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The p- Ca mean field is derived from an optical-model (OM) analysis that explicitly incorporates
the dispersion relation connecting the real and imaginary parts of the mean field. This analysis is

based on differential cross-section, analyzing power, and reaction cross-section data available in the

energy range between 20 and 180 MeV. The extrapolation of the OM potential from positive to
negative energies provides the shell-model potential. This extrapolation is guided by known single-

particle energies. The deeply bound 1p and 1s orbits clearly indicate the need for a linear rather
than an exponential energy dependence of the Hartree-Fock potential at large negative energies.
The analysis also provides root-mean-square radii, occupation probabilities, spectral functions, and
absolute spectroscopic factors for proton single-particle orbits in Ca. Our calculated 15% de-

pletion of the hole states in Ca is lower than that suggested for Pb from theoretical and experi-
mental studies. We also find that a substantial amount of single-particle strength in " Ca is located
at rather high excitation energy.

I. INTRODUCTION

During the past few years model studies of neutron and
proton elastic scattering at low incident energies (i.e.,
E ~ 100 MeV) from medium to heavy nuclei have enjoyed
renewed interest. The rationale behind this revival is re-
lated to the fact that elastic scattering data are well suited
to guide the extrapolation of the empirical, complex
optical-model potential (OMP) towards bound-state ener-
gies. In this negative energy regime, the real part of the
OMP is usually called the shell-model potential. As
shown by Mahaux and Ngo, ' the extrapolation of the
nucleon-nucleus potentials from positive to negative ener-
gies is based on the dispersion relation (DR) which con-
nects the real and imaginary OMP components. This
method, designed to derive nucleon mean fields in
closed —or nearly closed —shell nuclei, is usually re-
ferred to as the dispersive optical-model analysis
(DOMA). It has been successfully applied in the study of
neutron scattering data and/or single-particle (s.p. )

bound-state properties for Ca (Refs. 2-4), 'V (Ref. 5),
Kr (Ref. 6), Zr (Ref. 7), Nb (Ref. 8), Pb (Refs. 9

and 10), and Bi (Ref. 11}. Simultaneously, an alternate
method referred to as the iterative moment approach
(IMA) has also been used to study the neutron mean field
in Ca (Ref. 12), Y (Ref. 13), and Pb (Ref. 14) and
the proton mean field in Ca (Ref. 12) and Pb (Refs. 15
and 16).

Since the DOMA approach has not been used
thoroughly in proton-nucleus mean field studies, we have

found it important to apply this method for the p- Ca
system. The Ca nucleus is likely to be a better choice
than Pb, another testing ground often considered for
OMP studies, because its Coulomb barrier is lower. This
feature should help to avoid problems that apparently ob-
scured a recent p- Pb analysis. ' Our study of the p-

Ca system also offers the opportunity to investigate
whether an imaginary spin-orbit (SO) interaction is need-
ed to describe the available analyzing power [A~(8)]
data. This component of the SO interaction was found to
be negligible in DOMA studies of A (8) data for polar-
ized neutron scattering off Ca, while conventional anal-
yses consistently required a positive imaginary SO poten-
tial. "

The proton data set used in the present study is
specified in Table I. It includes differential cross-section
[o(8)], reaction cross-section (o&), and A (8) data col-
lected in the energy range E =20—180 MeV. The cr(8}
and As(8) measurements available below 20 MeV have
been ignored in building the dispersive OM potential,
since nuclear structure effects and compound nuclear
processes tend to obscure the analysis, as pointed out by
Van Oers. As is well known, the data considered above
100 MeV are successfully described in the framework of
the Dirac phenomenology (DP) using wine-bottle bottom,
real central potentials. The present study offers the op-
portunity to compare these DP results with DOMA pre-
dictions at the higher incident energies under considera-
tion.

The paper is organized as follows. Section II is devot-

42 693 1990 The American Physical Society



694 W. TORNOW, Z. P. CHEN, AND J. P. DELAROCHE 42

TABLE I. Reference list for the elastic p- Ca data con-
sidered in the standard OMP analysis. The symbol x attached
to either 0.(0) or A~(|9) means that data exist for the observable
at a specific incident energy. The references for the p- Ca reac-
tion cross-section data are summarized in Ref. 32.

energy (MeV}. The functional form of the real central
potential V(r, E) depends on the type of analysis. Since
we have performed both standard OMP analysis and
DOMA, V(r, E) is defined as (i) standard OMP analysis:

E (MeV) o(0) Ay(0) Reference
V(r, E)= V(E)f(», Rv, ay), (2)

19.6
21.0
26.3
30.3
34.8
40.0
45.5
48.0
49.0
61.4
65.0
80.2

18
18,19
19,20
21,22
23
24
25
19
26
27
28,29
30,31

and (ii) DOMA:

V(r, E)=VHF(r, E)+EV(r,E),
where

(3)

VHF(» E ) I HF(E }f(r RHF aHF )

is the so-called Hartree-Fock (HF) component of V(r, E).
Its energy dependence is expected to be smooth in the en-

ergy range of interest. The second term in Eq. (3),
AV(», E), is the DR contribution which is calculated
from the imaginary part of the OMP as will be discussed
in Sec. II B.

ed to the DOMA at positive energies. In Sec. III we
present our results obtained for the bound and quasi-
bound single-particle energies, effective masses, root-
mean-square radii, occupation probabilities, absolute
spectroscopic factors, and spectral functions, and show
comparisons with available experimental information.
Section IV compares some of our results with the IMA
results of Mahaux and Sartor. ' Finally, Sec. V summa-
rizes our results.

