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tion. Finally in Sec. V we summarize and draw con-
clusions.
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In this section we use thermodynamic concepts to ex-
plore the conditions under which RMCF occurs. We will
be concerned with the qualitative features of the produc-
tion of the IMFs.

For simplicity, we treat the excited system according
to the same assumptions used in the expanding-
evaporating source model. That is, we take the heated
expanded system to be a nucleus of density p excited
above its ground state. The energy (collective compres-
sional energy) of that ground state depends on p. The
density of energy states of the system at the (thermal) ex-
citation above the ground state is assumed to be the same
as that of a finite temperature Fermi gas. The Fermi en-

ergy, ef, associated with this gas varies with the density
of the system as p . Therefore, it is only necessary to
specify ef at one density po (normal nuclear density). Ex-
perience with evaporation studies suggests that it is
reasonable to use 30 MeV for ef with large systems

0

(mass of 160 or greater), and 25 MeV with lighter systems
(inass of the order of 100 or less).

Using this model we can determine the free energy F
for any density and excitation energy (temperature) of the
expanding system. This is given by
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FIG. 2. Mean mass of fragments emitted at each stage in the
evolution of an excited '"Au nucleus beginning with a tempera-
ture of (a) 12 Me V; (b) 15 MeV.

emission stages which follow a time ordered sequence.
The initial values of approximately 2 mass units reflect
the dominance of the emission of neutrons, hydrogen,
and a particles. At a specific stage (time) the mean mass
rapidly triples. This is precisely the stage at which the
mass of the source drops sharply. We suggest that this
rise accompanies a special condition, associated with
lower densities, for which rapid massive cluster forma-
tion (RMCF) occurs. When the dynamics of the expan-
sion in our model precludes such densities, RMFC does
not occur. This is illustrated in the behavior of the sys-
tern with initial temperature of 10 MeV in Fig. 1 which
emits predominantly light fragments while its density os-
cillates.

In what follows we explore the features of the reaction
which permit this process to occur. In particular, we will
explore the threshold conditions for this process. In Sec.
II we discuss rapid massive cluster formation from the
point of view of the thermodynamic free energy. Section
III introduces two freeze-out conditions which must be
considered in the case of each multifragrnentation pro-
cess. Section IV provides some specific calculations
which are applied to cases under experimental investiga-

F =E —TS, (2)

where E is the total energy (ground state plus excitation),
T is the temperature, and S the entropy. All of the func-
tions associated with excitation are treated in the finite
temperature Fermi gas model. We find that the quantity
F is negative and ranges from large absolute values, at
normal density and high temperatures, to zero, at low
densities and low temperatures.

To study the tendency for a low density system to con-
dense into normal density clusters (IMFs), we compare
the free energy per particle of the homogeneous system
with the free energy per particle of the cluster. The latter
quantity is found from

F, = —T lnZ+Ez,

Here Z is the partition associated with the motion of the
cluster center of mass:

Z = VXg, X(M, Tj2M )' (4)

The ground state energy of the cluster is typically —8
MeV times the number of nucleons. The quantities M,
and g, are the mass and degeneracy factors of the cluster.
We take the value of temperature T for the cluster
motion, in Eq. (4), to be equal to the temperature of the
homogeneous system from which the cluster forms.

The crucial factor in the free energy for the cluster is
the volume V in the partition function of Eq. (4). For
cluster formation on the surface of the system, with
motion outward with respect to the surface, we have
shown that this volume is intimately related to the eva-
poration decay rate itself. . In Ref. 2 we demonstrated, us-
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FIG. 3. Free energy per particle versus temperature for an
isentropic expansion. Source as Fermi gas {solid); ' 0 cluster
(dashed).

ing Weisskopf detailed balance, that the volume required
for the free energy of the evaporated cluster to equal to
the free energy of its constituent nucleons in the source is
precisely the volume occupied by that flux of the clusters
which come from the surface of the source during the
mean lifetime for the statistical emission of the cluster. If
we assume that clusters will form when their free energy
is equal or less than that of the constituents in the source,
then, subject only to conservation laws, IMF emission by
surface evaporation can occur at any excitation energy.

