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A technique for the approximate solution of the Bethe-Salpeter equation is examined. The tech-
nique requires the solution of a pair of coupled equations for the relative-momentum and relative-
energy dependence of the relativistic T matrix. The solutions obey a self-consistency requirement as
well as the usual elastic-unitarity constraint. It is also shown that the approximate T matrix is
stable under a single iteration in the exact four-dimensional equation at certain kinematic points, in-

cluding the fully on-shell point. A model problem with an exactly solvable separable interaction is
examined and exact, approximate, as well as three-dimensional reduction results are compared. The
phase shifts calculated in this self-consistent approximation scheme are found to be in excellent
agreement with the exact phase shifts.

I. INTRODUCTION

We have been investigating the possibility of treating
retardation effects in the Bethe-Salpeter (BS) equation' in
a "self-consistent" manner. In this work we assume a
factorized approximation (factorized in space and time,
or equivalently in momentum and energy) to the solution
of the BS equation. This leads to coupled equations
which can be solved self-consistently. These equations
treat the relative-time and relative-space degrees of free-
dom symmetrically and self-consistently, which is the
source of our improved treatment of retardation effects.
In an earlier paper we reported calculations of a model
probletn (one scalar "meson" exchange between scalar
"nucleons" ) for which exact solutions were available, and
compared our results with "three-dimensional" reduc-
tions and with the exact results. That work, although
very encouraging, relied on the use of a Wick rotation to
obtain both the exact and our factorized approximation
results. The Wick rotation method, which is designed to
deal with the singularities inherent in one-meson-
exchange interactions, cannot be applied easily to more
general types of interactions (such as two-meson-
exchange crossed diagrams). In order to overcome the
difficulties involved in the solution of the BS equation, we
may find it convenient to separate those problems associ-
ated with the singularities of the interaction from those
related to the treatment of retardation effects. With this
in mind we have examined a model problem in which the
interaction term in the BS equation is separable. For
such interaction terms exact four-dimensional solutions
of the BS equation are easily obtained. It is also straight-
forward for us to apply our approximation technique to
the separable interaction problem without recourse to the
Wick rotation. Hence we can study the efficacy of our
approximation scheme for dealing with retardation

effects and compare this approximation with various
three-dimensional reduction schemes, as well as with the
exact result. In this way we may help to eliminate our
reservation that the smoothness of the Wick rotated solu-
tion might have been responsible for our earlier en-
couraging results.

Before we discuss the present approximation technique
it may be appropriate for us to comment generally about
the BS equation and the goal of approximation tech-
niques for its solution. The BS equation is an integral
equation for transition amplitudes which iterates a cer-
tain set of irreducible diagrams to all orders. Thus non-
perturbative results can be obtained. In general there are
an infinite number of irreducible diagrams which should
be included in the "interaction" term. Whenever one
deals with the BS equation in practice one begins with an
approximate BS equation which contains some truncated
set of irreducible diagrams. The solution of this approxi-
mate BS equation then contains all iterates of this trun-
cated set of diagrams. It has been known for some time
that the approximate BS equation generated by using
only one-meson-exchange diagrams as an interaction
term probably does not provide a good starting point for
calculation of nucleon-nucleon scattering in a mesonic
exchange mode1. Indeed, the ladder BS equation does
not satisfy a one-body limit criterion, as has been dis-
cussed by Gross. Thus, if one wishes to use only one-
meson-exchange diagrams as an interaction in a relativis-
tic two-body equation, then there may be a better starting
point than the BS equation. Some three-dimensional
reductions of the BS equation, for example, do obey the
proper one-body limit criterion when used with a one-
meson-exchange interaction. However, the premise of
our work is that one has a field-theoretic model of the nu-
clear force and that, in principle, one wishes to sum all
possible diagrams which contribute to nucleon-nucleon
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scattering. In such a systematic approach based upon a
field-theoretic model (possibly including form factors),
the BS equation seems to be the most feasible starting
point. If that approach is pursued, then one should in-
clude, at the least, both ladder (one-meson-exchange) and
crossed-box (irreducible two-meson-exchange) contribu-
tions to the interaction in order to obtain an equation
which obeys the correct one-body limit. In fact, current
state-of-the-art meson-exchange models of the nuclear
force do include both types of contributions to the in-
teraction. Unfortunately, the BS equation is very diScult
to solve when crossed-box diagrams are included. Thus
one resorts to using approximations along the lines of the
Blankenbecler-Sugar equation or the Gross equation.
While such three-dimensional reductions might provide
an adequate starting point when used with one-meson-
exchange interactions, it is not at all clear whether or not
they provide a reasonable approximation for higher-order
interactions. Thus we present here further investigations
of a new technique which seems to provide a better ap-
proximation for the solutions of equations of the BS type
than do currently available practical alternatives. It is
clearly intended as an approximation technique which
eventually may be of use to those involved in state-of-
the-art nuclear force calculations. Of course, the tech-
niques developed here could also be applied to other
problems requiring the solution of an equation of the BS
type.