II. PROTON-~Ca MEAN FIELD
AT POSITIVE ENERGIES

Any reliable determination of the nuclear mean field
requires a "complete" set of experimental data over a
broad energy range. It is especially important to place
constraints on the high-energy behavior of the absorptive
potential. As can be seen from Table I, these conditions
are met for the p- Ca system. %'e have not considered
the a (8) and A~(8) data available between 200 MeV and
1 GeV, since it is well known that the Schrodinger phe-
nomenology, as used in the present work, is not con-
sidered to be appropriate for describing scattering data in
the intermediate energy range.

In the Schrodinger equation, the proton OMP Q(», E)
for Ca is defined as

'M(», E)= V(r, E) iW—v(E)f(», R—&,arr)

+4iap Wp(E) f(»,Rp, ap )
8T

+2& [Vso(E}+iWso(E)]
r d»

A. Standard optical-model analysis

In this section we briefly describe our standard OMP
analysis. The study was performed using grid searches.
This well-known technique, discussed for instance in
Refs. 7 and 10, provides the information on geometries
and energy dependences of the absorptive potential that
is needed later to obtain the dispersive contribution
b, V(», E). In that perspective, the standard OMP
analysis represents the first stage of the DOMA described
in Sec. II B. Relativistic kinematics was used throughout
the present work.

The number of adjustable parameters in Eqs. (1) and (2)
was reduced by imposing the constraint of identical
geometries for the real and imaginary volume potentials:

v 8 and av aw ~

In the early stage of our studies it was observed that the
surface absorption 8'D at very low energies increases rap-
idly with increasing energy and then decreases smoothly
beyond E-30 MeV. This energy dependence can con-
veniently be described by the damped Jeukenne and
Mahaux form

(E EF)—
Wp(E) =a exp[ c(E EF)] (M—eV) —(4)

(E EF) +b—
with a=8.4 MeV, b=15 MeV, and c=0.011 MeV
and with EF= —4.71 MeV as the Fermi energy. This pa-
rametrization is valid only for energies up to 80 MeV be-
cause the available cr(8) and A~(8) data beyond this en-

ergy have not been considered at this stage of the
analysis.

For the volume absorption 8'v, the Jeukenne and
Mahaux form was used:

where

Xf(r, Rso, aso }+Vc(")
(E E„)—

Wv(E) =a' (MeV)
(E E) +(b')—

f(r, R;,a; ) =[1+exp(r —R; )/a; ]

is a Woods-Saxon (WS) form factor with R, = r; A ' ~ (fm),
Vc(r) the Coulomb potential (MeV), and E the incident

with a'=12.4 MeV and b'=70. 3 MeV.
The depth Vs& of the real SO potential was found to be

slightly energy-dependent:
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Vso(E) =5.6—0.008E (MeV) .

A very small negative imaginary component Wso (MeV)
was necessary for fine tuning the fits to the A (8) data
only for energies above 50 MeV:

where P indicates a principal value and i =(V,D) refers
to either the volume or surface absorptive potential.
With these notations, b, V(r, E) of Eq. (3) can be ex-
pressed

Wso(E)=0, E (50 MeV,

Wso(E ) = —(E—50) /180, E ) 50 MeV .

bV(r, E)=bVv(r, E)+EVD(r, E),
(7) with

A linear energy dependence was found for the real central
potential strength V(E ):

V(E)=49.80—0. 19(E E~—) (MeV) .

and

KVt, (r, E)=b, Vv(E)f(r, Rt„a~),

b VD(r, E)= 4aD—AVD(E) f(r, RD, az ) .
dr

(12)

Finally, in the energy range between 20 and 80 MeV, the
potentia1 form factors were energy independent. The fol-
lowing values were obtained: (i) volume central poten-
tials,

v "w 12 " v &w 073 m

(ii) surface absorptive potential,

rD = 1.26 fm and aD =0.62 fm;

(iii) spin-orbit potentials,

, = .05 d, =058

and (iv) Coulomb radius,

(9)

B. Dispersive optical-model analysis

re=1.314 fm .

For each geometric parameter, the grid search method
provides a range of values for which the fits remain
within "limits of acceptability. " For instance, the overall
quality of the OMP fits shown in Fig. 1 as solid lines is
preserved as long as the values for rv and av fall in the
interval 1.18 rv 1.22 fm and 0.72 at, 0.74 fm, re-
spectively. For unknown reasons, the radial shape of the
real central potential cannot be determined more precise-
ly in this spherical OMP analysis, a feature which was
also observed in earlier, independent coupled-channel
studies of neutron and proton scattering off Ca. '

Furthermore, we have found no clear evidence for a sys-
tematic decrease of rv with increasing energy in the
20—80 MeV energy range. This is the reason why an
energy-independent value was assigned for r~ in Eq. (9).

