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The theoretical framework of calculating the electron induced two-body breakup reaction
He(e, e'p)d at intermediate momentum transfer is described, where nucleonic final-state interac-

tions are exactly accounted for. A nonrelativistic dynamical description is assumed and the half-
off-shell scattering state wave functions needed for such a calculation are determined by solving the
Faddeev equations with Pade approximant technique. Local s-wave spin-dependent potentials are
used as two-nucleon input.

I. INTRODUCTION

In the last decade, considerable progress has been
made in the single nucleon knockout reaction in inelastic
electron scattering. ' The electron is considered as a
powerful probe to study the precise dynamical behavior
of nucleons inside the nucleus for two reasons. The elec-
tromagnetic interaction is well known and the nuclear
structure is only weakly affected by it. With the primary
objective to determine the proton momentum distribution
inside the three-nucleon system and to study the reaction
mechanism, the electron induced breakup reaction of the
He nucleus into a proton and a deuteron is measured at

Saclay ' and at NIKHEF, Amsterdam. '

In the theoretical analysis it is customary to assume
that the active nucleon is directly knocked out, leaving
the residual pair in a deuteron state or an unbound, but
correlated state. In the plane wave impulse approxima-
tion (PWIA), the experimental data fall well below the
available theoretical predictions, in which the trinucleon
bound state was calculated by a Faddeev or variational
technique. This discrepancy is usually ascribed to inade-
quacies of the bound state wave function. However, in
principle the mechanism of direct nucleon knockout is
not correct and final-state interactions between the nu-
cleons after the photon is absorbed have to be analyzed
before reliable physical information from the breakup ex-
periments can be extracted.

In this work we present an exact analysis of the elec-
tromagnetic breakup process of the trinucleon system.
Nucleonic final-state interactions (FSI) are fully account-
ed for by solving the Faddeev equations for the relevant
scattering states. The nuclear dynamics are treated non-
relativistically and the nucleon-nucleon interactions are
restricted to the s-wave channel. It is stressed that the
generally accepted conjecture that the size of final-state
effects is small and can be neglected in good approxima-
tion at least at low missing momenta has not been
confirmed by an explicit theoretical study. Final-state
effects have been accounted for in a approximate way by
Laget, ' who calculates the coincidence cross section

from the first few terms of a diagrammatic expansion of
the full transition amplitude. In addition to the FSI
corrections Laget also includes meson exchange current
(MEC) effects. His results seem to give an adequate
description of the data; unfortunately his treatment is not
systematic in terms of a conventional nuclear model.

Finally, we like to mention that the first exact three-
body calculation was presented by Barbour and Philips, '

almost two decades ago, in order to account for final-
state effects in low energy photodisintegration. Later
Lehman et al."were the first to calculate the electron in-
duced two-body breakup process including FSI, using a
nonrelativistic expression for the nucleon current. In
both calculations the Faddeev equations were solved, em-

ploying a simple nonrealistic separable potential. The re-
cent accurate (e, e'p) electron scattering data at higher
momentum transfer clearly calls for theoretical calcula-
tions with more realistic two-nucleon interactions. In
our investigations we have used local spin-dependent s-
wave NN potentials' as input to the three-body equa-
tions. They have the attractive property that they give a
reasonable description of the elastic and breakup process-
es in nucleon deuteron scattering' in the region up to
100 MeV lab energy.

The outline of this paper is as follows. In Sec. II the
one-photon exchange formalism is briefly reviewed. The
relevant components of the nuclear current are discussed
and the off-shell one-body current matrix elements are
derived to accommodate the evaluation of the trinucleon
nuclear structure functions. Section III is devoted to
some aspects of the three-body dynamics. To facilitate
the numerical evaluations the unitary pole expansion
(UPE) is employed to describe the local s-wave spin-
dependent interaction in a series of separable potential
terms. The UPE convergence properties for the trinu-
cleon bound state as well as for the NN and Nd scattering
observables are investigated. In view of the electromag-
netic two-body breakup analysis the general form of the
trinucleon bound state wave function and the half-off-
shell wave functions for 3N ~Nd scattering are de-
scribed. In Sec. IV the nuclear structure functions of the
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electromagnetic two-body breakup process are derived
and exactly calculated.

II. ELECTROMAGNETIC I¹IKRACTION

A. One-phonon-exchange formalism

Since the electromagnetic interaction is relatively
weak, the scattering of an electron from a nucleus can
very well be described by the exchange of one photon,
which transfers energy and momentum to the nuclear
system. Schematically the one-photon-exchange model
can be represented by Fig. 1. The four-momenta stand
or

(k, )„=(k„'iE,), incoming electron;

(k, )&=(ke;iEe ), outgoing electron;

(q)„=(Q;i co ), transferred photon;

(P„)„=(P„;iM„'),target nucleus;

(Pz i )&
= ( P

„ i, iM z i ), residual nuclear system;

(p N)„=(p NiE, ), detected nucleon .
PN

Energy-momentum conservation requires

(k, —k, )„=q„=(p~+P„,P„)„, —

s.e.,

ke —ke =Q=PN+P~-i —P~

E,—E,.=a)=E, +M~ )
—Mq .

pN

(2)

All evaluations are carried out in the target rest frame
P„=(0;iM„).Throughout this work we use the nota-
tions and conventions introduced by de Forest. '

The one-photon-exchange formalism, when applied to
electron-nucleus scattering, nicely separates the known
quantity, i.e., the electron-photon interaction from the
unknown quantity, i.e., the photon-nucleus interaction,
thereby taking full advantage of very general considera-
tions of Lorentz covariance and gauge invariance. Since
the interaction Hamiltonian is the contraction of the elec-
tron current and the vector potential arising from the nu-
clear current,

H(xi)ejelectron(x)gelt(xr)

In this section we briefly recall the general form of the
cross section for the unpolarized A (e,e'p) A —l reaction.
In order to calculate the electromagnetic amplitude of
the transition from a trinucleon bound state to a Nd final
state, which are both eigenstates of the full three-particle
Hamiltonian, we assume the nuclear current to be com-
posed of one-nucleon currents only. All arguments
presented are only valid in the intermediate energy
domain. The incident electron energy is typically of the
order of 500 MeV. The momentum transfer varies from
200 MeV/c to 600 MeV/c, while the energy transfer in
the lab system is generally smaller than 200 MeV, below
the threshold of pion production.

FIG. 1. Nuclear breakup into a single nucleon and a residual
nuclear system due to electron scattering in Born approxima-
tion.

tensors. Hence, the most general cross section for the
A (e,e'p)A —l scattering process in the ultrarelativistic
approximation for the electron, i.e., k, =0, can be ex-
pressed as

d tT 2tz e'4 ~ k ~

dA dE dQ, dE, kk t 8 p p gP
(4)

All the interesting information about the nucleus is
contained in the nuclear structure tensor O'„„.Formally
the nuclear structure tensor can be written as

g 5(E ' +Ef E; ~)&fg —
PN ~ JN (q)li &

R

X (fa pN I Jx (q) li &'

where i (f) and E;(Ef ) refer to the initial (final) nuclear
state and its energy. Asymptotically the final nuclear sys-
tem is described by a product of a plane wave ~px, ) for
the detected nucleon and an eigenstate

~f„)for the resid-
ual nuclear system. Using relativistic kinematics the
various energies in the lab frame are

E; =Mq,

E, =gpN+MN,

EI„=+(Q—PIv)'+M~"—i

=+(Q— 'PN+)M ~i +E~ -i .

It is convenient to express the intrinsic energy of the pair
by the separation or missing energy E;„,which is an in-
dependent quantity,

E,„=m„+W„*

where a is the fine structure constant and q2 =Qz —co2 is
the squared momentum-energy transfer. According to
the above approximation k, ./k, =E, /E, .

The electron-photon tensor g„for unpolarized elec-
tron scattering is given by (m, =0)

i)„„=k,k, +k, k, + —,'q„5&„.

the cross section turns out to be the contraction of two Nonrelativistically, the missing energy becomes
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Emiss EA —1 EA

It is convenient to choose a particular coordinate frame
in order to express the breakup cross section in terms
which can be identified directly with the various com-
ponents of the nuclear current. Following de Forest' we
choose a frame of reference which is determined by the
momenta Q and pN:

n, =

Ii =Q X piv / I Q X piv I

n~~=nixQ/InjxQI .

(10) FIG. 2. Kinematic structure of (e, e'p) reaction.

In Fig. 2, y is the angle between the transferred momen-
tum Q and the outgoing nucleon pIv, and P is the angle
between the electron plane and the nucleonic plane Jx„=(Jw'&px» (12)

cost)It=ni (k, xk, )/Ik, xk, I
.

All calculations presented in this work are in-plane re-
sults, i.e., /=0 or tI)=m. The components of the nuclear
current are defined with respect to this frame,

where JN =J~ nk, with k =z, l, II. In this specific frame

of reference the tensor product ri„„W„,from Eq. (4) can
be written as a sum of four terms v O', . The unpolarized
breakup cross section becomes

d4o

dQ„dE,dQ, dE,e' p~ p

4 2 2 2

=p~E tTM,«4 Wc+ 2
+tan —,8, Wr+

2 2
+tan —,8,

&s

Q4 2Q2 Q2 Q2

2

+ "cos tI)+tan —,'8, Ws

' 1/2

WI cosP

(13)

where

vM. tt=4a2E2 cos2(ri8, )/q p4

and 8, is the electron scattering angle cos8, =k,"k, .
In this frame the nuclear structure functions can be ex-

pressed in shorthand notation as

W, =&p'„&,
Wr=2(JN ),

(14)

where conservation of the nuclear current

I

The set of nuclear structure functions in Eqs. (14) and
(16) are depending on four kinematic variables,

W= W(g, co,pz, y) . (17)

The nuclear structure functions Ws and WI vanish when
the outgoing nucleon is moving parallel or opposite to the
transferred photon. '

In this work we assume that the nuclear current is
composed of one-body currents only. Ignoring the two-
body components implies that we lose explicit gauge in-
variance, since the off-shell matrix elements of the one-
body current operators are in general not conserved. As
a consequence the two sets of structure functions in Eqs.
(14) and (16) are no longer equivalent.