The rest of this paper is divided into three sections. In
Sec. II we present the formalism for the factorized ap-
proximation for the transition matrix ( T matrix) and dis-
cuss the same approximation in terms of state vectors. In
Sec. III the model problem with a separable interaction is
discussed. Exact results as well as our approximate re-
sults and those from three-dimensional reductions are
presented for a variety of parameter sets. The factorized
approximation is seen to yield a good approximation to
the exact results. The final section, Sec. IV, contains a
brief summary and conclusions.

II. FORMALISM

We take the BS equation for the T matrix in operator
notation as

IW&
= leo}lko } . (3)

The values eo and ko of relative energy and relative
momentum are referred to as the on-shell values. In the
center-of-momentum frame eo =0 and ko is related to the

T= U+ UgoT,

where the two-particle interaction and propagator are U
and go, respectively. It is useful to define the "half-shell"
Tas

IT) —= Tly&,

where ~P) is the noninteracting, two-particle state vector
(plane-wave solution). The noninteracting solution can
be factored exactly into a relative-energy-dependent part,
~eo), and a relative-momentum-dependent part, ~ko), as

total center-of-mass energy. We will use rounded bracket
bras and kets, e.g. , ~eo }, to denote state vectors which act
only in the relative-energy or relative-momentum spaces.
The BS equation, Eq. (1), for the half-shell T matrix be-
comes

~
T ) = U~eo) ~ko)+ Ugo~ T & . (4)

We then define an approximation to
~
T ) via the relation

I
T ) = U~eo)~ko)+ UgoPF I T),

where

I ~I, ) = [(ko I Ulko }]

leo�)+

(ko/ Ugo[K)

(ko K)
(10)

The relative-energy-dependent ket, ~f'I, ), is defined as

l&i, }—:(kolT). This ket, le, ), is an approximation to
(ko~T), the exact half-shell T inatrix evaluated at the
on-shell relative-momentum point. Recall that the two
projectors which we introduced are still incompletely
defined, since the two kets

~
E ) and ~K ) are still

undefined. We now relate the kets, ~E} and ~K), in the
projectors to the kets which solve Eqs. (7) and (10).

Notice that
~
T ) and

~
T ) are independent approxima-

tions to
~
T). In order that these two approximations be

compatible with each other, they must give the same re-
sults at kinematic points where they are both known. Be-
cause ~T) is determined only at the on-shell relative-
energy points (eo ~

T ), and
~

f') is determined only at the
on-shell relative-momentum points (ko ~

T ), the only
point for which they are both determined is the fully on-
shell point. Thus we must require that

(eo I
E )

with ~E) an as yet undefined ket which acts only in the
relative-energy space [thus (eo~E } is a scalar]. Note that
Pz is a projection operator, i.e., PE =PE, acting only in
relative-energy space. From Eq. (5) we obtain the equa-
tion for

~ T, ) =(eo~ T ), a ket which acts only in relative-
momentum space:

I T, }= [«0 I Uleo) ]Iko }+«O~Ugo E}—
eo E

Clearly ~T, ) is an approximation to (eo~T), the exact
half-shell T matrix evaluated at the on-shell relative-
energy point. As we will soon discuss, one way to inter-
pret ~ T, ) is as a relative-momentum-dependent "factor"
in a factorized approximation of

~
T ) .

