J+1)
1 (2J+3)
2 (2J+1)(J+2)

X [(1+J)fi+Jfi]I(J+ 1),
' 1/2

1 (2J —1)
EJ l[ (J —1)J]=—

X [Jf,+(1+J)f2]I(J—1),
1/2

[3(J+1))1(2J—1)(J+1)
2 (J —1)

(13)

X I J —1(2J+1)
1/2

1 2J+1
2 J(J+1)

where

4J(J+1) p l PJ —1(x) Pj+l(x}
d

(2I + 1) "—i (1/u) —x

where P (x) is the Legendre .polynomial of order j.
Notice in particular that for arbitrary J there are no

magnetic multipoles. Thus the SPA is telling us that
those are necessarily of order m or higher. Even more
important is that, to this order, there is no contribution
in the forward direction. Therefore in the absence of
final state interactions, the electric multipoles (since the



850 J. J. ALVARADO AND J. L. LUCIO M. 42

magnetic ones are zero identically) have to combine to
produce a vanishing a&, co (see Eqs. (A4) and (A5)]. In
the dipole approximation this implies

&—3E1( P~)+&3EI( Po)+ —El( F2)=0,
u'2

(15)

known, in the case of a single wave, unitarity requires
that the phase of the multipole equals the phase shift
describing the elastic scattering of the N P-system (in
analogy with Watson's theorem in the m. photoproduc-
tion).

Thus, for example, for the 'S0 channel we will write:
—V3E1( Pi)+&3E1( P2)+/2E1( F2)=0 .

M 1('So)=M I('So)i e (17)
This constraint, for multipoles of arbitrary J, is natu-

rally incorporated in Eq. (13).

B. Terms of order co

These are obtained by collecting the order co contribu-
tion from the twelve H's. Although we have analytical
expressions for the helicity and multipole amplitudes we
will not present them since their length makes them use-
less. We only remark that using the helicity amplitudes
so derived we have verified the Burnett-Kroll theorem
(mentioned in Sec. I). Below we list the dipole amplitudes
as a function of the c.m. velocity v of the outgoing pro-
ton. This together with the dipole and quadrupole ampli-
tudes, obtainable from Eq. (Bl), will be dominant at low
energies. In the following we will use, in agreement with
the conventional SPA (Ref. 8), a vanishing a (the asymp-
totic ratio of the D and S waves of the deuteron).

i5( So)
M 1('S ) =M 1('S ) e ' cos5+ sin50 0 L

Ipl
(18)

Here M 1('So)I stands for the amplitude obtained from
the low energy theorem. An important point to remark
is that this simple unitarization leads to an amplitude
which disagrees in the zero energy limit with the SPA.
The point is that, as we already mentioned, the low ener-

gy theorem determines all the terms of order I /co and ro

in the amplitude. Therefore in the zero energy limit the
rescattering factor has to approach unity. Unfortunately
Eq. (17) does not show such behavior. One way to render
the unitarization procedure consistent with gauge invari-
ance is to enforce at the same time the analytic properties
of the amplitude. This can be done through the use of a
dispersion relation, ' ' which in the zero effective range
approximation changes Eq. (17) to:

M 1( 'So ) = 11.679+ 8.905v

El( Po)= —7.372u —1.021v

E 1( 'P I ) = 1.58v —0.765v

Ml( S, )=1.251v —0.612u

M 1( D, ) = 18.139u —12.04v

El( Pi )=4.85v —1.64v

M('Dz) =0.826v

El( Pp)=2. 135u —0.70v

El( F2) = —1.65v+0. 75v

Ml( D2)=0.49v

(16)

Where
I p I

is the magnitude of the momentum of the out-
going proton and y =m —M /4.

It is easily seen that this multipole has the appropriat-
ed zero energy limit. For practical purposes however, at
least in the case under consideration, both multipoles
Eqs. (17) and (18) lead to the same numerical results.