The solid curves shown in Fig. 1 for o(8) [Fig. 1(a)]
and 2 (8) [Fig. 1(b)] were obtained using Eqs. (1) and (2)

along with the parameters specified in Eqs. (4)—(9). Con-
sidering the large energy range investigated and the con-
straints imposed on the OMP, the overall agreement be-
tween this spherical, "fixed geometry" OMP analysis and
the o (8) and A (8) data is very satisfactory.

The evaluation of b, V(r, E) requires the knowledge of
the absorptive potentials in the entire energy range from

to + ~. In practice, this condition cannot be
fulfilled since phenomenological OMP analyses at the
most provide 'V(r, E) only up to a few hundred MeV.
As mentioned already earlier, for P- Ca, cr(8) and A (8)
data are available up to about 1000 MeV. Since the va-

lidity of the Schrodinger approach to nucleon scattering
has proven to be doubtful in the intermediate energy
range, the highest possible energy at which %'(r, E)
could reasonably be anchored is E=182 MeV. Only a
few cr(8) and A~(8) data exist in the energy range
E=80—182 Mev. ' ' These data were used to extend
the parametrization of WD(E) from E=80 MeV up to
infinity. A reasonable OMP description of the data is
achieved with the OMP parameters from Sec. II A, pro-
vided that WD(E) be linearly extrapolated beyond 80
MeV. Thus, WD(E) is defined through Eq. (4) for E (80
MeV, and

WD(E) =4.27 —0.011(E EF) (MeV)— (13)

above 80 MeV until it reaches zero at E=390 MeV.
Note that both parametrizations have the same slope at
E =80 MeV. The need for an imaginary surface absorp-
tion at intermediate energies has also been indicated in a
recent Dirac optical-model analysis.

The continuation of %'(r, E ) to negative energies lower
than EF is usually accomplished by assuming that the ab-
sorption is symmetric around the Fermi energy EF:

lN(r, EF +E)="W(r,EF E) . —

As a consequence, the DR terms are skew-symmetric
with respect to EF:

AV, (r, EF+E)= bV, (r, EF E) . — —

The DR terms were evaluated using the relation

"W, (r, E')
b, V, (r, E)= (E EF)Pf— —

F (E' EF) —(E EF)— —

XdE' . (14)

p + „%V,(r, E )

KV, (r, E)=—f, dE',E' —E (10)

The dispersive correction b, V( r, E ) which links the
real and imaginary components of the OMP is usually
defined by

Figure 2 presents the potential depths O'D and 8'v as
well as the corresponding DR terms b, VD and Avv as
functions of (E EF ) in the energy ra—nge from —75 MeV
to +200 MeV. As can be seen, the surface dispersive
term b, VD crosses through zero at (E EF ) =33.7 MeV. —
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FIG. 1. Comparison between spherical optical-model calculations and p- Ca elastic differential cross-section (a) and analyzing
power (b) data. References to the measurements are given in Table I. The solid curves represent standard OMP analyses based on
the geometries and energy dependences given in Sec. II A in functional form. The dashed curves display the results of the dispersive
optical-model analysis (DOMA) discussed in Sec. II B. Here the potential defined by Eqs. (17)—(19) was used.

Once the values for the depths and geometries of the
absorptive and spin-orbit potentials as well as those for
the DR components of the mean field have been fixed, the
only potential that remains to be determined is the empir-
ical Hartree-Fock term VHF(r, E) [see Eq. (3)]. Again, as
in Sec. IIA, we have found it diScult to obtain a well-
defined optimum geometry for this volume potential.
Even though we could not rule out the possibility for a

rHF=1. 20 fm and aHF=0. 73 fm, (15)

respectively. The empirical values obtained for the
strength VH„of the HF potential in the 20—80 MeV en-

slight energy dependence of its radial shape, a fixed
geometry was assumed in order to reduce the number of
free parameters. The optimum values found for the ra-
dius and diffuseness of the HF field are
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FIG. 3. Energy dependence of the depth of the empirical
Hartree-Fock potential for p- Ca. The dots and triangles
represent results obtained from the DOMA that best describes
the scattering data and bound-state energies, respectively. The
dashed curve was calculated using Eqs. (17)—(19).
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FIG. 2. Absorptive potentials and dispersive correction
terms for p- Ca. The solid curves represent the energy depen-
dence of the volume absorption 8'& (top panel) and the volume
dispersive correction term hV& (bottom panel) as function of
the shifted energy (E—Ez). Here E is the incident energy and

E+ is the Fermi energy of a proton in Ca (E&= —4.71 MeV).
The dashed curves display the energy dependence of the surface
absorption WD (top panel) and the surface dispersive correction
6 VD (bottom panel).

ergy range are shown as dots in Fig. 3. These values fol-
low a smooth pattern (dashed curve in Fig. 3) which will
be discussed in Sec. III.

