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Validity of the adiabatic rotational model in the case of the hexadecupole operator
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The validity of the rotational model expressions relating the E4 transition probabilities and the
intrinsic hexadecupole moments is examined in the light of the recent data on the inelastic
electron-scattering form factors for the 0+ ~4+ transitions in some medium-mass nuclei.

The rotational spectra in nuclei are usually discussed in
the framework of the unified model of Bohr and Mottel-
son (BM).' The model is characterized by the decoupling
of single-particle and rotational motions; the wave func-
tion of a yrast state in quasirotational nuclei is given, for
example, by the product of the symmetric top wave func-
tion and an intrinsic state describing, respectively, the
collective rotation and the single-particle motion. The
rotational model relates the reduced electric 2 -pole tran-
sition probabilities to the intrinsic 2 -pole moments—
expectation values of the operator Qo with respect to the
intrinsic state —in a simple manner:

'2
J; L Jf

B(EL'J; ~JI )=
0 0 0 ~4IQol@~'

Relation (1) has been used extensively in the past to ob-
tain Nilsson parameters for quadrupole deformations in
various mass regions from the E2 matrix elements result-
ing from Coulomb excitation cross sections or the life-
time measurements. The BM prescription has also often
been invoked to obtain semiquantitative estimates of the
reduced transition probabilities for electric quadrupole
transitions, B(E2;J;+~J~+), in terms of the intrinsic
quadrupole moments, (Qo ), resulting form either phe-
nomenological models, such as the Nilsson model, or mi-
croscopic Hartree-Fock (HF)/Hartree-Fock-Bogolubov
(HFB) descriptions.

In the context of a general discussion of the shape-
collective aspects of nuclear dynamics, a study of the
electric hexadecupole matrix elements is a logical exten-
sion of the studies involving the electric quadrupole
operator. The difficulties associated with the extraction
of the B (E4) values have, however, hindered progress on
this topic in light- and medium-mass nuclei; the E4 decay
branches are unmeasurably small compared to the com-
peting E2 branches. An attempt some time ago at verify-
ing relation (1) by Zumbro et al. was not successful be-
cause of the smallness of the muonic hyperfine splitting
caused by the E4 interaction.

Recently a large number of medium-mass nuclei have
been subjected to inelastic electron-scattering experi-
ments. These experiments have provided significant
data involving electroexcitation form factors covering a
broad momentum-transfer range (with q =0.5 —3.0 fm ')
for the 0+ ~2+ as well as 0+ ~4+ transitions. It has be-

come possible to obtained fairly reliable estimates of the
heretofore unmeasured E4 transition probabilities,
B (E4;0+~4+ ), via an extension of the form factor data
in to the momentum transfer of the photon point,
q =[E(4+) E(0+—)].

In Fig. 1 we present the observed form factors for the
electroexcitation of the yrast 2+ and 4+ levels in the nu-
clei ' ' Ti, ' ' 4Cr, and ' Fe. The occurrence of
the lf7&2 subshell closure in the N =28 isotones is sig-
nalled by a number of observed features such as the
enhanced [E(2+) E(0+)]—separations in the observed
spectra. This empirical feature has also been substantiat-
ed by a large number of microscopic calculations in the
2p lf shell w-hich have predicted, as an obvious implica-
tion of the 1f7~~ subshell closure, a simultaneous reduc-
tion in the various multipole moments of the intrinsic
states associated with the isotones with N =28. The use
of Eq. (1) then immediately suggests dips in the values of
the electric quadrupole as we/I as hexadecupole transition
probabilities in the N=28 isotones compared to the
values of these quantities in the neighboring nuclei with
N=26, 30. Since the electroexcitation form factors for
small momentum transfers can be considered proportion-
al to the corresponding transition probabilities for the
sake of qualitative discussion, one expects the first
maxima (q=0. 8 fm ') of IF(q)l (0 ~2+) and
IF(q) I