The general structure of the free nucleon current is

'Q'JN ~pm (1&)

is used to eliminate the nuclear current component Jz in
2

favor of the nuclear charge density pz. Elimination of
the charge density yields instead of Eq. (14)

2

Wc=

WT=2(Jiv ),
(16)

W= ——(J J ) ——(J J ).
co & II m II

where U, (p) is the four component Dirac spinor
' 1/2

1

o"p/(E +MN) Xs ~

E +MN

2EU, (p)=

Here, y, is a two-component Pauli spinor and the com-
ponents of o. are the Pauli matrices. F1 and F2 are the
electromagnetic form factors of the nucleon, depending

]cF2
UI „U=i U( p') y„(F,+IcF )+i (p +p')„U(p),"2M~

(18)
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only on q . In all calculations we have used the parame-
trization of Hohler et al. ' for the F„'s.Various other pa-
rarnetrizations were found to lead to the same results.
Assuming energy-momentum conservation at the
photon-nucleon vertex, it is convenient to eliminate the
vector (p+p')„ in favor of cr„„(p—p')„=—o„~ by
means of the Gordon reduction of the current and we
write down the equivalent current

KF&
UI'„U=i U(p') y„F, c—r„~„U(p). (20)

co=E' E, E'=Q—p' +MN,

E=+p +M&, p'=p+Q .
(22)

Consequently the currents in Eqs. (18}and (20) are no
longer equivalent. We restate the first current analogous
to the second current,

aF&J'„=iU(p') ) &Fi
—o&A U(p), (23)

In case the initial or final nucleon are of-mass-shell the
most general nucleon current will contain considerably
more structure' and one needs more than two types of
operators in order to construct the nucleon current. Also
the electromagnetic form factors will be modified in go-
ing off the mass shell. ' Although the construction of a
consistent and unambiguous one-body current should
certainly be addressed as a serious conceptual problem,
we shall not discuss it here. A detailed analysis of this
problem can be found in Ref. 19. In this work, we use a
one-body current which, on the one hand, does not
violate the basic requirements like current conservation,
four-momentum conservation, and Lorentz invariance
too severe and, on the other hand, can be put into prac-
tice rather easily. In the description of de Forest' the
nucleons are still represented by free Dirac spinors, al-
though one nucleon is initially bound. As a consequence
energy conservation at the vertex is no longer satisfied,
i.e.,

(21)

with

]cF~j„=i«p') r„Fi —o„W. (24)

they difFer only in the current components

aF&j —j„=U(p') o 4(m-co) U(p) .
N

(25)

Due to the antisymmetry of cr„„,P=p. The gauge invari-
ance prescription subsequently implies that WC= W&.
The derivation of the current amplitudes is straightfor-
ward. It requires the evaluation of the matrix elements
UU, Uyk U, Uy4U, and Uy4yk U. With these, we can
derive the current matrix elements, which manifestly de-
pend on the nucleon momenta p' and p and the four-
rnomentum transfer q„.In doing so, we use the following
notation:

&p's'I jk lps & =y, (Sk+isktr)y, ,

(p's'lplps ) =y, (S +iS o )y, ,

(26)

(27)

where jk stands for j nk (k =z, ll, l}. The explicit expres-
sions for the components S of the barred current in Eq.
(23) are

where q =(Q;iso). As the initially bound nucleon is de-
scribed by free Dirac spinors, the current is also no
longer conserved due to q„U(p')y„U(p)%0.The lack of
gauge invariance is restored in an ad hoc way, i.e., by el-
iminating the longitudinal component j& in favor of the
charge. The advantage of the current in Eq. (24) is that
the O.„~„term is already gauge invariant, whereas the

o„~„term is not. The argument to eliminate j rather
than p is given by the generally accepted assumption that
the predictions for the charge density are better under-
stood. More detailed arguments are given by de Forest. '

The actual nuclear breakup calculations are done in
the momentum representation. Computing the current
matrix elements requires expressions which explicitly
show the momentum dependence. Before doing so we
first discuss the difference between the currents expressed
in Eqs. (23) and (24). Since

q„—q„=[0;i(a) —a) )],

S =c(E',E) [(E'+MN )(E+MN)+ p p'](F, +xF~) (E'+E)[(E'+M—N)(E +Mt' )—p p']
2MN

S~=c(E',E) [(p'Xp) n, ] F, +xF~+(E'+E)
2MN

(28)

~F
S „=c(E',E) [(E'+M~)p n„+(E+M~)p'.n„](F,+~F, ) —[(p'+p) n„][(E'+MJv)(E+Mtr)—p.p']

2MN

vF~
Sk =c(E',E) [[(E'+MN)nk Xp+(E+Mtr)p'Xnk]. n&)(F, +xF~)+[(p'+p).nk][(p'Xp} n&]

2MN
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The lower index labels the component of the current,
while the upper index labels the component of the Pauli
spin matrix (1 =z, ~~, l). The common factor c(E',E) is

given by

c(E',E)= 1

+4E'E (E'+MII )(E +MIv )
(29)

~F2
Xn„]n, )(~—m)

N
(30)

From the barred components S, we can easily derive the
unbarred components S, which refer to the current in Eq.
(24):

s'=s'
s '

S' =S'

Sk =S„+c(E',E)[(E'+MII )p nk (E+M—N )p 'nk]

aF2
X(tv —tv}

N

Sk =S
k c(E',—E)( [ [(E+MII )p'+ (E'+M& )p]

d40

dQ dE dQ dEee ee I I JN
~N ~IV

(32)

The nuclear spectral function S(p,E ) will be dis-
cussed in Sec. IV. The quantity tT,II is the (half) off-shell
electron-nucleon cross section, first introduced in Ref. 20,

+eN +Mot t ( UC WC + VT W T +US WS + VI WI }, (33)

where the electron-photon factors v are expressed in Eq.
(13). Like the Ti„„components the tensor w„„follows
readily from

w„„=—g &
p's'

~ r„~ps ) & p's '
~ r„~ps ) ' .1

$ S

(34)

de Forest' presents a detailed discussion of certain
classes of (half} off-shell eN cross sections. Therefore we
suffice with stating the final results for the relevant com-
binations of the photon-nucleon tensor:

2 2

—2

wc=, (E+E')' F', " g~F~z
4EE

In order to get a better understanding of the several
current components we make a nonrelativistic reduction
by expanding the quantities S in a series in parameter
I/MIv Up to o.rder I/M~ we find

Sp=F, —(Ft+2KF2)Q /8MII+8 1

MN

S' =(F, +2aF2)[QX p' nl]/4MIv+8
N

(31)

—Q (F, +~F, )2

wT=,q (F, +aF2)1 2

2EE'

ws EE pNsiny F + " ~Fz
4MN2

—2

EE', p&siny(E +E') F& + "2 a F2
4MN

(35)

S„'=F, (2p' Q).n„/2M„—+8
MN

Sk =(F&+ItF2)[(QXnk).ni)/2M&+8

Equations (35) are the functions which correspond to the
current from Eq. (23). The energies E and E' are the en-
ergies of the nucleon before and after the electromagnetic
interaction. Equation (24) leads to

These nonrelativistic expressions are valid for both
currents since we assume that rtI

—Iv is of order I/MII,
and consequently the current difference is of order
(I/Mz). The dominant term clearly is the direct charge
contribution F& occurring in S . The leading terms in Sk
are recognized as the convection current (Sk) and the ro-
tation of the intrinsic spin magnetization V XP(x) (the
term Sk). The I/MII contributions in Sz are the well
known Darwin-Foldy term (remaining part S ) and spin-
orbit terms (S ).I

P

Wc =Wc

wT=, ~ —(p~' +M&)F&+q q F~ltF2,

tr F2
+[2p„q+A (PQ Mw qle] 4M'

2

pNsin p F&+ K F2I2 2 2 q& 2 2
s EEi 4MN

(36)

8. Oft'-shell electron-nucleon cross sections

The plane wave impulse approximation (PWIA) model
offers the possibility to make a further analysis of the
electromagnetic part. This approximation assumes that
the outgoing nucleon is directly knocked into a final
plane wave state ~pNtr'Nr'N). Consequently the elec-
tromagnetic interaction factorizes from the complicated
nuclear overlap and we can express the PWIA cross sec-
tion as

w = PNsiny (E +E')Ft—I EEI N

+ [(p +p')„q„co (E +E')q„]-
2F2

2
X

4MN

The nonrelativistic reduction of the current leads to
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1wc'=Ft —Ft(F) +2/F2)Q /4M/+0
M~

wT'=(F, +IrFz) Q /2M~~+(r)
1

ws'=pN sin yF', /M~~+8
(37}

1wl"'= —2pystnyF $ /Mj +8
M~

Like de Forest' we may consider the implications of us-

ing different currents for the resulting off-shell cross sec-
tions. The results are plotted in Fig. 3. For reasons of
comparison we have added a completely different off-shell
cross section 0, which has been extensively used by the
Saclay group for a couple of years. o is originally intro-
duced by Mougey ' and results from a different conceptu-
al approach. At present most groups, including the Sa-
clay group, employ one of the cross sections o." ex-
pressed in Eq. (35) or Eq. (36). In calculating the various
cr,& cross sections we have confined the kinematics to re-
gions which are of interest for the two-body breakup re-
action of He. The separation energy E, =5.5 MeV,
while the recoil

E„,=[(Q—p' ) +4M ]'~

The four sets of (Q, E,I) points are more or less represen-
tative for the current experimental situation. Further-
more, increasing the electron energy does decrease the
differences. Figure 3 clearly shows that there is no
significant difference between cr&' of Eq. (35) and oz' of
Eq. (36) in any of the kinematic regions. On the other
hand, o and 0."' show a rather large discrepancy with
the o" set. For the large Q value, rJ"' is not even close to
0"at the most on-shell point, y =0. The issue of current
conservation poses a more serious problem. Instead of
using the set of W functions from Eq. (14) we calculated
the half-off-shell cross section from Eq. (16), in which the
current component Jz is kept rather than the charge p&.