In the case of coupled waves, using the Stapp conven-
tion, the unitarity relation is

ImM =N I [sin(5+ +5 )

—asin(5+ —5 )]ReM —PReM+ ),
(19)

ImM+ =NI —PReM++[sin(5++5 )

+a sin(5+ —5 )]ReM

Notice that to this order (ro ), we do get nonvanishing
magnetic multipoles. Thus, in contrast with Siegert s
theorem, the SPA, which is derived from the relativistic
approach to the long wavelength limit for the photon, is
able to give information on the behavior of the magnetic
multipoles. In fact we would have expected this since,
after all, magnetic moments are linked with the spin pres-
ence and quantum effects.

These multipoles give a nonvanishing contribution to
the forward direction. We will not discuss this since, as it
should be, the results are essentially the same as those of
the SPA (Refs. 8 and 9).

IV. UNITARITY

With the multipole amplitudes at hand it is now
straightforward to impose unitarity. As it is well

where

a cos(5+ —5 ) —cos(5++5 )

sin (5++5 )
—a sin (5+ —5 )

—p

and

a =cos2e, P= sins 2e,

where e is the mixing parameter and 5 and 5+ are the
phase shifts corresponding to the j —1 and j + 1 waves.

The next step is to use the unitarized multipoles to
evaluate the forward differential cross section. We will
take the real part of the amplitudes as the one predicted
by Low's theorem. Then using Eq. (19) we compute the
corresponding imaginary parts. Using the phase shifts of
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80 =a+b sin 6+c cos0+d sin Ocos0+e sin 02

dQ
(A3)

with

a, 2(ao+bpsin 8+cocos8
48m

+dosin OcosO+eosin 0),
where in the dipole approximation

ao =-', ll i+ I'+ 3ll, I'+1g IE1('Pi ) I'

+ll; I'+ll; I'+ll; I'+ll,+ I',
b, =-'ll;I'+ll, l'+ l;I'+ll; I'+ll; I'

24IE1( Pi)I —"IE1( P )I

—6IE1('Pi ) I' —1g IM1('D, ) I'

—3IM1('s, )I' —4IM1('s, )l',

co=Re[ —4v'2/3l, +
l~ —2lz'13 +2v 2lz 1,

6v'2E1—'('P, )lq ],
do =eo =fo =0

(A4)

(A5)

li = —v 3E1( P~)+v 3E1( Po)+ —E1(3F~),
2

l z
= v—3E1('P, )+v'3(3P~ )+v'2E1(3F~ ),

13 =3M1( D, )+—,'Ml(3D~),

l~ =v'6M1( Di)+v'3M1( Si),

l~ = —Ml( D~)+3M1( S, ),
2

16 =2M1('So )+v 10M1('Dq),

ls=3V'3E1( Pi)+V 3E1( Pq)+V'2E1( Fq) .

APPENDIX B

The relation among the multipole and helicity ampli-
tudes are the following [See Eq. (9) for the definition of
the a' s]:

1 1 2J+3
4 (2J+1) 2J+1

1/2

—v'J+2(a,+ —a, )— 2J(J+2)
J+1

1/2

(a,' —az )

J(J—1)
J+1

' 1/2

(a3+ —a3 )

1 v'2J+3
4 (2J+1)' J+1

' 1/2

+J ' (a3++a3- )+v'(J+1)(J+2)(a4++a4- )J+1

—V J(J—1)(a3++a3 )+v'J(J+2)(a4++a~ )

' 1/2 ' 1/2

(a,'+a, )
2(J+2)
J+1 (a,++a5 )+J

—v (2J)(J+2)(a~++a~ )+v'J(J —1)(a6 +a6 )

EJ+ i [ (J + 1)z]=
4 z

—&(J + 1)(J +2)(a i+ +a, )+&2J (J +2)(a &+ +a
& )

1 v'( 2J +3 )

EJ( JJ)=— 1
(ai ai +

4v2J+1 J(J+1)
1/2

(
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J(J+1)
1/2

(a,+ —a, )

1 1

4 (2J+1)

1/2
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J+1
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M~[( J+1)~]=— &J +1(a &+ +a| )+V2/J (a&++a& )
1 1

(J —1)(J+2)
J

' 1/2

(a3++a3 )
—&J (a4++a4 )

1/2 1/2
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J+1 J+1

1J 1 1

4 2J+1

1/2
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1/2
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' 1/2
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—+J —1(a +a )
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1 1 J
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1 2J+3 1
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