What is the situation with regard to internal cluster-
ing? In order to explore this process we again must con-
sider the volume V which enters calculation for the clus-
ter free energy. In the case of internal clustering we take
as the volume in Eq. (4), that volume occupied by the A

nucleons which join to form the cluster. This would also
be the volume of the cavity produced in the homogeneous
system by the formation of the cluster. With this choice
of volume the cluster free energy may be calculated at
each density.

We now can calculate the crossover condition (density,
temperature) at which the free energy of the cluster be-
comes lower than the free energy of particles in the
homogeneous source. Shown as an illustration in Fig. 3
is the case for isentropic expansion from an initial tem-
perature of 15 MeV at density po. The Fermi energy is
taken to be 30 MeV, and the cluster assumed to be ' O.
The schematic density dependence of Eq. (l) is used for
the energy of the ground state of the source. When this
procedure is repeated for different entropies we obtain
the locus of crossover conditions shown in Fig. 4.

The formation of fragments due to the crossover of free
energies for internal clustering is a phenomenon qualita-
tively different from evaporation. This is the condition
we associate with RMCF, and with true "multifragmen-
tation. " Indeed, the observed RMCF behavior evident in
Fig. 1 is found to occur when conditions approach those
of the crossover. Any system which reaches the cross-
over conditions might be expected to demonstrate
RMCF.
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FIG. 4. Locus of conditions where the free energy for clus-
ters ("0) becomes less than the free energy for the homogene-
ous system.

III. TWO FRKKZK-OUT CONDITIONS

In order to understand the physics leading to RMCF,
and at the same time to appreciate the differences among
various models which currently attempt to explore tnul-

tifragmentation, we must carefully consider the concept
of "freeze-out. " This term is widely mentioned in a
variety of models. It generally refers to the condition un-

der which the fragments cease interacting strongly with
one another and progress to detection, influenced only by
Coulomb forces. We might associate the situation of
RMCF with such a stage of disassembly.

As an important ingredient of the multifragmentation
process, it is crucial to introduce a second, different,
"freeze-out" condition. We shall call this one the
entropy-freeze-out condition. By contrast, we will refer to
the previously mentioned condition as the force-freeze-
out condition. These distinct conditions are roughly
analogous to the "saddle" and "scission" conditions in
transition-state fission theory. In that context there is
statistical balance among the states at the former and the
end of strong interactions at the latter. An appreciation
of both of these two conditions in the multifragmentation
process is essential when comparing the different models.

In the pure microcanonical approaches exemplified by
the extensive work of Gross, Bondorf, and Koonin,
Randrup, and Fai, the two freeze-out conditions are the
same. That is, entropy is assumed to increase as the sys-
tem expands to the large volume (between 4 and 10 times
normal nuclear volume) in which the breakup is con-
sidered. In the expanding-evaporating source model, on
the other hand, the two conditions are very different.
The entropy-freeze-out condition is taken at normal nu-
clear density, whereas the force-freeze-out, for example
the condition for RMCF, is at a much lower density.
This choice is motivated by microscopic calculations
which suggest a rapid rise in entropy during the initial
compressional stages of a nuclear collision, with satura-
tion of entropy at nearly constant value as the system ex-
pands to densities below normal density. Intermediate
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models, in which the entropy increases up to a given den-
sity between normal nuclear density and the force freeze
out, are possible, but have received little attention to
date.

As an illustration, we next consider three sample cases,
all with the same force-freeze-out condition, but with
different entropy-freeze-out conditions and different situ-
ations between the freeze-out conditions. We take a den-
sity of 0.2po and a temperature of 5.8 MeV as the force-
freeze-out condition for all three cases. This condition
corresponds to a crossover condition in Fig. 4 and is asso-
ciated with a thermal energy per particle of 5.18 MeV,
and entropy per particle of 2.07.