Q

The results are quite different. It should, however, be
noted that the prescription of eliminating the charge
operator has the drawback that it cannot be applied for
the elastic charge form factors, in view of the factor co in
Eq. (15). In view of the close similarity of o", and 0 2 we
decided to make a definite choice for one of them. Since
the current amplitudes in Eq. (28}, which lead to o t',
have the simplest structure, we performed the calcula-
tions with the current of Eq. (23). But this choice merely
is a matter of taste. In order to resolve the problem of
gauge invariance violation it is clear that the question of
off-shell dependence deserves to be investigated in detail.

p .
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FIG. 3. Half-off-shell electron-nucleon cross sections. The solid and short-dashed curves represent the cross sections o.i' and o.2'

from, respectively, Eqs. (35) and (36). The dashed-dotted curve shows the cross section cr"' [Eq. (37)], while the dotted curve shows

the cross section o. (Ref. 21). In the long-dashed curve the current component J& is kept instead of the charge p&.
Q
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TABLE I. Parameters of MT I-III potential (Ref. 12).

MT I-III 3g

p„{&MeV)
X„(~MeV)
I „(&Mev)
A,~ (&MeV)

10
4.1

20
11.48

10
4.996

20
11.48

In such studies physically reasonable dynamical models
with proper gauge invariance properties have to be con-
sidered.

III. THREE-NUCI. EON DYNAMICS

Despite its simplicity it gives a surprisingly good fit to the
two-nucleon scattering observables. To be self-contained
we list its parameters in Table I. The UPE eigenvalues
for this potential, obtained according to Eq. (B2), are list-
ed in Table II.

In this section we present explicit forms for the half-
off-shell NNN~Nd scattering wave function and the
trinucleon bound state wave function, which are needed
in the electromagnetic analysis of the two-body breakup
reaction of the A =3 system. The wave functions are
constructed from the Faddeev amplitudes, which are
determined by solving the Faddeev equations. The rela-
tive momenta and spin-isospin quantum numbers, which
label the various three-nucleon states are defined and dis-
cussed in Appendix A. For purposes of numerical evalu-
ation we have adopted the separable UPE method (Ap-
pendix B) to describe a realistic local s-wave spin-
dependent potential. It is known that already the first
term of this expansion, i.e., the unitary pole approxima-
tion (UPA), gives a fair description of the trinucleon
binding energy. ' To determine the validity of the
UPE method in the scattering region we have studied the
UPE convergence properties of the Nd scattering observ-
ables. In the remainder of this paper all formulas are
written down for the simple case of the UPA. Extension
to UPE is straightforward.

The local potential we have adopted as NN input is the
Malfliet-Tjon (MT) potential, set I-III. ' In both chan-
nels it is described by a spin-dependent central Yukawa-
type interaction

e A, e
v(r)= — +

f (p q'pld qf'pl)= g &'"'(p q;pld qf pf)
n=0

(39)

where p, q denote off-shell momenta. The first diagram in
Fig. 5 is called the disconnected term. The correspond-
ing lowest order term 8' ' is not included in Eq. (C12)
and will be treated separately from the rest, since it con-
tains a delta function for the spectator part. Its form is

&"'(pi, qi', pild, qf, pf }=&(qt—qf)pd(pl)&qp (40)

where Pd is the normalized deuteron wave function ex-
pressed in Eq. (B4).

The next term B"' is connected and will serve as the
driving term of the multiple scattering series. Indeed,
this term is proportional to the inhomogeneous term in
Eq. (C12).

We drop the antisymmetrization label in Eq. (C12},
keeping in mind that the scattering only affects subsys-

Hereafter we characterize the type of approximation
made in the UPE as (ntp, ntm) S„(ntp,ntm)'So, where
ntp(ntm) refers to the number of positive (negative) ei-
genvalues retained in the expansion. For example, UPA
is (1010). To study the convergence rate of the separable
expansion in the scattering region we computed the NN
phase shift parameters in both channels and compared
their values with the phase shift parameter obtained with
the local potential. The results are shown in Fig. 4. The
number of retained eigenvalues is increased from (10)-
UPA to (53}-UPE. The deviation between the result cal-
culated with the (53)-UPE expansion and the local result
is merely numerical inaccuracy. Also the (22)-UPE ex-
pansion gives a satisfactory description, which is an im-
portant result, since the three-body codes are updated for
at most eight eigenvalues. The UPA results are not that
good, but still reasonable, at least in the low-energy re-
gion. Note that in the singlet channel the UPA result for
s =Ed shows a better convergence than the s =0 curve.
This result is somewhat surprising in view of the fact that
the latter choice clearly exhibits a larger first eigenvalue.
Apparently this in itself does not guarantee a better con-
vergence to the local T matrix.

The multiple scattering series for the three-body sys-
tem is constructed from the subsequent iteration of the
Faddeev equations (Appendix C). In diagrammatic form,
this series can be represented as in Fig. 5. The corre-
sponding scattering wave function can be written as

A,-UPE
'SI, s =Ed

A. )0 A. (0

TABLE II. UPE eigenvalues.

'So, s =Fd
A, )0 k(0 A. )0

'So, s =0
A. (0

1

0.159 329
0.061 723
0.032 556
0.025 143

—1.970470
—0.367 408
—0.075 586

0.626 569
0.097 967
0.037 879
0.019956
0.012 373

—2.605 216
—0.534 540
—0.143 338
—0.027 930

0.926 828
0.114680
0.041 807
0.021 438
0.013080

—2.685 485
—0.537 293
—0.143 557
—0.027 955
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80

60—

qi'"(q, ;p, lq&.,pI)= fdp'„dq„'g(p',;p, )

x5(q, —
qI )&'(P& IPy ~3

Xgz(p3)5(q3 —qi) . (42)

40—
M

Q

o 20—
CL

z
Iz 0-

The p dependence of the functions g and r is understood
to refer only to the spin s of the relevant subsystem.

The momenta p& and p3 are expressed into q& and q3
and the index n in Eq. (42) is fixed to 1 or 3. The result of
the integrations becomes

-2—0 s i t I s s i I I ~

0 100 200 100 200 300 'Ii'"(q~'p~lqy p&)=2(2/~3) )~ pilpf )'3

1 +s +t
tems with definite parity (—) ~ = —l. Inserting the
UPA form of Eq. (B8) for the two-particle T matrix, we
can express 8"' as

&"'(p~, q~', p~ld, qj,pI)-g(pi, p, )7(z q„p,)
X%'"(qi,p, lqf pf)

where

(41)

Lab Energy (MeV)

FIG. 4. NN phase shift parameter 50. The crosses represent
the result for the local MT interaction, set I-III (Ref. 12). The
curves show the results for the various UPE combinations. The
short-dashed curve corresponds to UPA, the dotted curve to
(11)-UPE, the long-dashed-dotted curve to (22)-UPE, and the
solid curve to (53)-UPE. The long-dashed curve present only in
the figure for the singlet parameter results from a UPA calcula-
tion with the s value set to 0.

Xg —Iqg +-,'qil; pI
3

~ Iqi+ -,'qII (43)

+("(qr',p) Iqi,'pg )

+1 (1)dxlfP/(x)f)4'~ ~(q&ip&lqyipI) . (44)

The (n + 1)th term of the multiple scattering series can be
found from the nth order wave function using the result-
ing partial wave decomposed equation

This term is called the rescattering contribution. For
each disconnected diagram there are two rescattering dia-
grams and 4'" is multiplied by a factor 2. We may now
perform a partial wave decomposition

q I (ql pl lqI pI)= 8~2 —f dq3q3 &i(qi»ilq3 p )'r(z q3 p') p~"'(q—3'p Iqy»I»
P'

where the kernel is given by

4 g (2~&31q3+-,'qII; p) I & pl@' &3g(2&&3lq~+-,'q 3 I;p')
ECI(q&'plq3, 'p )= dx]3Pl(x]3)

3v 3 —', (qi+q3 +q&q3x'I3) —z

(45)

(46)

The recoupling coefficients in Eqs. (43) and (46) can be found using Eqs. (A19) and (A21). In spin doublet scattering
we have, (y",g,"Iy,q, )3=,(y, q, Iy, ri, )3=—

—,
' and, (y", rt, Iy, ri, )3=,(y, g, Iy, ri, )3=—,'. In spin quartet scattering we

have, (g~r), lying,")3= —
—,'. In the (numerical) analysis of the Eqs. (46) and (45) one encounters serious problems due to

the presence of various singularities in the integrand. A correct treatment of these singularities is essential. The resol-
vent in Eq. (46) contains a pole of type (x —x, )

' due to the scattering of three free particles. The evaluation of Eq. (46)
gives rise to logarithmic discontinuities in the integrand of Eq. (45), which emerge at the threshold of the three-particle
scattering region. Furthermore, this equation has a deuteron-pole singularity of the form [q3

—(s, Ez)] '. In th—e
numerical evaluations the method of subtraction techniques is used in order to remove the three types of singularities.
This method is described in detail in Ref. 13.