The dashed curves shown in Fig. 1 represent the
DOMA results for energies up to 80 MeV. As can be
seen, a good overall agreement between data and calcula-
tions is achieved. Below 50 MeV, the fits to the A~(8)
data do not require an imaginary SO potential. This ob-
servation, deduced from polarized proton scattering, is in
agreement with that obtained from polarized neutron
scattering. For E) 50 MeV, only a small amount of
imaginary SO potential strength is needed [see Eq. (7)].
8 sQ could also have been set equal to zero without spoil-
ing the quality of the fits. Our results are consistent with
the nuclear structure calculations of Brieva and Rook
for the imaginary spin-orbit potential depth.

The DOMA analysis was extended beyond 80 MeV us-

ing a smooth extrapolation of VHF (see Fig. 3) up to
E=200 MeV. Results are shown at E=135, 162, and
182 MeV in Fig. 4, where they are compared with experi-
mental information. As can be seen, the DOMA pro-
vides a rather good description of the 0(8) and A~(0)
data, in particular at E=182 MeV. At this incident en-
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FIG. 4. Comparison between DOMA and o.(0) (left side) and

A„{0)(right side) data at 135, 162, and 182 MeV (from Refs. 30,
31, and 37). Here the HF potential represented by the dashed
curve in Fig. 3 was used together with the absorptive potentials
and the dispersive terms displayed in Fig. 2.

ergy, the quality of the fits is comparable to that obtained
with DP. Here, like at any other lower incident energy,
the DOMA potential includes surface and volume com-
ponents which sum up to form the volume shape shown
as a solid curve in Fig. 5. This radial shape is at variance
with predictions from both DP (dashed curve) and froin
nonrelativistic Brueckner-Hartree-Fock (BHF) mean-field
theory (dotted curve, taken from Fig. 26 in Ref. 40).

The DOMA has also been used to predict reaction
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cise provides a sensitive test for the parametrizations of
the absorptive and HF potentials at positive energies.

The extrapolation towards the bound-state region re-
quires experimental information about the single-particle
energies on both sides of the Fermi energy E~. In Fig. 7
the column at the center represents the experimental s.p.
centroid energies quoted in Ref. 12 for the particle (i.e.,
E„& )E~) and hole (i.e., E„I &E~) states with quantum
numbers (n, I,j). The HF potential strength at
E =Ez = —4.71 MeV was determined in such a way that
the calculated energies for the first-particle state (1f7/~)
and the first-hole state (1d3/p) are approximately sym-
metric around the Fermi energy. This requirement pro-
vides the value of the HF potential depth

VHz(Ez) = —58.25 MeV, (16)

-12
0

I

4
r (fm)

which was used as an anchor point in the determination
of the energy dependence of VHz from —60 MeV up to
+200 MeV. This energy dependence is discussed in the
following section.

FIG. 5. Radial shape of the real central potential near 200
MeV. Comparison between the present DOMA result (solid
curve) and those obtained from Dirac phenomenology (dashed
curve) and nonrelativistic Brueckner-Hartree-Fock mean-field

theory (dotted curve).

cross sections o z for which some data are available from
10 to 182 MeV. The comparison between data and cal-
culations is shown in Fig. 6. Except near 100 MeV, the
agreement is generally good. Obviously, more o.z data
between 50 and 200 MeV are required to validate this
comparison. At the low-energy end, the calculations
slightly overpredict the measurements. This might indi-
cate the need for incorporating angular momentum
dependent terms in the analysis, as suggested in earlier
phonomenological studies at low energy and recent mi-
croscopic calculations. '

III. PROTON- Ca MEAN FIELD AT BOUND-
AND QUASIBOUND-STATE ENERGIES

A. Single-particle and single-hole state energies
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It would be convenient to parametrize the energy
dependence of VH& at both positive and negative energies
using the simple functional form

„i:(E)=V„i;(E~)exp[ —a(E E~)/V„„(E—F)] . (17)

However, this parametrization predicts hole states that
generally are too tightly bound. Therefore, a linear ener-

%'e now present an extrapolation of the mean field de-
rived in Sec. IIB towards negative energies. This exer-
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FIG. 6. Comparison between DOMA predictions and reac-
tion cross-section data for p- Ca (Ref. 32).

FIG. 7. Proton single-particle energies E„» in Ca. The
column labeled EXP represents experimental values as compiled
in Ref. 12. The columns labeled VH& and V„&+hV give the
energies obtained from the Hartreee-Fock potential and from
the real part of the full mean field, respectively.
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VHp(E) = VHp(Ep) a—(E E—p) . (18)

gy dependence is preferred for VHz in the region E & Ez..
m(r, E)lm =1— AV(r, E) .

dE
(22)

According to Ref. 4, this behavior reflects the fact that
the energy dependence of VHz(E) is due to the nonlocali-
ty of the actual Hartree-Fock field. With a=0.616, a
value that is large, but comparable in magnitude with
those determined in Refs. 4 and 12, Eqs. (17) and (18)
yield a smooth energy dependence of VH„(see dashed
curve in Fig. 3) and provide an excellent overall represen-
tation of the optimum individual VH& values obtained at
both positive (dots) and negative energies (triangles).
These equations are also used to produce the dashed
curves shown in Figs. 1 and 4, and the solid curve in Fig.
6.