To develop the equations for the relative-energy-
dependent factor, we define a projector Pz as

lK)(k, l

(kolK)
'

where ~K} is still undefined. This projector may be used
to write another approximation to

~
T ), viz. ,

I
& &

=
U leo) ~

ko)+ Ug OI' g I
T &,

from which we obtain
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(k111(e( I
T & =(ep I(k11 I & &

or, equivalently

( k11 I T, ) = ( ep I
f'k } . (12)

This is the self co-nsistency condition E.xamining Eqs. (7)
and (10) reveals that the self-consistency condition will be
satisfied if

lE)IT, }

(e, [E & (k, /rC )
(13)

(14)

and

Because the relative-energy- and relative-momentum-
dependent parts of the above equation must separately be
equal, we Snd that

[E)
(k, IIt )

only need to show that the discontinuity of g OPE near the
on-shell point is not different from go. Since we will con-
sider here only PE, which projects in relative-energy
space, we can neglect relative-momentum dependences
since they are unchanged. Although the exact propaga-
tor is diagonal in relative energy, it is convenient to
rewrite it in terms of a general operator as

Gp(ei, e2 } go(ei )~(el e2) (19)

with the obvious notation Gp(e, , e2)=(e, ~Gp~e2). We
note that our approximate propagator can be written

(ei ~E)
GO 1 2} gp( 1

~g
~(ep 2) (20)

e11 F.

(we assume delta function normalization of the relative-
energy eigenstates}. Since (e, ~E) is a smooth function of
e& near e& =eo, we conclude that

Gp(ep e2 )=Gp(eo, e2 ) (21)
if'k)=N (15)

I ~g, &
= [(k11 I UIkp }]I ep &+

(kp I Ugii I T, )
(17)

One could, of course, have arrived at Eqs. (16}and (17)
directly from Eq. (4} by assuming a factorized ansatz for

~
T ), namely that

fT, ))f'„}

(k111T, )

This is the reason for interpreting
~ T, ) and

~

f'k ) as the
relative-momentum- and relative-energy-dependent fac-
tors in a factorized approximation. The technique of
deriving the factorized approximation from a projection
operator starting point emphasizes the self-consistency
between the two resulting equations.

An important property of the solution of the BS equa-
tion is two-body elastic unitarity. In the scattering re-
gime below particle production threshold this property
corresponds to conservation of Aux. All popular approxi-
mation schemes for the BS equation preserve this proper-
ty and as a consequence have real phase shifts below par-
ticle, e.g. , pion, production threshold. The present ap-
proximation scheme preserves elastic unitarity as well, as
we now show.

Although a general proof of elastic unitarity for the BS
equation is diScult, the essential property of the equation
which must be preserved is the discontinuity of the prop-
agator at the on-shell Point, i.e., (ep)(ko(go —gp(kp)(ep).
Since we can interpret our approximation technique as an
approximation of the exact propagator, go, by goPz, we

where X is an arbitrary normalization. Thus we can
rewrite Eqs. (7) and (10) as two coupled equations which
incorporate the self-consistency condition, i.e.,

IT, &=[«0IUleo &]Iko &+
( ep I Ug 0 I kg }

«0

and

This is a sufficient condition for the discontinuity to be
correct and thus for elastic unitarity to hold for our fac-
torized approximation. Indeed, we chose to have the bra
(eo ~

in the definition of PE precisely in order to obtain an
approximation scheme which preserves elastic unitarity.
Since our self-consistency condition ensures that the
values of

~ T, ) and
~ Pk ) are the same on shell, then elastic

unitarity for ~T, ) implies elastic unitarity for ~f'k) as
well.

In nonrelativistic quantum mechanics one often has
better intuition about state vectors than about half-shell
T matrices. Although the interpretation of state vectors
in a relativistic theory is not identical to the nonrelativis-
tic interpretation involving probability densities, it may
be illuminating to examine a factorized approximation
scheme for relativistic state vectors. We might define the
relativistic two-body state vector,

~

q1 ), by the equation

~% ) =~/)+g, U~% ) . (22)

At this point we could introduce projection operators and
implement self-consistency at the on-shell point in exact
analogy to the T-matrix formalism, however, we already
know what the result will be. The two coupled equations
for the state vector "factors" will be

and

[4', )=[(eii~e11)]~k11)+ ~4', )
(ep Igo UI q'k )