We next work backwards in time for each of the cases
to determine the conditions which prevailed at normal
nuclear density, prior to the expansion which results in
the force-freeze-out condition. For case I let us assume
that the entropy-freeze-out point is at normal density, po.
Then for this case the entropy per particle at po is 2.07
(the same as at the force-freeze-out condition), while the
temperature is 16.96 MeV, and the thermal energy per
particle is 15.16 MeV. For cases II and III, let us assume
that the entropy-freeze-out is at the force-freeze-out con-
dition given above, i.e., with p=0. 2po, etc. For case II
we assume that the system must work against a force as-
sociated with the density dependence of the ground state
given in Eq. (1}. We then find that at po the entropy per
particle would be 1.75 (less than 2.07); the energy per par-
ticle would be 10.305 (if there is no collective kinetic en-
ergy at po), and the temperature would be 13.1 MeV. Fi-
nally for case III we assume the system does not work
against any attractive potential in progressing from nor-
mal density to the force-freeze-out condition. Then we
find that at po the entropy per particle would be 1.28,
with the thermal energy 5.18 MeV (the same as at the
force-freeze-out condition), and the temperature would be
8.654.

This illustration, with cases having the same force-
freeze-out conditions, clearly demonstrates the impor-
tance of considering two freeze-out conditions, and also
the importance of the conditions leading to the freeze-out
points. If case III were to hold, an energy of about 5
MeV/particle would lead to the same type of final freeze
out, as would require 15.16 MeV per particle if case I
were to hold. This big difference leads to big differences
in predictions of the conditions which must be met in or-
der to achieve rnultifragmentation or RMCF.

In the preceding example no particle loss from the
source, between the freeze-out conditions, was con-
sidered. If one is to quantitatively determine what excita-
tion energy is required for a system to achieve multifrag-
mentation, one must also take into consideration the par-
ticles which are emitted between the two conditions. Be-
sides the work which must be done against the attractive
nuclear force, this evolution introduces additional energy
considerations.

With the emission of particles, presumably from the
surface of the expanding system, their kinetic energy and
separation energy is removed from the source. A portion
of the original excitation energy is also taken by the col-
lective compressional (subnormal density) energy corre-

sponding both to the reduction of the density (positive)
and to the loss of source mass (negative}. Finally, the ex-
panding source acquires a collective kinetic energy. All
of these components of energy must be supplied by the
initial excitation energy, in addition to the minimal exci-
tation energy required to achieve RMCF at the force-
freeze-out condition.

The expanding-evaporating source model is especially
well suited for studying the evolution of the system be-
tween the two freeze-out conditions. We have performed
illustrative calculations with this model to examine the
magnitude of each of the components of energy loss. For
this purpose we considered a system with A =190 and
2 =76 which has an entropy-freeze-out at normal nu-
clear density, po, with a temperature, at that point, of 15
MeV. Let us take the condition for RMCF to be a densi-
ty of 0.30po with a temperature of 5.89 MeV. We assume
this to be the force-freeze-out condition. During the time
the system progresses from the entropy-freeze-out to the
force-freeze-out a calculation shows that it loses about 45
units of mass and about 17 units of charge. These carry
away about 836 MeV of energy in kinetic energy, and
about 182 MeV in separation energy. The compressional
energy of the system grows from 0, at the entropy-
freeze-out point, to 574 MeV, at the force-freeze-out
point. The collective kinetic energy (expansion} goes
from 0 to 136 MeV. From an original excitation energy
of about 2400 MeV (E'/A =12.6 MeV) the excitation
energy at the force-freeze-out has dropped to about 675
MeV (E'/A =4.66). This is clearly a significant change,
and further demonstrates that the dynamics of the pro-
cess between the two freeze-out conditions has a crucial
bearing on determining what excitation energy is re-
quired to achieve multifragmentation.

IV. CALCULATIONS AND DATA

We now compare the expanding-evaporating source
model to data recently reported by a group from
Gesellschaft Schwerionenforschung Darmstadt (GSI),
Frankfurt, and Heidelberg. These data were specifically
analyzed to search for the onset of multifragmentation.