(0+ ~4+ ) in the isotones with N =28 to be small
er than the corresponding first maxima in the isotones
with N =26, 30. The results presented in Fig. 1 show
that the observed IF (q) I

(0+~2+ ) do display this trend
in the Ti, Cr as well as Fe isotopes. In sharp contrast to
this, the observed hexadecupole form factors,
IF(q)l (0+~4 ), fail to provide any indication of the
subshell closure at N =28. In fact the 0+ ~4+ form fac-
tor in z~Tiz~ at its first maximum is seen to be larger than
the form factor at its first peak in 22Ti26. The first max-
imum of the (0+ ~4+) form factor in z4Cr2, is also larger
than the first peaks of the form factors for the same tran-
sition in the nuclei 24' Cr26 3o.

In view of this observation one is prompted to question
the efficacy of expression (1) for relating the reduced E4
transition probabilities and the hexadecupole moments of
the intrinsic states. The purpose of this paper is to exam-
ine the validity of the usual rotor-model prescription for
the hexadecupole operator. We first present a quantita-
tive assessment of relation (1) for the quadrupole as well
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FIG. 1. The observed electroexcitation form factors for 0+ ~2+ as well as 0+ ~4+ transitions in some 2p-1f shell nuclei.

as hexadecupole operators by carrying out explicit angu-
lar momentum projection on the HFB variational intrin-
sic states (PHFB} for a number of 2p lf shell nuc-lei. The
results reveal dramatic differences between the quadru-
pole and the hexadecupole operators vis-a-vis the semi-
quantitative reliability of the rotor-model predictions.
An examination of the conditions under which the
Peierls- Yoccoz projection formalism permits the
recovery of the BM prescription offers significant clues
concerning the inefficacy of the model in the case of the
hexadecupole operator. It is seen that the huge mismatch
between the microscopic values of the E4 matrix ele-
ments and their rotor-model estimates arises mostly due
to the large variances or fluctuations of the hexadecupole

operator with respect .o the variational intrinsic states.
We have considered here, as illustrative examples, the

HFB intrinsic states in the nuclei ' ' Ti, ' ' Cr, and
Fe resulting from the realistic effective interactions

given by Kuo and Brown' "for the (2p, &2, 2p3&z, lf, &2,
1f7/2) space. The one-body part of the Hamiltonian for
the valence nucleons is characterized by the observed
'Ca spectrum. We have given in Table I the multipole

moments of the axially symmetric self-consistent states.
We have also presented here the E2 and E4 transition
probabilities for the 0+ ~2+ and 0+ ~4+ transitions, re-
spectively, resulting from explicit angular momentum
projection along with their estimates based on the rotor-
model prescription.

TABLE I. The intrinsic multipole moments as well as the reduced electric transition probabilities
8 (E2;0 ~2+ ) and 8 (E4;0+~4+ ) involving the quadrupole and the hexadecupole operators, respec-
tively, for some doubly even 2p lf shell nuclei. The redu-ced transition probabilities resulting from ex-
plicit angular momentum projection on the HFB intrinsic states (PHFB) have been compared with the
rotor-model predictions (RM). The intrinsic 2 -pole moments have been given in units of b, where b is
the oscillator parameter. The reduced transition probabilities for the (0+~2+) and (0+~4 ) transi-
tions have been given in units of e X 10 ' cm and e X 10 ' ' cm, respectively.

Nucleus [B(E2)]p F Ha [B(E2)]RM [&«4)]PHFB [&(E4)]RM

48T1

"Ti
T1

"Cr
S2C

'4Cr
s2F
54F

16.4
—9.4

15.7
26.3
11.4
28.7
20.8
9.0

4.7
2.5
4.9

10.7
3.7

12.5
8.0
3.0

3.7
1.2
3.6
9.7
1.9

10.6
6.2
1.2

21 ~ 3

18.9
20.0
23.2
15.7
33.7

—19.3
—7.5

9.6
25.6
14.9
5.2

13.7
18.8
13.1
14.1

156.0
79.2

150.4
192.2
92.6

449.2
140.5
22.3
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Using these wave functions the matrix element of the

Qo operator between the states J; and Jf (belonging to
the K =0 band) can be written

Jf L J,
& q'M(o) I Q o I +M(o) &

= (2J, +1)
(2Jf + 1)

J; L Jf J; L Jf
M 0 M 0 0 0

x&eoIQoIeo& .