After the partial wave components of 4'"+"have been calculated, the final-state wave function stated in Eq. (39) can
be reconstructed as

f(pi, qi', pild, qI, pI ) =&(qI —qf )fip @~4'd(pl)

g(p&', P&)r(z q&,'P&) g (21 +1)P—I(q& qI) g 'PI" (q&'PIlqf Pf)
Pi+$1 Z I —P n=1

(47)
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qf
d

+ ~ ~ ~

FIG. 5. Scattering series in diagrammatic form.

where the energy argument z corresponds to s, + ie..
The solution to the half-off-shell NNN-Nd scattering

wave function is reconstructed from the multiple scatter-

ing series at a given momentum point by using diagonal
Pade approximants. In general similar orders of ap-

proximants as for the on shell case studied in Ref. 13 are
needed to find the converged solution. The found wave

function was explicitly checked to be the solution of the
integral equation by substituting it back in the equation.
The numerical agreement at the mesh points of the q&

grid was found to be excellent. Of course, due to the
discretization, the numerical solution is only an approxi-
mation of the actual solution, but except for very small

spectator momenta, the numerical solution is hardly sen-

sitive for variations of the mesh parameters. Going to
higher energies or to higher partial waves leads to more

rapid convergence.
The relevant Nd scattering observables are the inelasti-

city rl and phase shift parameter 5. In order to study the

convergence properties of the UPE method, we have cal-

culated these observables for various UPE combinations.
To cover the kinematics scanned in the electromagnetic
breakup, we have extended the energy range up to 150
MeV neutron lab energy, which corresponds with a Tzd
of roughly 100 MeV. To determine the rate of conver-
gence the same observables were calculated for the local
MT potential. In doing so we used the numerical analysis
developed by Kloet. '

The results for the UPE phase parameters for the par-
tial wave numbers I =0, 1, and 2 are summarized in the
Figs. 6 and 7. In case of doublet scattering the calcula-
tions are carried out for the (1010)-UPE, (1111)-UPE,and
(2222)-UPE combinations. Similarly for quartet scatter-
ing (10)-UPE, (11)-UPE, and (22)-UPE. The figures also
show results for the phase shift and inelasticity parame-
ters obtained with the local potential. In addition the lo-
cal results are summarized in Table III. Small differences
with previous low energy results' are due to improved
numerical accuracy. The results beyond E&,b=50 MeV
are new. Due to the expansion of the potential in terms

Inelasticity Parameter Phase shift (deg) Inelasticity Parameter Phase shift (deg)
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FIG. 6. Nd phase shift 5 (degrees) and inelasticity g. Plotted
are the results for doublet scattering in the partial wave num-

bers 1=0, 1, and 2. The crosses account for the local results.
The UPA, (1111)-UPE,and (2222)-UPE results are, respectively,
represented by the dashed, dotted, and solid curves.

Neutron energy E (MeV)

FIG. 7. Nd phase shift 6 (degrees) and inelasticity q. Plotted
are the results for quartet scattering in the partial wave numbers
I =0, 1, and 2. The crosses account for the local results. The
UPA, (11)-UPE, and (22)-UPE results are, respectively,
represented by the dashed, dotted, and solid curves.
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TABLE III. Nd phase shift 5 (degrees) and inelasticity g for the partial waves 1=0, 1, and 2, ob-
tained with the local MT interaction, set I-III.

Elab 2$ 2
90

Doublet parameters
2$ 91 2$ 'n2

4
14.1

20
40
60
80

100
125
150

143.62
106.18
86.04
43.98
27.63
18.79
13.05
8.14
4.67

0.962
0.467
0.380
0.475
0.629
0.743
0.824
0.892
0.934

—4.90
14.34
20.17
20.53
18.46
14.26
10.74
7.26
4.60

0.994
0.698
0.691
0.790
0.861
0.906
0.937
0.963
0.979

3.23
7.01
7.85
8.75
8.29
7.35
6.30
5.02
3.86

1.000
0.948
0.925
0.901
0.912
0.929
0.946
0.963
0.975

Ei.b 4g 4
gp

Quartet parameters
4g 4~ 4g 'n2

4
14.1
20
40
60
80

100
125
150

102.13
69.83
60.21
39.69
27.73
20.08
14.95
10.62
7.67

1.000
0.977
0.951
0.900
0.901
0.919
0.939
0.959
0.973

28.73
32.79
31.92
26.24
20.74
16.46
13.21
10.18
7.93

1.000
0.912
0.869
0.815
0.821
0.845
0.871
0.901
0.926

—5.55
—8.97
—8.79
—6.63
—4.53
—2.95
—1.84
—0.91
—0.32

1.000
0.975
0.953
0.908
0.898
0.903
0.915
0.931
0.946

of (virtual) bound state components, one might expect
that the UPE method loses accuracy at higher energies.
Indeed, we observe a growing discrepancy between the
local result and the lowest-order UPE results. Increasing
the number of UPE terms leads to a much better conver-
gence, but still the (22) term for S =

—,
' or the (2222) term

for S =
—,
' are not able to give an exact reproduction of the

local parameters. For the quartet 1=0 scattering we
have studied the UPE convergence up to eight eigenfunc-
tions. The result is shown in Fig. 8. Indeed the (53) re-
sult has converged to the local parameters.

In the calculations of the electromagnetic breakup
cross sections of the A =3 system, we evidently also need
the wave function of the trinucleon bound state. Using
an s-wave NN potential in UPA, the determination of the
Faddeev amplitudes for the bound state becomes almost
trivial. In contrast to the scattering states, which contain
many partia1 wave components, the trinucleon bound
state has definite total angular momentum J=-,'. Cou-

I

y(q;plE&)= —~a g fdq'q'W(q;plq', p')
P'=1

Xr(Es —q;P')

XP(q', P'~Ea ),
where the kernel is given by

(48)

pling the spin S to values —,
' or —,

' restricts the possible
values of the orbital angular momentum L to 0 or 2. The
value L = I is excluded, since it violates parity. Further-
more 1» =L, since l~ =0. In the following evaluation we
drop the 1 =2 component. Its contribution is very small
and can easily be added, since it acts in just one channel
with definite symmetry. Consequently the total three-
nucleon spin S is restricted to the doublet value.

Application of the same scheme presented in the previ-
ous sections yields a one-dimensional homogeneous in-
tegral equation coupled in two channels,

+& g 2 3 —,'q+q'; 3 ',g 2 3 —,'q'+q;
W(q, P~q';P') =8m(2/~3)' —,

' dx—1 ,'(q' +q +qq'x) —Es— (49)

The full Faddeev amplitude is reconstructed as

g(p, q;pl&g ) =g (p;p)r(Es q;p)p(q; p)GO(Es—),
where Go denotes the bound state propagator. Since
Es ——8 MeV (Ez,„,both Wand r are free of singulari-
ties and Eq. (48) can be solved by direct matrix inversion.

In Table IV we present the trinucleon binding energies
obtained with the UPE method applied to the MT I-III
local s-wave potential. Results are listed for UPE com-
binations with at most two eigenvalues with an equal sign
in each spin channe1. %e have also considered the value
s =0 MeV in the spin singlet channel. The most pro-
nounced jurnp occurs when the largest negative eigenva1-
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90
Q)
O

30 60 90 120 150 state can easily be obtained from the Faddeev amplitudes,
which already have the proper subsystem symmetry. A
projection on plane wave states Eq. {AS)yields

4

& PTI = & f dp&dq& & Pr IpiqjP& i j& pjqiPI . (5l)
P= 1

60
N

The wave function coefficients are

&V, lp, q,P&, =&el +~, , +~ „lp,q,P&, , (52)
R ~0

0 I I

I I

'o 0 98
N~ 096-
(0
C

0.94

0.92-

0.90-

C ~

~ ~a~
I
I ~

where the state &gl corresponds to the Faddeev ampli-
tude in Eq. (50), after replacing Ett by ET. For the L =0
amplitude we obtain

2 3

&prlpiqip&1= g g p(p„,q„;p')„&p'Ip)i, (53)
g=] n=l

where (p„,q„)are the associated momenta of (p„q,).
Again our preference for particle 1 as the spectator is ex-
pressed in the choice of basis states. Substituting the
values for the recoupling coefficients, we obtain the expli-
cit form of the various trinucleon wave function com-
ponents

30 60 90 120 150

Neutron energy E, (MeV)

FIG. 8. Nd phase shift 5Q and inelasticity "gQ. Again crosses
refer to the local results. The meaning of the curves is as fol-
lows: (solid) = (53), (long-dashed) = (43), (long-dashed-dotted)
= (33), (dashed-dotted) = (22), (dotted) = (11), (short-
dashed) =UPA.

& gT lx, g, &
&
=p, ( l)+ —,'p, (2)——,'p, (2)

+ —,'P, (3)——,'P, (3),
& ~, lx.~, ),=~, ( l)+-.'~, (2)--.'~, (2)

+-,'P, (3)—3 P, (3),
& g lx, ri, &, =-,'v'3[/, (2)+p, (2)]

(54)

ue in the spin singlet channel is retained. Further in-
crease of the number of eigenvalues at most accounts for
a small additional decrease of the binding.

Our UPA result with s =0 in the 'So channel is in
agreement with the value —8.464 MeV quoted by
Harms, but in contrast to the value of —8.63 MeV ob-
tained by Bakker and Ruig. The accurate value for the
binding energy, ET= —8.536 MeV, obtained for the local
MT potential is quoted from Ref. 25. In agreement with
this value is the binding energy we found in determining
the local trinucleon wave function. Its value is
ET = —8.50 MeV.

The completely antisymmetrized trinucleon bound

—
—,'v'3[/, (3)+p,(3)],

&p Ix, g, &
= —

—,'v'3[&, (2)+p, (2)]

+ —,'&3[/, (3)+P,(3)],

4

&PrlWT&= & fdpdqlfT(p, q;Pr)l'=l (55)

where P (n) is the Faddeev amplitude from Eq. (50) with
momenta (p„,q„)and pair channel spin index m = t or s.

The normalization of the trinucleon state is according
to

TABLE IV. Trinucleon binding energies in UPE. The local value is taken from Ref. 25.

UPE

1010

1011
1110
1111

Local

s SQ —Ed

—8.859

—8.507
—8.838
—8.492

—8.536

s So=0
—8.487

—8.369
—8.466
—8.355

UPE

2010
1020
2110
1021
2121
2222

s'SQ =Ed
—8.889
—8.875
—8.868
—8.526
—8.546
—8.504

s SU=0

—8.512
—8.583
—8.493
—8.460
—8.479
—8.459
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FIG. 9. Electromagnetic interaction.

IV. ELECTRON-INDUCED TWO-BODY BREAKUP

s, ~ =']]/ (co+Mr) —Q —3MN, (56)

where q„=(Q;i') is the transferred four-momentum.