The calculated energies E„I for the s.p. states are
shown on the right-hand side (third column) of Fig. 7.
Here we used the real part of the full mean field, i.e.,

V(r, E ) =VH&(r, E}+AV v(r, E ) +b VD(r, E ) (19)

defined by Eqs. (3), (9), and (11),and the spin-orbit poten-
tial given by Eqs. (6) and (9). The calculated s.p. energies
compare very well with the experimental data (second
column). As known from Refs. 9 and 12, the inclusion of
the dispersive terms bVV and hVD yields higher level
densities than do mean-field calculations that ignore these
terms. This is illustrated in Fig. 7, where the first column
represents the level scheme calculated with the dispersive
terms turned off.

B. Other bound-state properties

The dispersion relation approach to the nuclear mean
field also provides information about the effective masses,
s.p. wave functions, occupation probabilities, absolute
spectroscopic factors, and spectral functions. Some of
these quantities can be determined experimentally, in
particular using electron beams. In this respect, the con-
tinuous electron beam accelerators, like those under con-
struction at Mainz (MAMI II) and Newport News
(CEBAF), might provide valuable experimental informa-
tion in the future. Predictions for these quantities are
presented below.

The radial dependence of the Hartree-Fock effective mass
ratio mH&(r, E)/m at E=Er is shown in Fig. 8 as a
dashed curve. At the nuclear center, m H„(r,E )/m takes
on a value close to 0.4. The dashed-dotted curve
represents the E mass, which exhibits a peak at the nu-
clear surface. The radial dependence of the full effective
mass ratio m*(r, E}/m is given by the solid curve. At
the nuclear center, its value is about 30% larger than that
obtained with the Hartree-Fock potential. Due to the
dispersive contribution, m *(r,E)lm exhibits a peak near
the nuclear surface.

2. Root-mean-square radii

Following the notations and definitions given in Ref. 4,
the rms radii were calculated as

1/2
R„"I'= u„I r r dr (23)

The results obtained for the s.p. orbits in Ca for E &0
are given in Table II together with the corresponding s.p.
energies. Our calculated radii follow the pattern found in
Ref. 4 for the neutron s.p. states in Ca but are about
5% larger. In contrast with our findings, the radii given
in Ref. 12 do not change much from one orbit to another.
The very recent (e,e'p ) results for the ld3/2 and 2s, zz ra-
dii obtained by Kramer et al. z are in close agreement
with the present calculations. It would be interesting to
compare our predictions with experimental results for the
deeply bound states.

3. Occupation probabilities

As shown by Mahaux and Ngo and Mahaux and Sar-
tor, ' the occupation probability X„I for hole states
(E„,, (Er ) is approximately equal to

1. 5

m*(r, E)/m =1— V(r, E) .
dE

(20)

In the Hartree-Fock approximation, the effective mass
(i.e. k mass) reduces to m Hz(r, E ) with

d
mH~(r, E)/m =1— VH„(r, E) .

dE
(21)

l. Effective masses

For later calculations, we introduce three effective
masses. The mass m*(r, E) describes the energy depen-
dence of the real part of the full mean field; it is defined as ~ Og-

u

~ 0.6—

0.3'0

m /rn

Eo

In the absence of dispersive terms the effective masses
m*(r, E) and mH&(r, E) are identical. Finally, the E
mass is given as

FIG. 8. Radial dependence of m*/m (solid curve), m H&/m
(dashed curve), and m/m (dashed-dotted curve) at the Fermi
energy. These quantities are defined by Eqs. (20)—(22).
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TABLE II. Energy and root-mean-square radius of proton
single-particle orbits in Ca.

1.0
~ ~

~ ~

nlj

&f7n
1d3/2

2$1/2

1d5/2

1p1/2

lp3/2
1$1/2

E„(, (MeU)

—1.15
—8.88

—10.67
—14.95
—31.62
—36.52
—57.38

Present
work

4.31
3.71
3.87
3.53
2.94
2.96
2.33

fms (fm)

Ref. 12

4.07
3.99
3.96
3.91

Ref. 42

3.69(10)
3.72(10)

0,0
1.0

~ ~ ~ ~

Ni, = f u I(r) 1+[mHF/m(r, E„(,)]
0

'F (E' —Enid)'

while for particle states (E„IJ)EF) N„,J is given by

Nnji~ njir m HF m r, Enrj'
0

(24)

0.5-60
I

-40
I

-20
E (MeV)

EF

0
I

20

4. Spectroscopic factors

The absolute spectroscopic factor is defined as fol-
lows

FIG. 9. Calculated occupation probability N„» (top panel)
and spectroscopic factor S„(, (bottom panel) of bound and quasi-
bound single-particle states in ' Ca.