«p I
q'k &

(k ~g U~'4, }
I q'k ) = [(kp lko }]I ep &+

(ko 4, )

(24)

(25)

Although these equations are formally very similar to the
factorized T-matrix equations, they are actually much
more difficult to deal with. Since the plane-wave state,

This state vector will obey the usual relationship to the
half-shell T matrix, i.e.,

(23)
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I P ), is a scattering state, it obeys delta function norrnali-
zation. Therefore the inhomogeneous terms in Eqs. (24)
and (25), (eoIeo)Iko) and (koIko)Ieo), are singular, as are
the solutions, I4, ) and I'pk ). In addition, the unitarity
proof which we used for the T matrix relied upon manip-
ulations of an approximation to the propagator. Clearly,
when dealing with state vectors one does not have the
projector in a position to act upon the propagator. Thus
the elastic unitarity constraints are more di%cult to im-
plement. For these reasons we concentrate on the T ma-
trix where the solutions are normalizable functions.

If one wishes to implement the self-consistent approach
in terms of state vectors, it is better to define an approxi-
mation to the state vector, I 4 ) = I 4), by means of the
factorized T matrix, i.e.,

(26)

I

T'"
&
= v Ie, ) Ik, )+ vg, I

T'"
& . (27)

Clearly the only solution which is unchanged at all kine-
matic points under iteration is the exact solution. The
factorized approximation has the property that its on-
shell value is unchanged after a single iteration, i.e.,

(eoI(koIT'") =(eoI(koIT"'& .

Thus we say that the on-shell value is stable under one
iteration. This stability indicates that the on-shell value
of the factorized T matrix might provide a good approxi-
mation to the exact on-shell T matrix.

The proof of stability is straightforward. We have that

(koIT, ) (eoITk)
(28)

thus

We will not pursue further discussions of state vectors in
this paper. The last formal aspect of the factorized ap-
proximation which we will discuss in this section is the
stability of the on-shell value of the factorized approxi-
mation for the T matrix under iteration.

Given any approximate solution for the half-shell T
matrix one may attempt to systematically improve the
approximation by iterating it in the exact equation. Thus
if

I
T' ') is a zeroth-order approximation to I T ), then the

first iterate,
I

T"'), is defined by

as claimed. In fact, it is easily seen that the factorized
approximation is stable for one iteration at all values for
which either the relative energy is on shell or the relative
momentum is on shell. We note that three-dimensional
approximations for the T matrix do not have this stability
property.

III. SEPARABLE INTERACTION CASE

UIg&&qIU
(7yI UIg& —(gI UgoUIY/&

(34)

Similarly, we can solve Eqs. (7) and (10) for the factorized
approximation. We find that

We now turn to the special case of a separable interac-
tion and examine numerical results for our approxima-
tion technique for the T matrix. As we will show, if the
interaction in the BS equation is "separable, " then we can
analytically solve the equation for the exact T matrix. In
addition, both the factorized approximation equations
and the three-dimensional reduction equations can be
solved exactly as well. We do not claim here that the in-
teraction in a realistic BS equation can be accurately ap-
proximated by a separable interaction of rank one, how-
ever it provides an easy test case for examining approxi-
mation schemes in a four-dimensional equation of the BS
type. Other authors have also taken advantage of the
convenience of separable potentials in relativistic formu-
lations of two-particle interactions. ' We note that Tjon
and collaborators" have also looked at solutions of
three-body BS equations with separable interaction
terms. Further, there has been an interesting serious
effort' made to generate realistic relativistic separable in-
teractions suitable for insertion in the BS equation.

We choose our separable interaction, Uz, to be

UI~&&~IU
&qIUIq&

where both U and
I g ) are' arbitrary. Thus the BS equa-

tion with this interaction is given by

UIq&&qIU UIq)&~IU
&qIUIg& &gIUIg&

This equation for the fully off-shell T matrix can be
solved exactly; its solution is easily verified to be

I
T' "

&
= UIeo) Ik, )+ Ug,

(ko T, )
(29)

T, )=
&qlVlq& —&qlVgolE)(eolVlq& j'(eolE)

(35)

Examining I
T"') at the on-shell point we find that

(eoI(koIT'") =(eoI(koIUIeo)Iko)