The experimental group defined as an intermediate
mass fragment (IMF) a cluster of charge three or greater.
They measured the mean multiplicity (M') of IMFs in
coincidence with an additional trigger IMF. Finally they
defined the "mean multiplicity" of IMFs M by
M =1+(M'). A plot of M vs the mean energy is given
in Ref. 6, for reactions involving different projectiles and
different beam energies on targets of Au and Ag.

The notation which is used in Ref. 6 is, unfortunately,
confusing, since the true IMF multiplicity, and the multi-
plicity in coincidence with one trigger fragment, are ex-
pected to be nearly equal, and not to differ by one, as im-
plied. In the Appendix we provide a proof that two mul-
tiplicities would be exactly equal if the multiplicity prob-
ability follows a Poisson distribution.

We have determined the actual distribution P„for the
calculations with the expanding-evaporating source.
While it is not exactly a Poisson distribution, it is very
well approximated by such a distribution, even when the
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mean multiplicity is only a small fraction of one. We find

that the full multiplicity and the coincident multiplicity
differ by less than 5% for excitations of 500 MeV or more
in mass 190 systems.

We disagree, therefore, with the suggestion in Ref. 6
that a signature for the onset of multifragmentation is
provided when ((M')+1) acquires values greater than
one. Our analysis suggests that this feature only indicates
that the mean multiplicity here is beginning to deviate
from zero. Instead a full mean multiplicity approaching
1, i.e., ((M') + 1) approaching 2, would reflect a sizeable
probability for there being more than one fragment.

We have used our model to calculate the mean multi-
plicities for fragtnents with charge 3 or greater. These
calculations were performed for systems with starting
masses of 190 units (Z =76) and 100 units (Z =44), to
reflect reactions involving gold and silver targets.

In order to compare with the discussion of Ref. 6, we
plot in Figs. 5 and 6 ((M)+1) vs the excitation energy
used in the calculation. The symbols indicate the data
presenresented in Ref. 6, without showing the error bars. We
find that the calculations for both the light and heavy tar-
gets represent the data remarkably well. The discussion
in Ref. 6 indicated that the models the authors used were
not successful in accounting for both light and heavy tar-
gets. In particular, the model of Bondorf anticipated a
sharp rise in both sets of data at relatively low excitation
energy, a feature not found in the data. This prediction
appears as the dotted line in our figures.

We suggest that this anticipation may stem from the
fact that the Bondorf model is one in which the entropy-
and force-freeze-out conditions are the same. It thus ex-

p1licitly considers none of the physics occurring between
3the two. In another microcanonical calculation Gross

pre iredicts that the cracking mode (multifragmentation) en-
ergies at 4—5 MeV/nucleon, consistent with the sharp
rise predicted by Bondorf model. In the calculations of
Gross both freeze-out conditions have the density about
0.2po and the temperature is about 5-6 MeV. These con-
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ditions are indeed similar to those at RMCF conditions
but not to the initial conditions of our calculations.

We calculated the mean multiplicity for both systems
at energies above those reported in the experiments. We
have also explored the sensitivity of these calculations to
the stiffness of the density dependence of the ground state
of the source. These results are shown in Figs. 7 and 8.
In one set of calculations for each target we held the
source density fixed at normal density throughout the
emission period. This represents infinite stiffness. For
another set of calculations we used the form in Eq. (1).
This corresponds to a compression constant of 144 MeV.
In addition, calculations were made with compress con-
stants of 120 and 200 MeV for the mass 190 case.

We find that, in the region explored by the experiments
in Ref. 6, the results are independent of the density

FIG. 6. ((M«F)+1) vs excitation energy, calculated with
the expanding-evaporating source model for an Au target. The
data indicated and the rising dotted line is the Bondorf model
prediction from Ref. 6.
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FIG. 5. ((MsM„)+1)vs excitation energy, calculated with
the expanding-evaporating source model for an Ag target. The
data indicated and the rising dotted line is the Bondorf model
prediction from Ref. 6.