X f ' dE' dr. (25)(E' —E, )~
nlj

S«, = f u „&~(r)[mlm(r, E«J)]dr,
0

with

The calculated probabilities for bound states are shown in
Fig. 9 and listed in Table III, where they are compared
with values deduced from (e, e'p) (Refs. 44 and 45) and

(p, 2p) (Ref. 46) measurements. The scatter which is seen
among these experimental values (third through fifth
columns) illustrates that the N«'s are not very well

determined. In contrast, our results clearly indicate a
15% depletion of the Fermi sea. This figure is reliable,
provided that the calculated N„Ij values do not depend
much on the assumption made for 'N(r, E) at large posi-
tive and negative energies.

TABLE III. Occupation probability of proton single-particle
orbits in Ca.

m Im(r, E«) =1—[m HF Im(r, E„~~)] dE

Xb, v(r, E«)
Our S„l values calculated for E (0 are listed in Table

IV and shown in Fig. 9 (bottom panel). These values
should be compared with absolute spectroscopic factors
which in principle can be obtained from (e,e p) measure-
ments. Very recently, such data became available for
the ld3/2 and 2s&&2 orbits (fourth column of Table IV).
As can be seen, these values are in better agreement with
our results than with those extracted from the proton
transfer reactions C (wa, d) 'Sc and Ca(d, r) K. The
corresponding numerical values were taken from Table

nlj
Present

work
(e, e'p)
Ref. 44

N„(,
(e, e'p)
Ref. 45

(p, 2p )

Ref. 46

TABLE IV. Absolute spectroscopic factor of proton single-
particle states in Ca.

1f7zz
1d 3/2

2$1/2
1d5/2

1p 1/2

1p3/2
1$1/2

0.14
0.85
0.87
0.88
0.91
0.92
0.93

1.05
1.0
0.78
1.7'
1.7'
1.85

0.77b

0.65
0.77b

0 95'
0 95'
0.75

0.5
0.25
0.5b
10'
1.0'

)20

'Values are given for 1p and not individually for 1pl/2 and 1p3/2
states.
Values are given for 1d and not individually for 1d3/2 and
1d 5/2 states.

nlj

&f7i2

1d3/2

2$1/2

1d5/2

1p1/2

1p3/2

1$1/2

Present
work

0.72
0.70
0.70
0.72
0.90
0.87
0.83

Ref. 12

0.73
0.73
0.79
0.74
1.03
1.08
1.07

(e,e'p )

Ref. 42

0.65
0.51

Nucleon
transfer
Ref. 48

1.20
0.99
0.88
0.77
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IX of Ref. 48. However, the low value found in Ref. 42
for the 2s, &2 state is not confirmed by our analysis. To
our knowledge, experimentally determined strength in-

formation about the deeply bound single-particle states is

not available.
The spectroscopic factors obtained in Ref. 12 are in

general larger than our results. This follows mainly from
the different definitions used here and in Ref. 12 for cal-
culating S„I . As pointed out by Mahaux and Sartor, '

Eq. (26) yields values for S„I which are about 10% small-

er than those calculated from Eq. (7.6) of Ref. 12.

5. Spectral functions

Spectral functions can be defined ' in the context of
the DOMA and IMA studies. According to Eq. (8.11)of
Ref. 16, which gives a corrected version of Eq. (12.5)
used in Ref. 4, the spectral function of a single-particle
state is defined as

S„(,'N„I (E)l(m„'I, Im )

O'„l, (E)= rr-
+nlj) +[II pig(+)/(mnlj Im )I

I

O
(D

cfi

+

CU

Z3
C
O

1.4—

1.2—

0.8-

0.6-

p4—

0.2-

-4OC

)pp
'2

l Ipi

(27)
where S„I. represents the absolute spectroscopic factor,
Eq. (26), (m„'&J /m ) the expectation value of the effective
mass m "Im, Eq. (20), and %'„&,(E) the expectation value

of the imaginary part of the mean field.
Spectral functions were calculated for the

1d5/2, 1p&&2, 1p3/2 and 1s, &2 proton hole states in Ca.
These individual spectral functions (multiplied by 2j+1)
together with their weighted sum, as defined by

S„(E)= g (2j+1)$„1(E),
nlj

(28)

C. Quasibouud orbits

Due to the centrifugal and Coulomb barriers, quasi-
bound proton s.p. states exist in Ca at positive energies.

are presented in Fig. 10. Our calculated distributions of
single-particle strength, especially the widths of the 1s, zz
and 1p states, are in good agreement with results ob-
tained from (e, e'p) experiments. ' It is obvious from
Fig. 10 that a substantial amount of the 1d5&2 strength is
located at quite high excitation energies (see dotted
curve). This comment also applies for the other hole
states. In fact, even at —70 MeV the total single-particle
strength is quite substantial and about 10% of the in-
tegrated total strength is located beyond that energy.