IT, )IT„)+«o I(ko I Vgo
(ko T, )

Using either Eq. (16) or Eq. (17), we then have that

(eo I(ko I
T' ") = (ko I T, ) = (eo I ~„)

=(e, l(k, I

T'"&,

(30)

(31)

Note that IT, )=N, (eoIUIg), where N, is a scalar. The
solution to Eq. (10) for

I T„) is

(kol vip & & gl Vleo) lko)

& qlvlq& —
& qlvgolK)(kolvlq& i(kolK) ' (36)

and again
I
T )=jN ( kIkUoIg). The self-consistency con-

ditions, Eqs. (14) and (15), are used to eliminate IE) and
IK ). Since Eqs. (35) and (36) are independent of the nor-
malizations of IE ) and IK ), we immediately see that
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(col Ulg & & gIU e, ) lko)

&qIUIri& —&riIUg (k, IUIri&(e, IUlri&/(. ,I«, IUlri&
'

This is to be compared to the exact result

(e, T&=
&qIUIq& &—qIUg UIg&

The self-consistent solution for
I T„}is

(ko I UIri & & riI Uleo) Iko)

& ril Ulri &
—

& ril Ugo(eo I Ulri &(ko I Ulri & /(ko I «OI Ulri &

'

(37)

(38)

(39)

which is to be compared to the exact result

(ko T&=
& gIUIg &

—
& gI Ug, UIg &

(40}

Let us now discuss a specific separable interaction and
some numerical results for the s-wave phase shifts. We
write the BS equation for a single partial wave of the
half-shell T matrix with a separable interaction as

and

U,„.„Iq &
= UIq& (42)

factorizcd 9
( I(k I UI

(43)

Thus the difference between the exact and factorized re-
sult is the replacement of U,„„,Iri& by Uf„„„„dIri& in

Eq. (41). Note that this replacement leaves UIri& un-
changed if either the relative momentum is the on-shell
value or the relative energy is the on-shell value. Other-
wise the replacement provides a factorized interpolation
for UI q &. However, one integrates UI g & over all values
of relative momentum and relative energy in Eq. (41}
with the weighting function & gI Ugo. Thus, the accuracy
of the factorized approximation depends upon the
difference in these weighted integrals of UIg&. Notice
that the weighting function has a double pole at the on-
shell point, corresponding to both "nucleons" being on
shell. Therefore the on-shell point is strongly weighted in
the integral. Let us emphasize again that U,„„,Iq & and
Uf r

'
d I r} & are the same at the on-shell point. '

The factorized solution clearly obeys the self-consistency
condition since the ket (koIUIri&, which acts only in

relative-energy space, commutes with the ket (eoIUIri&,
which acts only in relative-momentum space. Note that
with a separable interaction one can solve the self-
consistent equations analytically. In most other situa-
tions one would be forced to solve the coupled equations
using an iterative procedure. In a previously examined

problem it was found that the iterative procedure had
good convergence properties. We have no need to dis-
cuss iterative methods here.

Let us examine the analytic solutions in Eqs. (37)—(40).
We notice that both the exact results for (eoIT& or
(koIT& and the factorized results for IT, ) or f'„) can be
written in the generic form:

T„)= (41)
&gIUIg& —&gIUg, UIg&

'

where (xI is either (eoI or (koI and'

r =v „+ ', fdro'fq'dq "'G . T
7T'

OP

(44)

where E =q +m . All equations here are in the zero
total-momentum frame. The normalization of T is
chosen so that the phase shifts, 51, are given in terms of
the on-shell T matrix, Top, by

p
(46)

The on-shell relative energy is co=0 and the on-shell rela-
tive momentum is p =p, which is defined in terms of the
total center-of-mass energy squared via v's =2E . The

P
range of integration for relative energy is (

—cc, cc ) and
for relative momentum is (0, oo ). We, somewhat arbi-
trarily, choose the separable interaction to be defined ac-
cording to

co p p +lE'
(47)

Our choice of a singular interaction is motivated by the
singular nature of realistic meson-exchange interactions.
Of course, the simple pole nature of the singularities in
V is different from the cut singularities typical of
meson exchange. ' However, we felt that this interaction
might be more interesting than a nonsingular interaction
such as a Gaussian. The coupling constant A, and
"meson" mass p are both adjustable.