FIG. 7. ((M,M„)+1)vs excitation energy, calculated with
the expanding-evaporating source model for an Ag target over
an extended energy range. The lower curve has no expansion;
the upper has expansion with Eq. (1).
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FIG. 8. ((M,M„)+1)vs excitation energy, calculated with

the model for an Au target over an extended energy range. The
lower curve has no expansion; the upper curves have expansion
with compressibility constants of 120, 144 [Eq. (I)], and 200
MeV, respectively.

dependence. This is because, for the energies involved,
conditions of low density are not found. The results of
calculations performed without permitting the source to
expand provide essentially the same multiplicities as the
calculations which involve oscillations of the density
about normal conditions. Only at higher excitation ener-
gies is the expansion substantial enough to probe the re-
gions of RMCF. According to the model, those IMFs
which are produced in the range of the experimental en-
ergies appear to come from surface evaporation.

In the energy region above the experimental one we do
find a sharp rise, evidence for RMCF, at an excitation en-

ergy of the order of 1500 MeV for the mass 190 system.
Furthermore the exact location of this rise is sensitive to
the restoring force (equation of state).

It thus appears that a sharp rise with energy in IMF
multiplicity would be a good and simple feature to signal
the onset of multifragmentation. The slope of this rise
should, however, be greater than that associated with the
surface evaporation process. It appears, at this time, that
such a signature has not been seen.

Let us now consider the fact that, in collisions with a
beam of given energy, there is a distribution of energy de-
posited in the targets that are struck. The decays which
are detected thus arise from sources which have a range
of energies. The excitation energies that are extracted
from experiments are average energies. Clearly some of
the systems contributing to the yield have energies above
and some below this value. The mean multiplicities ob-
tained in most calculations represent values which come
from a definite excitation energy. Let us define this mean
multiplicity (for a given excitation energy) as M(E').
The experimentally measured mean multiplicity would
then correspond to the average of M(E*) over the distri-
bution of energies represented by the collection of
sources.

We should compare experimental data to this average,
which we designate M,„,

Here P(E) gives the probability that the source has exci-
tation energy E. The average energy, (,E ), follows from
the same probability distribution. Only for the case that
M (E) is linear in E do we obtain M,„equal to M ( (E ) ).
Thus a quantitative prediction of multiplicity versus the
average energy requires both M(E) and P(E).

This is especially important for the situation involving
the onset of multifragmentation. We would expect some
of the sources of the distribution to have sufficient energy
to undergo multifragmentation even though the average
energy is below this threshold. Since the multiplicity of
IMFs is expected to rise rapidly with multifragmentation,
such systems provide more than their share of fragments.
Thus, depending on the distribution in energy, one might
expect the influence of multifragrnentation to be experi-
mentally detected at relatively lower average energies.

For data in which the center of mass beam energy is
less than that required to probe multifragment densities,
the influence of the energy distribution would not be
great, since the dependence of the multiplicity on energy
is not far from linear. This seems the case for the data in
Ref. 6. For cases where the beam energy would permit
multifragmentation the situation is different.

One set of data that is currently being examined for
signatures of multifrag mentation is that of 800
MeV/nucleon a-particle collisions with Au. Here the
maximum possible energy is 3200 MeV, sufficiently high
to produce low densities.

It has been suggested that for very high energy pro-
tons one should expect an excitation energy distribution
which is exponential in form. We have examined the
eff'ect of folding the calculated multiplicity of IMFs (mass
6 or greater) over such a distribution which is cutoff at
the maximum energy:

P(E)=8(Em,„E)X exp( E—/E, ) . —

We take E,„=3200MeV and vary the slope coefficient,E„in the distribution to produce mean energies of 700
and 900. In each of these distributions the probability of
there being systems with energy in excess of 1500 MeV is
not large. It is at these higher energies, however, where
the yield of IMF fragments is expected to be large. Our
results do, indeed, show an influence from the energy dis-
tribution. They indicate that the multiplicity for an ex-
ponential distribution with mean energy of 700 MeV is
1.160 while that of a system at 700 MeV is 0.73. Similar-
ly a distribution with an average energy of 900 MeV pro-
vides a mean multiplicity of 1.72 while a system at 900
MeV has a multiplicity of only 1.08.