Mz and MT, respectively, denote the masses of the nu-
cleon and the trinucleon bound state system. To describe
the two-body breakup process we introduce the relative
nucleon-deuteron kinetic energy

T~„—s. m ™„+2M„. (57)

M~ and MT are taken as 2M~+E~ and 3M~+ET, where
the binding energies Ez and ET result from nonrelativis-
tic calculations. The kinetic energy s, is the on shell
point in the three-nucleon scattering analysis. The ener-

gy Tzz is related to the momentum qf according to

TQg qf (58)

where qf denotes the final-state spectator momentum

determining the scattering wave function in Eq. (39}. The
lab frame momentum pz of the detected nucleon follows

from energy-rnomenturn conservation

This section presents a detailed analysis of the electron
induced two-body breakup reaction of He. Non-
nucleonic degrees of freedom are not considered and the
XX interaction is restricted to the s-wave channel.
Three-body dynamics is exactly treated in an essentially
nonrelativistic description. All calculations are carried
out in the lab frame, i.e., the target rest frame. Since the
nuclear dynamics is treated nonrelativistically its struc-
ture only depends on the relative three-body coordinates
introduced in Appendix A. However the electromagnetic
current elements discussed in Sec. II need evaluation in
the lab frame. Furthermore, at the considered values of
energy-momentum transfer, it is preferable to employ rel-
ativistic kinematics.

To connect all these prescriptions essentially one for-
rnula is needed. Due to momentum-energy conservation
the total relative kinetic energy available in a final state of
three free nucleons is given by

nonrelativistic kinematics is quite small for values of the
momentum transfer below I GeV/c.

If

co("]]/[Q +(MN+Md) ]—Mr,
the energy transfer is not sufficient to account for the
center of mass motion and the breakup process is not al-
lowed. Two additional restrictions Q )co and
Q+co(2E, are set by the ultrarelativistic treatment of
electronscattering. When

Q ~ I. ( TNd+ Nd(MN ™d)+2MNMd )
2M~

-(2M„M } ~
~

a region in phase space is entered where two p& values
satisfy Eq. (59) in the forward cone of the angle y. Out-
side these regions each value of y corresponds to one
value of the momentum pN.

For the trinucleon system the electromagnetic current
operator takes the diagrammatic form as shown in Fig. 9.
The relevant nuclear current matrix element is obtained
by evaluating the current operator between the initial
trinucleon bound state and the final Nd scattering state.
In the actual calculations we do not need a manifestly an-
tisymmetrized final-state wave function. Since the bound
state is antisyminetrized and the electromagnetic opera-
tor is syrnrnetric in the nucleon number, we only need one
of the three final-state components:

—(ldqf ) i"+ ldqf )2"+ ldqf )3")~&3(ldqf )] ) ~ (6l)
3

Here the upper index A refers to the proper symmetry in
the subsystem indicated by the lower index. The factor
&3 reflects the asymptotic normalization. The various
diagrammatic contributions are shown in Fig. 10. Set a

co+M„=+pN+MN+ +(Q—
pN ) +Md,

where the angle

cos'Y =x]ab Q p N

(59)

(60) () (i (] (.i
is determined by the position of the experimental detec-
tion apparatus. Finally, the relative angle xf is deter-
mined from the right-hand side of Eq. (A3). It should be
noted that the three relations in Eqs. (56), (59), and (60)
are not completely consistent with Eqs. (A3) and (A4}.
Fortunately, the difference due to mixing relativistic and FIG. 10. Electromagnetic two-body breakup diagrams.
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represents the disconnected amplitudes, set b the con-
nected rescattering amplitudes, and set c the entire multi-

ple scattering series amplitudes. Set b is included in c.
Let us discuss these sets of diagrams and their contribu-
tions to the electromagnetic breakup cross section.

A. Born analysis

In the well-known plane wave impulse approximation
(PWIA) the analysis of the breakup reaction is restricted
to diagram la of Fig. 10. For this single amplitude the
nuclear structure and the electromagnetic structure
decouple, and consequently the cross section factorizes.
It is convenient to express the PWIA cross section in
terms of the nuclear spectral function, which general con-
cept is introduced by Gross and Lipperheide. Applied
to the trinucleon system the spectral function becomes

~ =3S(p. ,E.;r;,T,*)=—y y l(q,Z;T;ly, g;p. ,r, ), l'
J'

I I

U

O
Q
(3

I I

10

10

10

10

10

10

10

10

'~

100 200 300 400 500 600

p (Mev/c)
X5[E e23(f)+E—T] .

(62)

It measures the probability to find a nucleon t', with
momentum p in the nucleus TT leaving the residual
subsystem in any state with intrinsic energy e23(f). The
missing energy E is already introduced in Sec. II.
Equivalently p is called the missing momentum. If the
target nucleus is at rest, the missing momentum p is re-
lated to the recoil momentum p„,of the residual nucleus
according to p = —p„,. The dummy index f labels all
the remaining quantum numbers of the residual nucleus.
Due to the rotational invariance of both the target nu-
cleus and the residual nucleus, the spectral function S de-
pends only on the length of the momentum p . There-
fore, the missing momentum and the recoil momentum
are equivalent quantities in evaluating the spectral func-
tion. For an extensive treatment of the spectral function
S including sum rule properties we refer to Hajduk and
Sauer.

In two-body breakup, which is well separated from
three-body breakup by the missing energy, it is cus-
tomary to introduce the momentum distribution p2,
which can be extracted from the spectral function after a
trivial integration over the missing energy up to —ET,

P2(p~i ti = TT)

FIG. 11. Momentum distribution function p2. The solid
curve is calculated with the local MT interaction. The dashed
and long-dashed-dotted curves result from an UPA and a
(2222)-UPE calculation. The dotted curve is due to a Yamagu-
chi form factor. The data points are due to Jans (Ref. 2). They
are extracted from (e,e'p) measurements assuming the validity
of PWIA.

tential, while the convergence of the (2222)-UPE separ-
able term is almost excellent. Evidently the constructing

amplitude changes sign at a missing rnomenturn of about
450 MeV/c. It reflects the presence of a repulsive com-
ponent in the MT interaction. To show this we have also
plotted the p2 result for a Yarnaguchi-type interaction,
which is purely attractive. (Parameters are taken from
Ref. 13.) In that case the amplitude has a definite sign in
the entire momentum interval. The p2 value at zero miss-

ing momentum is directly related to the trinucleon bind-
ing energy, which appears in the wave function propaga-
tor. The much lower Yamaguchi starting point is due to
an unrealistically strong binding of —11.0 MeV.

Thus, the PWIA contribution is directly proportional
to the p2 momentum distribution sampled at

p =ipN —Qi. The electromagnetic interaction is ex-

pressed into the half-off-shell electron-nucleon cross sec-
tion cr,N presented in Sec. II and consequently we can
write the threefold PWIA cross section as

—
—,'g X I&@,J;T;ly, jg, p~o, t', &,I'.

JT Jdal

(63) C7

f~exp~( ~ px Ql TT ) . (65)

In terms of the s-wave triton and deuteron wave func-
tions, expressed in Eqs. (53) and (B4), the rnomenturn dis-
tribution reduces to

2
TT) =3 f d piPT(piq P=Xtn,')Ad(pi» (64)

where the kinematic factor kf is given by
I

kf = fdE, p~ 5[co+Mr Qp~ +MN—
JN

where q = —
—,
' Q3/Mzp . Results for the momentum

distribution p2 are shown in Fig. 11. Already the UPA
calculation leads to a very reasonable reproduction of the
rnomenturn distribution obtained with the local MT po-

=p'E, 1— Qpm pN &N

JN E'

—+(Q—
pIv )'+MA

(66)
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with Ed the lab energy of the knocked out deuteron.
The factorization of the nuclear and electromagnetic

structure as found for PWIA is not valid for the remain-
ing diagrams 2a, 3a, and b and c in Fig. 10. The corn-

piete two-body breakup amplitude of the trinucleon sys-
tem with only nucleonic degrees of freedom for the nu-
clear current and nuclear wave functions constructed
from s-wave NN interactions is expressed as

3 4 3

(d, qf ,pf')=/3 g g g f dp&dq, pT(PI"', qI"',pr)S„[k„(p„q&),a'„,&„';pT,P~]f(p~, q~,'P~ld, qf Pf }

The trinucleon wave function QT and final-state wave
function f are given by the Eqs. (54) and (39). The func-
tions S„contain the nucleon current elements and are
closely related to the quantities S or S expressed in Eqs.
(28) and (30),

amplitudes, we first discuss the structure of the momen-
tum dependence of the amplitude in Eq. (67). The bound
state momenta (PI"',q'P') are related to (p„q,) via the
momentum transfer Q~=Q/&3M on nucleon n In.
terms of the matrix a; introduced in Eq. (A14), we have

Sp[k (Pi qi) ~ & r '~T ~i]

=i&p'7'qI"'&Tlj„'(k. ~. &.*)lpiqPt &i «8)

'p(n) '

q(n)

p&
+~1—n

0

Q
(69)

The only relevant modification is that the functions S„
require evaluation in three-nucleon Hilbert space. The
momentum of the active nucleon in the lab frame just
after the electromagnetic interaction is denoted by the
variable k„.It depends on the Jacobi coordinates p, and

q, according to Eqs. (A3) and (A4). The spin-isospin
structure of Eq. (68) is treated in Appendix D.

The indices on the amplitude A denote the component
of the nuclear current (p, ) and the component of the Pauli
spin matrix (A, ) [see Eq. (26)]. Since the deuteron is iso-
spin zero the possible final spin-isospin channels (Pf } are

ly, q, ) and ly~r), ) in the notation of Eqs. (A16)-(A18).
Taking the momenta (p„q,) as integration variables is

advantageous for several reasons. In this way the
momentum transfer Q is only present in the ground state,
via the momenta p'&"' and q'&"', and in the electromagnetic
current; the final state does not depend on Q. Further-
more, since we only need one final-state component [Eq.
(61)] the diagrams can be arranged in such a way that the
nucleons labeled 2 and 3 are involved in the first strong
interaction after the electromagnetic interaction. This
part depends only on the momentum p, . From Eq. (47)
we see that the complicated spectator wave function for
the connected part, Eq. (45}, can be completely kept out-
side the p, integration. Of course, this property is only
valid for separable potentials. In case of a central local
potential the above statement is restricted to the Qz in-

PI
tegration. Finally, the free propagator Go in the final
state depends only on p, and q, , and not on the angles.
This implies that subtraction techniques can be used
straightforwardly to integrate the physical pole.