The expressions for the on-shell T matrices are easily
determined to be

and

V2

Texact

Vop (i/m)f dfo —f q
. dq V„G

(48)

with the propagator defined as
—1

[(v's /2+co) E+ie—] [(v s /2 co) E—~+is—]

(45)
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p2
T actorized OP

V&
—
(ilier

)f dro f q dq V~G„q(V„&Vo /V&)
(49)

in 5(co yz
—)

A~E .
E —~s /2 i a—

P

We consider two different functions y~, given by y~ '=0
and y' '=E —~s /2. We will consider three functions

AE, defined by
Ip

(50)

(51)

For comparison purposes we will also examine the phase
shifts given by six three-dimensional reductions. It was
pointed out in the Introduction that three-dimensional
reductions are not necessarily designed to give accurate
approximations for arbitrary BS equations. However,
they are the only other approximation techniques against
which comparisons can be made. Additionally, they are
the only viable approximation techniques which can be
used with higher-order BS equations. The three-
dimensional approximations can be viewed as a direct re-
placement of the propagator G by an approximate
propagator G 3Dp. Let us write these in the general form

for the parameters is set by the mass m which is chosen
to be m=4. 9 fm ' for every case. The two extreme
cases for the mass p are chosen to be a light "meson"
mass, @=0.7 fm ', and a heavy "meson'* mass, @=4.9
fm '. For each of these "meson" masses an attractive
and repulsive interaction is shown. The results are shown
in Figs. 1-4.

In Fig. 1 the results for a heavy "meson" mass (@=4.9
fm '} and a repulsive interaction (A, =338 fm ) are
shown. The differences between the exact and approxi-
mate results are shown in two separate ways. First, in
the upper half of Fig. 1 the s-wave phase shifts, 5o, are
shown in radians versus the on-shell relative-momentum,
P, in fm '. The energy range for the figures is from
scattering threshold to one-meson production threshold.
The exact phase shift is represented with the unlabeled
solid line. The factorized approximation phase shifts are
shown with the crosses which, more or less, follow the ex-
act results. The other six solid lines, which all show
phase shifts which are too large, represent the six three-

and

p(2)—
2E (E +&s /2)

A(3)— 1

4E2

(52)

(53}

-0.25 .

-0.50 .

$0 -0.75

V2

Vo& (i/m)f des f'q dq V qG~
(54)

The six combinations formed from a=1,2 and p=1,2, 3
are the same six three-dimensional approximations which
were compared by Woloshyn and Jackson. ' In the
figures, we will use the same labeling convention as was
used by Woloshyn and Jackson, namely: A for a=2,
P=1; B for a=2, P=2; C for a=2, P=3; D for a=1,
P=1; E for a= 1, P=2; and F for a=1, P=3. Names
commonly associated with some of these approximations
are as follows: A —the Gross equation, C—the Ka-
dyshevsky equation, ' and E—the Blankenbecler-Sugar
equation. The on-shell T matrix can be written as

-1 00.

-1.25 .

800-

600 .

400 .

A

F

F
B
F
C

~ a W 4
+ + + + + t t' t f' t' 9 t

for the three-dimensional reductions. Of course, the
relative-energy integration can be done immediately us-
ing the delta function in 6

q
which reduces the integral

to a one-dimensional integral.
Because of the simple form of the interaction in Eq.

(47), the integrals which appear in the expressions for the
on-shell T matrices can be easily evaluated. In all cases
we evaluated the relative-energy integrals analytically
and the relative-momentum integrals numerically. Let us
discuss the results for four different parameter sets whose
results seemed typical of those we examined. The scale

0 1 2 3 4 5

FIG. 1. Plots of s-wave phase shifts, 50, in radians and
effective coupling constants, A, *, in fm ' vs on-shell relative-
momentum, P, in fm . Unlabeled line indicates exact results,
crosses indicate factorized approximation results, lines labeled
A -F indicate three-dimensional reduction results. Parameters
are m =4.9 fm ', @=4.9 fm ', and A, =338 fm
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FIG. 2. Same as Fig. 1 except the parameters are m =4.9
fm ', IM =4.9 fm ', and ~= —249. 5 fm
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dimensional reductions, A -F, discussed above. The or-
dering of the three-dimensional reductions is more easily
seen in the lower half of Fig. 1, which shows effective
coupling constants.