The expression for B (EL,J;~Jf ) given by Eq. (1) is then
obtained by carrying out the sum

FIG. 2. The B(E2;0+~2+ j as well as B(E4;0+~4+)
values in some 2p 1f shell n-uclei calculated in the framework of
the projected HFB method. The dash-dotted line joins the
rotor-model estimates based on the Eq. (1).

A graphical presentation of the results (see Fig. 2)
shows that the rotor-model predictions are in qualitative
agreement with the PHFB results for the 8 (E2;0+~2+ )

values. In fact, for the nuclei with NW28, even a quanti-
tative agreement between the rotor model and the PHFB
estimates is obtained; the maximum discrepancy is only
about 27% of the latter.

In sharp contrast to the situation for the
8 (E2;0+~2+ ) values, the results presented in Table I
and Fig. 2 indicate a dramatic failure —both in the quan-
titative as mell as qualitative sense —of the rotor-model
prescription as applied to the hexadecupole operator. In
fact the rotor-model estimates are larger than the project-
ed HFB ones by an order of magnitude in most of the
cases considered here.

In what follows we examine qualitatively the reasons
for the inadequacy of the rotor-model prescriptions as ap-
plied to the hexadecupole operator. In the framework of
this model, the state with angular momentum J and pro-
jection M (in the laboratory frame) is given by

(2J +1) ' X I &+I (o)IQo Iq')M, (o) &I

M, , Mf

I
q I(») )=, f DMJ»(Q)R (0)Ie» )d 0,

8m
(4)

where R(Q) is the rotation operator. Employing the

projected wave functions the matrix element

& q(M(o)I Qo I
q(M Io) ) can be expressed as

(2J +1) J( L Jf J; L Jf

)
M 0 M 0 p )tt

where

X f dof (P) & 4oIe 'Q„ I@o)d (cosP), (5)

N =[(2J+1)/2] f doo(p)&(I)oIe 'I@o)(cosp) .

We next consider the matrix element of the Qo opera-
tor between the states of good angular momentum pro-
jected from the microscopic (and usually variational) in-
trinsic states. The latter can be written as

(2J+1) DJ (~)I@ )
8 2 MK K (2) An insertion of the complete set of states between the

operators exp( i pJ ) and —Q„ in Eq. (5) yields

Jf L J,
&+M(o) Qo I+M(o)&

(2J +1) J; L Jf J; L Jf
M 0 M 0 0 0

(2J, +1)
+ M 0 M

J; L Jf
g &+„IQ„I@o& 0 f dof(p)&CoIe 'IC&„&d(cosp) .0 JM p
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This exact expression facilitates an identification of the
steps involved in recovering the prescription embodied in
Eq. (3}. The desired steps follow.

(i) In medium-mass nuclei (J ) varies between 40 and
50. In heavier deformed nuclei the mean value of J is
expected to exceed 100. It is, therefore, quite reasonable
to employ the relation'

N~=[(2J+I)/(J )]exp[ —J(J+1)/(J )](J ) &&1

to obtain

(NJ /NJ )=—[(2Jf+1)/(2J;+1)] .

With this approximation the first term in (7}becomes ex-
actly equal to the rhs of Eq. (3).

(ii) As emphasized by Ripka, ' the overlap functions
(@ol exp) —ij3J»)l@„) have significant nonvanishing
contributions only at the values P-0 and P-n provided
(J ) »1. This automatically restricts the p summations
to just p =0 since

lim do„(P)=fio„.
P~O, n.

The overall magnitude of the second term in (7) is there-
fore mainly governed by the quantities (@„lQii l@o).