Before turning to a detailed treatment of the various
l

The bound state exchange momenta (p~2"', qz'"') and
(p~3"', q~3"') are obtained from (p'P', q'P') by an additional
operation a2&, respectively, a3& =a2j . The contributions
from n =2 and n =3 can be taken together in the p& in-
tegration, as is shown hereafter. From the properties of
the matrix aj; it follows immediately that

and

P2 (Pl ql) P3 '( —
Pi qi»

q2 (Pl ql ) 'q3 (Pl qi)
(70}

The momentum dependence of the nucleon current is
contained in S~[k„(p„q„Q)].Due to Eqs. (A3) and
(A4) we have

k3(pi qi Q) =k2( —pi qi Q) . (71)

Since the final-state wave function only depends on the
length of p, we find that the substitution p, ~—

p& inter-
changes the set of diagrams 2~3 in Fig. 10, at least with
respect to the momentum dependence. For the bound
state components with odd spin-isospin parity this
correspondence is exact, however in the even channels
the substitution induces an additional minus sign.

We now evaluate the disconnected Born-type diagrams
a from Fig. 10. In relation to the momentum distribution
expressed in Eq. (64} the PWIA amplitude simply be-
comes

~"'""'(d,«;13,) =S'[k,(q, , Q), „r;;P,=X,~„~,]~~fd p, ~,(p', ",q', ",~,=~,~, )~,(p, ) (72)

Also in the disconnected diagrams 2a and 3a of Fig. 10, the spectator wave function 5(q, —qf } is trivially removed.
However the electromagnetic interaction cannot be extracted from the integration, and the contributing Born-type am-
plitude becomes

3 4" '(d, qf', Pf)=&3 g g fdp~fT(p'p', q'p';PT)S [k.(p~ qf Q) a. r.' Pr Pf]ld(p&»
n=2 pT

(73)
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where DDKO stands for direct deuteron knockout. To make use of the similar momentum dependence of the com-
ponents n =2 and n =3 we rearrange the various current combinations with respect to the spin-isospin structure of the
pair (2,3). Before doing so we discuss the structure of the elements S„in more detail. The spin dependence is given by

S„=S„+iS„cr,
while every element S„canbe decomposed into an isoscalar and isovector part

S=Ss+Sv

In terms of a set of new components, defined as

)&(2) )&(z) )&(3) (+) g(~(2) (3) & (2) 2(+(2)++(3)) &

—1 —1

we obtain for the spin-independent combination

S (2)+S(3)=Ss(+, +Sv(+)r('+)+Sv(

Similarly we get for the spin-dependent component

( ) ( ) ( )' ( ) s(+)'(+) s( —)'( —) v(+)'(+) (+) Sv( —)'( —) (+)

+Sv(+ )'(r( —)&( —)+Sv( —
)
'o'(+ )&( —

)

(74)

(75)

(76}

(77)

(78)

These two equations are valid for each current com-
ponent )u. We prefer to keep the index A, on the resulting
amplitude A„until we take the trace over unobserved
spin states.

According to the discussion on the substitution

p) —+ —p) we conclude that the S(+)(S( ) ) parts of the
current go along with the odd, pr=1, 2 (even, pr=3, 4)
spin-isospin components of the triton. With this restric-
tion in mind we can replace g„zin Eq. (73) by 2g„
The (iso)spin structure of the matrix elements take the
form ) (y"l(r(k) ly( ) ) ) and ) (ri" lr~'+)le(~) ) ), where f (i)
labels the final (initial) state. Since we do not prepare nor
observe polarization degrees of freedom we can restrict
the spin analysis to one component due to rotational in-

variance in Pauli spinor space and the absence of spin-
orbit coupling in the nuclear dynamics. In Appendix D
we have collected the values of the relevant coeScients
for the z component.

Apart from the specific values of these matrix ele-
ments, we note that the (r(+))0(+) elements conserve the
pair (iso)spin, whereas the (r( ))0( ) elements induce an
(iso}spin fiip in the subsystem (2,3}. In the DDKO pro-
cess the initial (y, ri, ) state couples through the

I

p~ ln
1+p

P (79)

B. Connected graph contributions

Using Eqs. (47) and (67) we find that the connected
contribution can be written as

Sv(+) o( )r(' ) term to the deuteron final state. In
presenting the results in the accompanying paper we
will show that this contribution is considerable. In most
kinematic situations the S[ ] induced contributions are
small compared to the S[+] contributions, generally of
the order of 1%. This is due to the small contributions
from the even bound state components.

The momentum integration for the DDKO diagram is
straightforward. There are no singularities, since the
spectator momentum is fixed at ql=s, —Ed. The az-

'Pq~+ ~
imuthal integration can be restated as 2f&~ dg~. The

Aqua

polar-angle integration f+',d cose is just done as it
stands, and the radial integration fdp p is per-
formed after mapping a Gauss-Legendre quadrature from
[0,1]~[0,Oo ] according to

3 4 3

A ' "(d,qI', pI)= —&3 g g g Jdp, dq ()1()prI"', qI"',p, ) S[ k(p q)q)), „(r, 'rp„p ])
n =1 P&=1 P]=1

x g(p, ;p, )r(s, —q, ;p,).1 2 ~

p1+q1 Sc.m.

max

g (2l+1}P((q)'qI)4( (q) P)lqI PI) .
1=0

(80)

The index Pade refers to the way the scattering state is
constructed. For the cutoff partial wave number we took
L,„=10, which is on the safe side of the optimal choice.

The numerical integration turns out to be fivefold since
the azimuthal P integral can be carried out analytically,

ql

provided we treat the current contributions in S„sepa-
rately with respect to both indices A, and p. Due to rota-
tional invariance of the trinucleon wave function the
relevant ((} dependence of the various terms in the in-

tegrand has the form
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f dP, P, (q, .q&)f((t) ) (81)

with f(P)=1, cosg, sing, cos2(t), or sin2$, after the in-

tegral over the azimuthal angle (() is performed accord-
P)

2m+ /
ing to f&q

'd()))z . Using the well-known relation
PI

PI(q).q&) =P&(x )P((x )

+2 Q, P( (x )Pi (x )
(l —m}!
l+m!

Xcos[m (Pz
—

(t) }], (82)

A
where x =q, Q and x =q& Q, these integrals can be

q& q~

done explicitly. Since (t') =7r by definition, the contribu-
igy

tions coming from the sin terms in Eq. (81) drop out.
Substituting Eq. (82) into Eq. (80), we find that for each

partial wave component l and for each current com-
ponent A, , tu the x& dependence factorizes in terms of one

specific P& function and can be separated from the
remaining part of the expression. It implies that for a
specific (Q, (v) point in kinematic phase space, the in-
tegrals for the connected diagram need to be performed
only one time in order to calculate the cross section as a
function of the third independent kinematic parameter,
cos8 =q& Q.

The polar integrals f d cos8 and fd cos8 are car-
Pl

ried out straightforwardly using 8- and 12-point Gauss-
Legendre quadratures, respectively. The singularity in
the propagator is removed in the radial p& integration by
means of a subtraction technique. The same technique is
used to account for the pole of the two-particle propaga-
tor at the deuteron point. The presence of the complicat-
ed q-dependent logarithmic structure like in the construc-
tion of the scattering wave function is avoided due to the
proper choice of integration variables and the use of
plane wave states rather than angular momentum states.
The threshold point of the three-particle sector shows up
as an inverse square root singularity (s, —qi } ', but
this pole is integrable.

In Sec. III we have discussed the convergence rate of
some UPE observables with respect to the original local
interaction. The momentum distribution p2 for the local
MT interaction is shown in Fig. 11, together with the re-
sults for the separable expansion. Similarly, we have ex-
tended the analysis of the two-body breakup process to
local interactions in order to study the UPE convergence
property for the electromagnetic process. To calculate
the off-shell two-body T matrix we have used the Kowal-
ski and Noyes procedure. Technical details can be
found in Ref. 13. Once the off-shell two-body T matrix
elements for energies below s, are known, the three-
nucleon functions can be computed. In the three-body
sector no conceptual difhculties arise in turning to a local
interaction and the equations can be solved along the
same lines. Only the numerical effort required increases
drastically. In view of this the UPA might be regarded as
a very useful tool for testing purposes.

C. Nuclear structure functions

The full amplitude is found by summing the discon-
nected and connected amplitudes

A I, (d .P ) A I(PwIA) + A A(DDKO) + A A(Fsi)
'qf& f P P

To obtain the nuclear structure functions

(83)

W, (Q, (v,p)v, 8, ) j=CTSI,
PN

(84)

such as defined in Eq. (14), we have to sum over the unob-
served final spin-isospin states I(8& ). Furthermore we re-
move the index A, by taking the trace in two-component
spinor space. Thus, the nuclear structure functions can
be obtained from

w, =zp (I A', I'+
I A, l'),

w, =»p (I A; I'+
I A, l'},

ws=&p (I At)I' —
I AII')+&p (I A„I'—

I
AII'},

W= —X (A'A +A' A)
P~ p Il p II

—Xp (Aii AI, + Aii AI),

(85)

where we have omitted the energy conserving delta func-
tion. The threefold two-body breakup cross section is
given by

0'
kf (TM $((vc W( + V7 W7

+vs Ws+v7WI) (86)

where the kinematic factor kf corresponds to expression
(66). The electron-photon factors v, are expressed in Eq.
(13). In some experiments the deuteron is detected rather
than the proton and the differential cross section with
respect to the angle 0, is measured. In the right-hand

Pd

side of (86) this amounts to a trivial modification of the
kinematic factor.