The effective coupling constant A,
' for a given approxi-

mation scheme is defined as the coupling constant which
if used in that approximation would give the exact s-wave
phase shift. These obviously are functions of energy.
The lower half of Fig. 1 shows the effective coupling con-
stants for each approximation scheme vs p. In the plot of
A,

* vs p the exact coupling constant is shown by the unla-
beled solid line which is fixed at the constant value of
A, =338 fm . As in the phase-shift plot, the effective
coupling constant for the factorized approximation is
represented by crosses. The factorized approximation's
A,
' is fairly close to the exact A, for the energies shown.

However, differences at low energies are more easily seen
in the A.

' vs p plots than in the phase-shift plots. The six
three-dimensional reductions are easily distinguishable
and are represented by the labeled solid lines. Notice
that the effective coupling constant can differ substantial-
ly from the exact value even when the phase shifts show
only minor differences, for example, in Fig. 1 all the
phase shifts go to zero as p goes to zero. However, the
A, 's do not all converge to the exact I,. One might also
notice that the A, *'s corresponding to different three-
dimensional reductions show differing amounts of energy
dependence. However, it is the purpose of this article to
compare the factorized approximation to the exact and



72 G. A. CRAWFORD AND R. M. THALER 42

three-dimensional reduction results, not to compare the
three-dimensional reductions among themselves. Thus,
the major point which should be stressed is that the
amount of variability possible within the standard three-
dimensional reductions is much larger than the typical
difference between the exact and factorized approxima-
tion results. Similar conclusions can be drawn from Figs.
2—4 as well.

In Fig. 2 the results for a heavy "meson" mass (@=4.9
fm ') and an attractive interaction (A. = —250 fm ) are
shown. The coupling constant is chosen so that the exact
result has a zero-energy bound state. Thus the exact
phase shift goes to n /2 as P goes to zero. The factorized
approximation underbinds slightly at low energies and
has a resonance just above scattering threshold. The
three-dimensional reductions all overbind and, as such,
all have phase shifts which go to m as p goes to zero. Be-
cause of the choice of a coupling constant which gives a
zero-energy bound state, the phase-shift differences are
accentuated near P equals zero. However, the effective
coupling constants show a behavior very similar to that
from the repulsive interaction in Fig. l.

Figures 3 and 4 show results for a light "meson" mass
(@=0.7 fm '). The results for a repulsive interaction
with A. =20 fm are shown in Fig. 3 while the results for
an attractive interaction corresponding to a zero-energy
bound state (A, = —29 fm ) are shown in Fig. 4. The
effective coupling constants tend to show a larger energy
dependence when a lighter "meson" is considered. How-
ever, the generally good agreement between the factor-
ized approximation and exact results remains. As was
the case for the heavy "meson" mass, one sees that the
factorized approximation tends to underbind slightly at
low energies while the three-dimensional reductions all
overbind. Our conclusions from these studies is that the
encouraging results which were obtained for the Wick-
rotated factorized approximation have been reproduced
in a model problem which does not use a Wick rotation.
Thus, it does not seem unreasonable to expect that the
factorized approximation would provide a useful approxi-
mation scheme for realistic higher-order BS equations.

IV. SUMMARY AND CONCLUSIONS

Our goal in this and in our previous work has been to
develop an approximation technique which can accurate-
ly approximate the solutions of the fully relativistic BS
equation. As such, we have chosen to investigate two
problems for which exact solutions of the BS equation are
obtainable, namely, a one-meson-exchange interaction
and a separable interaction. In both cases and for all pa-
rameter sets examined, our approximation technique has
provided a remarkably good approximation to the exact
BS phase shifts. It should be emphasized that our goals
have not been identical with the goals of previous work
on approximation techniques for the BS equation. In the
late 1960s and early 1970s a great deal of work centered
on finding simple relativistic equations to approximate
the BS equation. However, the goal of that earlier work
was to find an equation which when used with a one-
boson-exchange interaction would provide an approxima-

tion to the one-plus-two-boson-exchange BS equation.
That work was motivated by the fact that it was imprac-
tical at that time to include two-boson-exchange interac-
tions even in a reduced (three-dimensional) relativistic
equation. That restriction is no longer true. Indeed, all
state-of-the-art meson-exchange models of the nuclear
force contain two-boson-exchange (crossed-box) interac-
tion terms. However, it is still not practical to solve the
full BS equation exactly with these interactions. Since
the amount of variability among the available three-
dimensional reductions is large and no easy systematic
corrections are available, it is clear that an accurate ap-
proximation technique for the fourth-order BS equation
is desired. That has been the motivation for our investi-
gations of this new approximation technique.