0,
.~ C

p — . .~ . .w'. .:....' J..'. . . . .a ~~"~ "'"
-100 —80 -60 —40

E (MeV)
-20

FIG. 10. Proton-hole spectral functions as defined by Eq.
(27). The solid curve represents the weighted sum of the

id„„1p„„lp3jp and 1s,„proton holes in Ca [Eq. (28)].
The dotted curve shows the tail of the 1d5/, spectral function.
The short-dashed curve represents the 1p&/& spectral function.
The dashed-dotted curve shows the contribution of the 1p3/2
spectral function. Finally, the long-dashed curve displays the
1s &/2 spectral function.

In Table V we present the calculated energy, root-mean-
square radius, occupation probability, and spectroscopic
factor for the quasibound s.p. states predicted by our
model.

(i) Radii. The associated proton s.p. wave functions
were calculated with the boundary condition that they
vanish at R =8.2 fm, which is twice the radius of our
Hartree-Fock potential. Except for R„'& ', the calculated
quantities do not heavily depend on the choice of cutoff
radius. Our R„'I~' values (see the third column) are given

only to illustrate that they closely follow the pattern
found in Ref. 4 for the corresponding, however bound,

TABLE V. Energy, root-mean-square radius, occupation probability, and absolute spectroscopic fac-
tor for quasibound proton single-particle orbits in Ca.

nlj (MeV) Ref. 12

R„'(j' (frn)

Present
results

Present
results

Sn(j

Ref. 12 Refs.49-51

1g7/2

1g9/2
ifsu
2p
2P 3/2

+21.0
+9.75
+4.51
+2.02
+0.92

5.16
5.30
5.16
5.44
4.96

4.14
4.12
4.09

0.04
0.06
0.08
0.07
0.08

1.11
1.00
0.76
0.81
0.79

0.93
0.87
0.84

0.77
0.83
0.94
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FIG. 11. Spectral function for the 1fq/z quasibound proton
single-particle state in Ca.
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FIG. 12. Individual spectral functions of quasibound proton
orbits calculated from Eq. (27) and their weighted sum [Eq. (28),
solid curve].

neutron 2p3/p 2p, /z, and If s/~ s.p. orbits in Ca. As al-

ready observed for the bound s.p. orbits, the radii of un-
bound orbitals given in Ref. 12 are quite different from
our results.

(ii) Occupancies. Our predicted occupation probabili-
ties N„I~ are smaller than 0.1.

(iii) Spectroscopic factors and spectral functions. The
calculated absolute spectroscopic factors S„I, for the

2p3/p 2p, /z, and 1fs/z orbits take on values S«, -0.8
which, except for the 2p3/p state, compare very well with
the experimental values (i.e., 0.77 and 0.83) inferred from
proton transfer reactions and elastic proton scattering on

Ca (Refs. 49—51). This agreement is fortuitous, howev-
er. To illustrate this statement, Fig. 11 presents the cal-

culated spectral function for the 1f~/z state. The energy
range covered by experiments extends up to only 7.12
MeV. From Fig. 11 it can be seen that more than 20% of
the calculated 1f&/~ strength is located above that ener-

gy. Therefore, an experimental value near 0.62 rather
than 0.77 would be in better agreement with our result of
0.76 obtained for the entire excitation energy range. De-
tailed experimental information about the 1g9/p state is
not available. Since we find this quasibound s.p. state lo-
cated at +9.75 MeV, it is not surprising that in Refs.
49—51 only less than 25% of the expected strength could
be identified at energies lower than 7.12 MeU. According
to our analysis, the 1g7/p orbit is also quasibound. The
calculated distribution of quasibound single-particle
strength and its weighted sum [Eq. (28)] are shown in Fig.
12.

For completeness, the S„I values obtained in Ref. 12
are listed for some unbound orbits. After renormaliza-
tion (see Sec. III B4) the spectroscopic factors for the 2p
proton s.p. orbits agree very well with the present predic-
tions, while the Slf value of Ref. 12 is considerably

5/2

larger than our result.

D. Comparison between ~Ca and Pb

At this stage, it is interesting to compare the s.p. prop-
erties of Ca with those for Pb since a wealth of data
exists for these spherical nuclei that are widely con-
sidered as testing grounds in nuclear structure studies.
The main striking feature which emerges from this com-
parison is that the 15% depletion of the Fermi sea pre-
dicted for " Ca is considerably weaker than that found in
the lead region. There, the 3s, /z proton orbit (hole state
closest to Fermi energy) displays an occupancy of 0.7 or
less, as deduced from either calculations or measure-
ments. ""

Part of the deviation observed between the predictions
stems from different treatments of correlations in ground
states. In Ref. 52, short-range and tensor correlations are
explicitly considered while the DOMA includes these
correlations and others in a global and implicit manner.
Therefore, our phenomenological results suggest that the
microscopic calculations of Ref. 52 overpredict the de-
pletion of the Fermi sea, a conclusion that is also sup-
ported by recent (d,p ) measurements on Ca.