Subsequently, the electromagnetic breakup process is
computed in precisely the same way as outlined before.
Two modifications are needed. The p, integration must
be reorganized, since the final-state wave function is al-
ready present there. Furthermore, since the (p, ,q, } in-
tegration mesh does not necessarily coincide with the
(p, q) grid on which the wave functions are determined we
have to apply an interpolation procedure. The Faddeev
bound state amplitude is a smooth and rather unstruc-
tered object in both variables. A bicubic interpolation
routine is suSciently accurate. The same applies to the
Faddeev scattering amplitude except for the square root
cusp at q =s, and the deuteron pole at q =s, —Ed
in the spectator momentum dependence, but this struc-
ture was already encountered in the UPE analysis. The
numerical implementation of the above mentioned
modifications is checked to be correct by means of a cal-
culation with two-dimensional wave functions recon-
structed from the factorized UPA components.
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As an example of an electromagnetic two-body break-

up calculation we consider the Johansson experiment
with PWIA dominated kinematics. For other applica-
tions we refer to the accompanying paper. Figure 12
presents He(e, e'p)d coincidence data taken at E, =550
MeV. The data were measured and analyzed by
Johansson and reanalyzed by Gibson and West. ' The
Born+FSI result is shown, together with the PWIA re-
sult. This kinematic situation has been studied by Leh-
man et al. ,

" who have carried out an exact calculation
using Yamaguchi separable potentials. We have also ex-
amined this case taking the potentia1 parameters from
Ref. 13 and find qualitatively the same results. Besides
the use of slightly different potential form factors, the
differences found may be due to the use of nonrelativistic
electromagnetic operators by Heimbach et al." as com-
pared to Eq. (31). For the Yamaguchi form factors we
find that the cross section is reduced by about 4—7% due
to final-state effects. The small influence of FSI is not
surprising, because the kinematics in this experiment
were such that rather low nucleon momenta (p;„(100
MeV/c) were probed with a rather high three-momentum
transfer (Q =443 MeV/c). In this situation the process
of direct proton knockout dominates, i.e., diagram la in
Fig. 10. The curves are not completely symmetric with
respect to the point of zero missing momentum, since the
nuclear structure function 8'z contributes with opposite

sign in the two kinematic regions separated by the paral-
lel point 6, =52'. Figure 12 clearly shows that the

UPA calculation leads to a better reproduction of the
data than does a calculation with Yamaguchi form fac-
tors. In view of the momentum distribution p2 (see Fig.
11) this discrepancy can be fully ascribed to the different
values for the binding energies.

For this kinematic setup we have also studied the sensi-
tivity of the UPA Born+ FSI cross sections for variations
of several features of the electromagnetic current input.
Figure 13 displays the results, where the UPA Born+ FSI
curve from Fig. 12 evaluated for the relativistic current
of Eq. (23) serves as a reference. We see that using the
current with the more convenient 0„„term from Eq. (24)
leads to an entirely equivalent result. A nonrelativistic
expansion of the current up to 0(1) or 0(1/Mtv) like in

Eq. (31) does influence the result considerably and at the
discussed values of the momentum-energy transfer such
approximations clearly break down and it is important to
take the full relativistic expression. Finally, in order to
see what kind of off-shell sensitivity one may expect we
have also considered the option of eliminating the charge
component in favor of the longitudinal current in the cal-
culation of the structure function. As is seen in Fig. 13
the calculated result is substantially lower, rejecting the
sensistivity as already discussed in Sec. II.
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FIG. 12. Coincidence cross section for the 'He(e, e'p)d reac-

tion at fixed mornenturn and energy transfer. The upper curves
correspond to a PWIA (dashed) and Born+ FSI (solid) calcula-
tion with a UPA MT potential. The dotted curve represents the
Born+rescattering connected diagrams (i.e., diagrams a +b in

Fig. 10). The lower curves correspond to a PWIA (short-
dashed —dotted) and Born+FSI (long-dashed —dotted) calcula-
tion with Yamaguchi form factors. Original data are from Ref.
30 (triangles) and reanalyzed data are from Ref. 31.

FIG. 13. Sensitivity study of various electromagnetic com-
ponents in kinematic situation equivalent to Fig. 12. Data and
solid line are taken from Fig. 12. The dashed line is obtained
with the current from Eq. (24). The nonrelativistic current
reductions are displayed by the long-dashed —dotted [O(1)] and
short-dashed —dotted [O(1/M~ )] curves. Elimination of the
charge component results in the dotted curve.
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V. SUMMARY

This work provides a detailed treatment of the elec-
tromagnetic two-body breakup of He, calculated with
nucleonic final-state interactions exactly taken into ac-
count. The distortion between the outgoing nucleon and
the residual nuclear system is included by solving the
Faddeev equations for continuum states. The unpolar-
ized coincidence cross section in electron scattering can
be expressed in terms of four nuclear structure functions.
We considered the nuclear current to be composed of
one-nucleon current components only, for which we took
an on-mass-shell form. Hence meson exchange currents
have not been considered in this paper. Since the virtual
photons are interacting with bound nucleons, these one-
nucleon currents in general no longer satisfy current con-
servation. To comply with this the half-off-shell prescrip-
tion introduced by de Forest' has been adopted. Sensi-
tivity to various other ad hoc choices has been studied,
indicating sizable variations in the momentum transfer
region considered.

Although we show that it is feasible to employ a local
$-wave NN interaction, the majority of two-body breakup
results, which we present, is obtained with a separable in-
teraction. In particular, we investigated the possibility to
approach a realistic s-wave local potential by means of
the unitary pole expansion (UPE) method. The UPE con-
vergence properties in describing the NN and Nd scatter-
ing observables turn out to be quite satisfactory. Retain-
ing four eigenvalues in each spin channel almost exactly
reproduces the values for the observables obtained with
the local interaction. An almost equally important result
is that already the first-term approach (UPA) leads to a
fair reproduction of the local values. This makes UPA an
attractive tool for the actual numerical calculations of the
electromagnetic breakup reactions of the A =3 system.
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K=k]+k2+k3

k =
—,'(k, —k„),

kq =
—,'(ki+kk —2k;),

(A3)

where (ijk) is a cyclic permutation of (123}. It is con-
venient to eliminate the masses from the energy of the
relative motion by introducing scaled relative momenta

' l/2 1 /2

p; = I k and q; —
2 MN N

kq . (A4)

In this way the kinetic energy becomes

E — K 2+p2+ q2
1

6M~
(A5)

Since there are three particles, Eq. (A6) represents three
equivalent states, and as mentioned before p; +q; does
not depend on the label. It is essential to note that the in-

dices i in Eq. (A6) have different meanings. The index on
the ket~ ) refers to the coupling scheme adopted in Eq.
(A3}, i.e., first j +k~(jk} and then (jk)+i ~(jk)i,
whereas the index on the momentum just expresses that
particle i has a momentum k, .

Since we are dealing with identical particles, the three-
nucleon wave functions must be antisymmetric with

respect to a permutation operation

p total p space p spin p isospin

The operators P, (i = 1,2, 3), which interchange the labels

of particle j and k, form the odd elements of the permuta-
tion group S3. The even elements of S3 are the identity e,
and the operators P k; and Pk;, which perform a cyclic
shift of the arrangement (ijk) From t.he elements of S3
we can construct the antisymmetrizer

where indices on p and q would be redundant.
Throughout the entire paper, we use the so-called Jacobi
coordinates of Eq. (A4). If we consider only the momen-
ta, the relevant part of Eq. (Al) becomes

(A6}

A3=A2 P, , (A7)

APPENDIX A: NOTATION

In a nonrelativistic theory, three particles, each with
spin —,

' and isospin —,', can be represented by normalized
states

with

and

1
(e +P231+P312 }

3
(A8)

lk]k, k3$]$2$3i]i2r 3 (Al) A = —(1 P ). — .1
2, /2 I

(A9)

Eo =k, l2M, +k2l2M2+k3/2M3 . (A2)

Hereafter, we only consider nucleons with equal mass
Mz. To split off the center of mass motion we introduce
the relative momenta

where k,- denotes the momentum of particle i and s, t la-
bel the spin and isospin component of particle i. The ki-
netic energy of this state is

P, antisymmetrizes a three-nucleon state that is antisym-
metric in at least one pair. Such a state is constructed by
A2 operating on an arbitrary three-nucleon state. The

t

operator A 3 does not depend on the index i.
At this point, it is straightforward to introduce a new

set of basis states which are antisymmetric with respect
to at least one pair.
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lpqp&, "=A, lpqp&, ,

laqp&, "=A, Iaqp&, .
(A10)

Here a labels a two-nucleon bound state and p represents
all remaining spin-isospin quantum numbers. Since the
basis states lpqp&; and Iaqp&, are normalized to "one,"
the partially antisymmetrized states from Eq. (A10) have
the normalization

;"&pqplp'q'p' &,
"=5pp 5(q —q'}

X[5(p—p') —( —1) ~5(p+p')],
(Al 1)

,
"

& aqP I
aq'P' &,

"=25&&5(q —q' )5'

Ix" &;, (A16)

where r takes the values doublet or quartet and m takes
the values singlet or triplet. Since the nucleonic spin and
isospin are both —,', treatment of these quantum numbers
is entirely equivalent, and we introduce isospin basis
states

lp&;=l(s sk)s sqSS', (t&tk)tzt TT'&; . (A 1 8)

(A17)

where the meaning of the labels is similar to Eq. (A16).
To represent the spin-isospin states, we will often use the
shorthand notation

The effective closure relations are

I= X fdpdqlpqP&;;&pqPI,

I=-,' g f dpdqlpqP&;";"&pqPI .
(A12)

The three-body analysis requires knowledge of the spin-
isospin recoupling matrix elements

~ & p'lp&, . In the
recoupling, the total spin (isospin} is conserved. For the
spin-doublet state we obtain with the aid of Edmonds'
general recoupling coefficient

T

Pj p&

From Eq. (A3) it is obvious that the momenta (p;, q;)
form three dependent sets for the values i =1,2, 3. The
relations are linear and we can construct a 2 X 2 matrix
a, such that

, &x' Ix' &;=
+-,'&3

1

2

(A19)

where m, m'=(s, t), and (ij k) is a fixed cyclic permutation
of (123}. To rule out any confusion, we explicitly state
that in the chosen convention

(A13)
2&x', lx,"&)=—

—,'&3 . (A20)

with (ijk) cyclic. In case of the above choice of relative
momenta we have

The complete spin-isospin recoupling matrix restricted to
pure doublet states therefore is

1

2 +,v'3

1

2

(A14)
&,; =,&x'Ix"&, , & n'ln" &;

—3
4

1+3

I(s sk)s s;SS'&, , (A15)

where s is the spin of the spectator particle i and (ijk)
again forms a cyclic order of (123). S and S' denote the
total spin and spin component of the three-nucleon state.
The spins combine to S =

—,
' (doublet) or S =

—,
' (quartet).