(iii) One next needs an additional assumption —and
this has not been appreciated heretofore —that the ma-
trix elements (@olQo l&, , i, ) are sufficiently small.

A siinple measure of the quantitative importance of the
matrix elements (@olQo l&„) is provided by the fluctua-
tions

n = 1p-1h

In Table II we have given the calculated values of the
fluctuations [((Qo) ) —(Qo) ]' and [((Qit) )
—( Qo4 )2]'/2 associated with the quadrupole and the hex-
adecupole operators, respectively, for the variational in-
trinsic states in sotne 2p-1f shell nuclei. We find that the
fluctuations associated with the quadrupole operator are
always less than 23% of the magnitude of the (Qo)
values for the isotones with NA28, and are about 40% of
the magnitude of the ( Qc ) values in the cases with

N =28. On the other hand, in the case of the hexadecu-
pole operator, the fluctuations are comparable to—and
in some cases even larger than —the magnitudes of ( Qo )
values themselves.

These results explain the anomalous behavior of the
hexadecupole operator vis-a-vis the rotational model;
whereas the reasonably small values (lying in the range
0.01—0.42) of the ratio [((Qo) ) —(Qo) ]'/ /l(Qo)l
still permit the recovery of the rotor-model limit to a
significant extent, a similar situation is not realized in the
case of the hexadecupole operator since the large fluctua-
tions of this operator (indicating significantly non-
negligible magnitudes of the individual matrix elements
(@„lQol4o)) inualidate the assumption involved in step
(iii) above. The results given here also rationalize the no-
ticeably reduced quantitative efficacy of the model for ob-
taining the E2 transition probabilities in the nuclei with
N =28 that was noted earlier in terms of an appreciable
increase (by nearly a factor of 2) in the fluctuation of the
quadrupole operator in these nuclei. It may be men-
tioned here that the relative smallness of the fluctuations
of the Qo operator for intrinsic states obtained with real-
istic effective interactions is not entirely unanticipated in
view of the (well-known) quadrupole-quadrupole (qq)
dominance' of the latter.

It turns out that a replacement of the realistic effective
interactions by schematic ones such as the qq interaction
(often used in the structural studies in heavy nuclei) does
not lead to significantly reduced fluctuations of the Qc
operator, and therefore does not support in general the
application of the rotor model for this operator. We have
given in Table II the values of the Qo fluctuations for the
SU(3) eigenstates for the nuclei considered here. The ra-
tio [((Qo) ) —(Qo) ]' /l(Qo)l is still quite large (ly-

ing in the range 0.4-2.1) although the quadrupole fluc-
tuations are rigorously zero in this case.

In summary, we have sought to examine here the
reasons underlying the observed inapplicability of the
usual rotor-model prescriptions in the context of the hex-
adecupole collectivity in medium-mass nuclei. It turns
out that an important factor that characterizes the
differences between the quadrupole and the hexadecupole
operator is the significantly larger magnitude of the fluc-
tuation of the latter with respect to the (variational)

TABLE II. The fluctuations associated with the quadrupole and the hexadecupole operators for the
variational intrinsic states in some 2p lf shell nuclei resu-lting from the Kuo-Brown (KB) effective in-

teraction {Ref. 10). The last column gives the fluctuations of the hexadecupole operator associated with
the SU{3)eigenstates for various nuclei.

Nucleus

48T1

"Ti
T1

"Cr
s2C

'4cr
s2F

54Fe

[ &(g2 )2) & g2 )2]l/2

3.8
3.9
3.5
0.3
4.6
3.5
4.5
3.9

[&(g')') —&g')']'"
20.2
16.9
20.8
23.6
22.7
21.2
22.8
23.5

[&(Qo) ) &Qo) ]SU(3)

13.4
08.5
11.2
14.7
14.8
12.7
15.9
15.8
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intrinsic states resulting from the realistic effective
interactions —a feature that greatly hinders the recovery
of the rotor-model limit in a microscopic perspective.
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