On the other hand, our predicted depletion for Ca is
consistent with recent experimental results obtained for

Pb and adjacent nuclei. First, Grabmayr et al. have
deduced a 12% depletion of the Fermi sea in Pb from a
sophisticated, joint analysis of nucleon transfer and elec-
tron scattering experiments. This result compares well
with our 15%%uo predicted depletion for Ca. Second, our
results agree very well with new electron scattering data
on the magnetic form factors of Tl and Pb. In these
experiments, the quantity Z=n —n+, with n+ and n

as the occupation probability of orbitals lying immediate-
ly above and below the Fermi energy, was found to be
equal to 0.70+0.07. This figure is to be compared with
Z =0.71 that is predicted for Ca.

Obviously, this comparison between Ca and Pb is
far from complete. More measurements on both nuclei
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are needed before a more precise statement as to whether
the Fermi seas in both nuclei are depleted by comparable
amounts can be made.

Finally, recent theoretical calculations performed in
normal nuclear rnatter indicate a 13% depletion originat-
ing from short-range correlations. This result would be
consistent with our phenomenological estimate if the
effects of the long-range correlations on the whole de-
pletion were to be a few percent in magnitude.

IV. DISCUSSION

—F000

re

E
-600—

tD

~ ~
~ -4.00—
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l t

(J yA)
——(J/A)
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——~-(J /'A)
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~o ~ ~ ~ ~ ~ o ~

(J /A)
~HF

So far, our study has mostly dealt with the determina-
tion of the p- Ca mean field from a dispersive optical-
model analysis approach. This mean field displays global
properties which are now compared with those estab-
lished earlier for the same system from an iterative mo-
ment approach. ' The global parameters of interest are
(i) volume integral per nucleon

(J/A )&= f r V(r, E)dr,

—200—

4.4

4.2—

I

-50
I i I

0 50
E (MeV)

Ioo

(ii) root-mean square (rms) radius

[f rrV(r, E'rdr]'r'

[f r V(r, E)dr]'~
(2&)

E g.p-

3.8—E

K

3.6- IMA

Rrms
HF

Rrms

Rrms
RHF

rms
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of the full dispersive potential V(r, E), as well as

J~/A = f r 'N(r, E)dr
A

of the full absorptive potential %'(r, E ).
The variations of J&/A and R, , with energy are

shown in Fig. 13. Here the solid and dot-dashed curves
are for the DOMA and IMA results, respectively. Figure
13 also includes the volume integral (J/A )& and rms

HF

radius R,m, of the empirical Hartree-Fock potential.
These parameters are shown as dashed and dotted curves
depending upon whether they are obtained from DOMA
and IMA. As can be seen in Fig. 13, the HF component
of (J/A ) as deduced from DOMA has a stronger E
dependence than that found from IMA. Part of this
difference can be traced back to the fact that the two
methods are quite different in nature. In contrast, the
(J/3 )& values from DOMA and IMA differ by only 3%
or less at positive energies ranging from 20 to 75 MeV
where experimental information on scattering and reac-
tion processes are available. This comparison indicates
that the volume integral of the real part of the full mean
field is determined within an uncertainty of better than
2% at positive energies. At negative energies, this uncer-
tainty seems to be much larger. This can be seen in Fig.
13 where the relative difference between the (J/A )~'s
from DOMA and IMA is as large as 10%%uo at the Fermi
energy. At this stage, we do not completely understand
the origin of this difference, since DOMA and IMA both
lead to similar predictions for particle- and hole-state en-
ergies. On the other hand, the difference observed in Fig.
13 for the E dependence of the (J/A )&'s can be traced
back to the assumptions made for the absorption at

34 I

-50 0
E (MeV)

100

FIG. 13. Top panel: Energy dependence of the volume in-

tegral per nucleon of the full real potential (solid curve) and of
its Harteee-Fock component (dashed curve) as obtained from
the present DOMA. The corresponding iterative moment ap-
proach (IMA) results of Ref. 12 are given by the dashed-dotted
and dotted curves, respectively. Bottom panel: Energy depen-
dence of the root-mean-square radius [see Eq. (29)] of the full
real potential (solid curve) and its Hartree-Fock component
(dashed curve) as calculated from the DOMA. The correspond-
ing IMA results of Ref. 12 are represented by the dashed-dotted
and dotted curves, respectively.

higher energies. This is illustrated in Fig. 14, which
displays the volume integrals (J/A )~ from DOMA and
IMA. As can be seen, (J/A )~ reaches an asymptotic re-
gime at lower energies in IMA (see curves labeled as BR
and JM which were taken from Ref. 12) than it does in
DOMA.

The features found for the (J/A )~ values and E
dependences may also explain why the rms radii R, , de-
duced from DOMA and IMA do not display the same
variations with energy (see bottom part of Fig. 13). From
this figure, it can be seen that R, , (DOMA))R, ,(IMA) for E (75 MeV. This stems from the fact
that the Hartree-Fock radius was found to be larger in
DOMA (i.e., rHF = 1.20 fm) than in IMA (i.e., rHF = 1.13
fm). On the other hand, R„,(DOMA) and R, ,(IMA)
display similar patterns around E =EF.

Finally, we have constructed a Woods-Saxon shape
that is equivalent to the real parts of the full mean field.
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V. CONCLUSION
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