The spinnumber s arises from coupling the nucleon spins
s and s&. It either takes the value s =0 (singlet) or s =1
(triplet). The combination s =0, S =

—,
' is excluded.

Equation (A15) represents three spin states, if we ignore
the magnetic spin component S'. In an analysis with
only s-wave XN interaction, this is a valid assumption
and accordingly we introduce an abbreviated form of Eq.
(A15)

with properties deta= 1, (a; } =I, (a; ) '=a, . The sets

(p, q ) and (p;, q;) are called mutually associated mo-
menta.

Furthermore, we must concern ourselves with nucleon-
ic spin and isospin degrees of freedom. At this level these
quantum numbers are entirely independent, and complete
quantum states are found by taking the direct product of
spin and isospin states. Although the set of spin states
I
s /s 2$ 3 & in Eq. (A 1 ) forms a complete set, it is convenient

to introduce orthonormal states

—3
4

1+3
I +3

1+3
3
4

(A21)

(A22)

In the entire analysis we will regard particle 1 as the
spectator particle, unless otherwise mentioned.

APPENDIX B: UPK DESCRIPTION OF
s-WAVE LOCAL POTENTIAL

The homogeneous Lippmann-Schwinger (LS) equation
for a central interaction,

t2

A,„g„(p;s)= —4m. f dp' V(p,p') g„(p';s),
0 p s

(Bl)

describes a physical bound state at s =E~ (0, if an eigen-
value A,„=1exists. In the UPE method the potential is

where both the row and the column sequence of spin-
isospin states is given by y, g„y,g„g,g„y,g, . The ma-
trix B; has the same properties as u, . The spin quartet
recoupling is considerably simpler, since it involves only
one channel
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formally expanded in a complete set of eigenfunctions of
the LS equation

V(p, p') = —g A,„(s)g„(p;s)g„(p',s) .
n=1

(82)

The UPA term corresponds to the first term of this series.
The orthogonality relation,

2

4K pgm p&$ 2 gn p&s mn
p —s

(83)

connects the Eqs. (81) and (82).
For the triplet channel the parameter s is fixed to the

deuteron binding energy Ed, the value of which is about
—2.228 MeV. The corresponding deuteron wave func-
tion coincides with the leading eigenfunction

1P„(p)=Nd 2 g, (p;Eq) .
p2

Also in the continuum region the UPE T matrix is uni-
tary for any number of terms. This property is due to the
fact that the expansion of the potential is symmetric and
real in each term. Furthermore, fixing s to Ed implies
that the UPA T matrix already contains the entire local
T matrix around the deuteron point; increasing the num-
ber of terms does not affect its position.

APPENDIX C: THE FADDEEV EQUATIONS

and decomposing the three-particle Lippmann-Schwinger
T matrix as

T(z) = T'(z)+ T (z)+ T (z), (Cl)

The construction of the half-off-shell NNN ~Nd
scattering wave function requires the solution of the Fad-
deev equations. Assuming a sum of pairwise potentials,

V = V1 + V~+ V3 .

dp d =1. (85}

The normalization constant Nd is determined according
to

the Faddeev equations can formally be written as

T"(z)=tk(z) —tk(z)GO(z) g T (z),
mAk

(C2)

To describe the virtual deuteron state one usually takes
s =0 MeV, ' which gives rise to a largest positive ei-
genvalue just below 1. But one can as well fix the singlet
s value to the deuteron energy, which leads to a sorne-
what smaller largest eigenvalue. The major part of our
results is calculated with the s value in both channels
fixed to the deuteron energy Ed. In some situations we
have studied the sensitivity of choosing the singlet s value
equal to zero energy. It is explicitly mentioned in the
text when this is done. Hereafter, we omit the notation
of the parameter s.

For a separable potential, the two-body T matrix also
takes a separable form. The partial wave components of
the two-nucleon Lippmann-Schwinger T matrix are

Go(z) = (HG —z) (C3)

It is useful to introduce a more extended decomposition
of the T matrix,

Ti"(z)= tk (z)5ki —tk (z)Go(z) g Ti (z)
mWk

with the obvious property

(C4)

g Ti"( z }= T"(z} .
I

(C5)

where tk denotes the two-nucleon T matrix acting in pair
k. The resolvent operator Go(z) is taken as

t (p,p', pl ) = v (p,p', p)

417 p V( p,p
II2

x
p z

where

ti(P P 'plz) (86)

1
Mrearr p j (+fqfpf l Ujm l+i'qipi jm

m

(C6)

where the transition operator Ujk can be constructed
from the T( matrix elements according to

For example, the rearrangement scattering amplitude is
determined by

t(pp', Plz)= g (2l+1)Pi(p p')ti(p, p', Plz) .
(=0

In UPE the s-wave T matrix can be written as

(87) U,&(z)= g V„(1 5„~}5„&+g—T,"(z) .
k kWa

l&P

(C7)

t (pp', plz) = g g, (p;p)&p, (z;p)gk(p'; p),
jk

(88)

where we have omitted the partial wave label. The prop-
agator ~ k can be directly obtained from matrix inversion

r

rjk(z;p)= —
A,, '5

k i"&piqiPil g Ti"(z)lrzfqfPf )" . (C8)

The label A in Eq. (C6) indicates that the initial and final
state are antisymmetrized in the pair denoted by the sub-
index; the factor —,

' is due to the normalization of the state

l~qp) ".
Apart from the Born contributions, the electromagnet-

ic two-body breakup amplitude is proportional to

—477 dp p
0 p z

(89)

klm
(&m
k&1

Inserting a complete set of basis states [Eq. (A12)] leads
to the equivalent expression
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—,
' X Jd pdq i"&piqiPilpqP&z"

TABLE V. Three-nucleon (iso)spin coefficients for the break-

up analysis.

X g k & pqp~t, (z)~afqfpf &", (C9)
klm
lcm
k%1

where we have used a property due to the identity of par-
ticles

;"&p qP ~pqP&,"=;"&pqP ipqP&"
+q

2+2
3

g1

1

+~3
+ 2

3

&2/3

1+2
y1

i' AkWi . (C10)

Following Kloet' we introduce the half-off-shell function

U(p, q;P)=-,' g k &pqplTi"(z)ltzfqfPf &",
klm
IAm
k%1

(Cl 1)

Applying Eq. (C4) and inserting a complete set once
more, we find that U satisfies the integral equation

U(p q P)=22"&pqPlt~(z)lo'fqfPf &i"

—y. J dpdq p' +q' —z

which will certainly speed up the numerical evaluations.
From the on-shell Nd scattering amplitude the phase

parameters r) and 5 can be obtained, using amplitude
according to

M =—S
l

dE (q) ldq
7Tq

+'ri, exp(2i +'5 )
—1

2l
(C14)

where I and S label the spectator partial wave number
and the trinucleon spin channel in which the scattering
takes place. The amplitude Ml results from a partial
wave decomposition of the complete scattering amplitude
expressed in Eq. (C6). The spectator momentum q is, of
course, related to the energy through

X 2" & pqP ~
t z (z )

~

p'q'P' &,
"

q'=q, ' ——qf'
——TNd (C15)

X U(p', q';13'), (C12)
where in addition to Eq. (C10) use has been made of the
permutation property

P;t, (z)P; =tk(z), i' WkAi . (C13)

The integral equation for U in Eq. (C12) is derived
without making any restrictions or assumptions. The
solution of U enables us to determine the most general
off-shell scattering amplitude with an initial or final Nd
state. However, in practice we need to truncate Eq. (C12)
to a limited number of channels. First we restrict the NN
interaction to only the s-wave channels. This implies that
in the active subsystem the angular momentum number
I =0. From the parity requirement stated in Eq. (All)
we see that the remaining subsystem quantum numbers

P =s +t must be odd. This reduces Eq. (C12) to two
sets of two-dimensional integral equations for each par-
tial wave number of the spectator momentum q. A cou-
pled set for the spin-isospin channels y", ri, and y, r), and
an uncoupled set for the spin quartet channel g, g,".
Scattering in the g,"q, channel is avoided due to the
isospin-singlet nature of the deuteron.

The derivation of the Nd scattering equation for an s-
wave local interaction has been presented and discussed
in full detail by Kloet. ' In the subsequent analysis the
local potential is replaced by its unitary pole approxima-
tion. Use of a separable potential has the clear advantage
that the integral equations become one dimensional,

For completeness we give the explicit expressions for the
phase shift and the inelasticity

ImM(S
tan5=

ReM, (mq)ReMi

ri=[(irq) ~Mi ~
+2nq ImMis+ I]'~2,

where g & 1 due to unitarity.

(C16)

(C17)

APPENDIX D: SPIN-ISOSPIN COEFFICIENTS

The quantities S„expressed in Eq. (68) still contain the
spin matrix elements, &y"~cri„i~g' '&, . In the pure s-

wave analysis it is sufficient to know the spin elements for
the z component. Table V lists all relevant numbers. The
left-hand side applies to n =1, the right-hand side to odd
or even combinations of n =2, 3 according to Eq. (75). In
s~s, t~t transitions we need the o.

&+& term, whereas
the 0~

&

term is only relevant in the s~t Aip transitions.
Some numbers in the table are double signed. The upper
sign corresponds to the three-nucleon spin component
S'= + —,', the lower sign to S'= —

—,'. (The quartet-quartet
coefficient for S'=+—,

' is +1 for both cr', , i
and oi+i.)

Since the treatment of spin and isospin is completely
equivalent, Table V can also serve to determine the iso.
spin elements, & i)"'~r~'„,~r)'f'&, . Simply replace S by T, o.

by r, and y by g in the above description and the corre-
sponding table.
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