V. CONCLUSIONS

We have shown that there is some probability that a
decaying system will emit several intermediate mass frag-
ments, even in the case of normal surface evaporation.
Such a process should not be classified a true "rnultifrag-
ment" event. Rather this term should be reserved for
events which are qualitatively different. We have intro-
duced the concept of rapid massive cluster formation
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(RMCF) which we found to occur in systems at low den-
sity. We have examined this process, and have associated
it with the conditions which prevail when the free energy
of a cluster formed inside a source becomes lower than
the free energy of the homogeneous system from which it
forms.

We have introduced the concept of tao freeze-out con-
ditions, both of which are necessary to characterize the
dynamics leading to multifragmentation. One of these is
the condition at which the entropy becomes fixed, and
one the condition at which the strong forces cease to act.
The latter is the condition most commonly used when
reference is made to "freeze-out. " The importance of
each has been discussed, and the differences between
different models have been related to differences in the
entropy-freeze-out assumptions. In particular, for micro-
canonical calculations of multifragmentation this condi-
tion is the same as the force-freeze-out, while for the ex-
panding evaporating source model they are very different.
We have explored predictions in the latter model. That
model is especially well suited for studying the passage
from entropy-freeze-out to the force-freeze-out when the
two conditions differ. In that case it was shown that the
physics associated with this evolution has a great effect
on predictions of the conditions necessary to achieve
multifragmentation.

We have used the expanding-evaporating model to
study some systems involving both Au and Ag targets
which were recently studied experimentally in a search
for signatures of multifragmentation. In these cases we
are able to well reproduce the experimental data for both
targets. Other models had not been able to do this. We
also find results which indicate that the data are con-
sistent with a low value of mean multiplicity. In addition
there seems no indication in these systems that there has
been expansion to low densities. Thus, for those cases,
there seems no strong evidence for multifragmentation.
However, the calculations do suggest that a sharp rise in
the multiplicity of IMFs is indeed expected but at ener-
gies higher than observed. Such a rise would seem a good
indicator of multifragmentation by the RMCF process.
Further, the rise would provide information concerning
the compressibility of finite nuclei.

Finally we discussed the fact that in collisions with a

beam of projectiles having a given energy there is,
nonetheless, a distribution in the energy deposited in the
excited systems. We illustrated the influence of this dis-
tribution on the yield of IMFs. Because of this influence
we suggest that the onset of multifragmentation may be
detectable through the rise in the multiplicity of IMFs
when the average energy of the excited ensemble of sys-
tems is less than the threshold.

This work was supported in part by a grant from the
U.S. National Science Foundation.

APPENDIX

Next consider the case of multiplicity in coincidence with
a trigger IMF. For the events which create n fragments,
any one of these may become the trigger and the remain-
ing (n —1) will be in coincidence with that one. Similar-
ly, the events in which n coincident fragments are seen
with the trigger are those in which a total of (n +1) frag-
ments are produced, any one of which can be the trigger.
The probability that n fragments be seen in coincidence
with the trigger, P„', is then to be proportional to
(n+1)XP„+„wherethe factor of (n+1) comes from
the various possible triggers. It immediately follows that
the mean number of coincident fragtnents is

(M') = g nP„'
n=0

g P„'
n=0

and

= g n (n +1)P„+,
n=0

(n +1)P„+,=v,
n=0

We prove here that when the multiplicity probability
follows a Poisson distribution then the mean multiplicity
of IMFs, and the mean multiplicity in coincidence with a
trigger IMF, have the same value.

Let v be the mean multiplicity of IMFs and the P„(v)
be the probability that the multiplicity is n. The mean
multiplicity is defined by

(M) = ynP„
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