The BS equation is a four-dimensional equation (three
spatial and one temporal relative coordinates). It is the
fourth dimension, relative time, which differentiates the
relativistic and nonrelativistic two-body problems. It is
the relative-time variable which accounts for retardation
effects arising from the finite speed of propagation of the
interaction, e.g., mesons. In the usual three-dimensional
reductions the relative-time degree of freedom (actually,
the conjugate coordinate, relative energy) is fixed by a
particular ansatz in order to obtain an equation which is
similar in form to the nonrelativistic Lippman-Schwinger
equation. Our approach differs in that we treat the rela-
tive energy and relative momentum in a symmetric
fashion, thereby obtaining reduced equations in both rela-
tive momentum and relative energy. These two separate
approximations are then required to be consistent with
each other for kinematic points where the solution is
fixed simultaneously by both equations. Each of these
two approximations is also required to satisfy an elastic-
unitarity constraint which ensures the reality of the phase
shifts below the inelastic threshold. If we write our ap-
proximation scheme with the aid of a pair of projection
operators of the generic form PE= ~E)(e~l(e~E) and
P„=~K)(k~l(k~K) where ~e) and ~k) are eigenstates of
relative energy and relative momentum, respectively,
then elastic unitarity constrains e and k to be the on-shell
values and self-consistency fixes ~E) and ~E) in terms of
the solution kets, ~T, ) and ~f'&). This was discussed in
detail in Sec. II. Thus our rather general form of approx-
imation is completely fixed by our two constraints, self-
consistency and elastic unitarity. The two equations
which must be solved are both similar in form to the non-
relativistic equation, except that one of them is for a
function of relative energy. The self-consistency require-
ment couples the two equations. Because relative energy
is treated as a dynamical variable, we expected that our
approximation would do a better job of including the
correct retardation effects. Indeed, it was found that the
exact model problem phase shifts were approximated
much better by our approximation than by the three-
dimensional reductions for the two problems which we
examined. The results for the ladder Bethe-Salpeter
equation were shown in our previous work and the re-
sults for a separable interaction were shown in Sec. III of
this work. Thus, we anticipate that our technique could
provide a better means of approximating the solution to
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realistic BS equations than other currently available tech-
niques. Such calculations will, by no means, be simple.
The inclusion of crossed-box diagrams in the somewhat
simpler three-dimensional reduction schemes is already
near the present limits of computational ability. Howev-
er, our approximation technique is still very much
simpler to implement than an exact solution technique.

Finally, a stability property of our approximate solu-
tion was discussed. In particular, our approximation
schemes can be viewed as the determination of approxi-
mations to the T matrix along fixed lines in relative-
energy and relative-momentum space. For our approxi-
mation there is one line in each of relative energy and rel-
ative momentum and they intersect at the fully on-shell
point. The self-consistency condition requires that the
approximations agree at the point where the grid lines in-
tersect. The stability property states that if the approxi-
mate solution is iterated in the exact four-dimensional
equation, then the first iteration will not change the re-

suits on any of the grid lines. This property indicates
that the approximate solution should, in general, provide
a good approximation on the fixed grid lines (which in-
cludes the fully on-shell point). Additionally we have be-
gun investigating correction schemes for the self-
consistent technique. That work will be presented in a
separate publication.

In conclusion, the model problems investigated in this
and in a previous work indicate that the factorized ap-
proximation seems to be a viable candidate for the accu-
rate approximation of phase shifts for realistic Bethe-
Salpeter equations. Such work can check the validity of
relativistic field-theoretic models of the nuclear force and
could provide a starting point for future work on the rel-
ativistic three-body problem.
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