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Centroids of the effective nucleon-nucleon interaction for the mass region A =28—64 are extract-
ed directly from experimental single-particle spectra, by comparing single-particle energies relative
to different cores. Uncertainties in the centroids are estimated at approximately 100 kev, except in
cases of exceptional fragmentation of the single-particle strength. The use of a large number of in-

ert cores allows the dependence of the interaction on mass or model space to be investigated. The
method permits accurate empirical modifications to be made to realistic interactions calculated
from bare nucleon-nucleon potentials, which are known to possess defective centroids in many
cases. In addition, the centroids can be used as input to the more sophisticated fitting procedures
that are employed to produce matrix elements of the effective interaction.

I. INTRODUCTION

We have recently presented a simple technique for ex-
tracting useful information about effective interactions
from experimental single-particle spectra. ' Interaction
centroids are determined from single-particle spectra by
comparing single-particle energies relative to different in-

ert cores. In this paper we present a significant extension
of the formalism of Ref. 1, as well as a full-scale applica-
tion of the technique to the mass range A =28—64. The
aim is both to illustrate the technique and at the same
time to provide reliable information about effective in-

teractions near the top of the sd shell and bottom of the

fp shell, thereby supplementing information available
from other sources.

Values for individual two-body matrix elements of the
interaction can, of course, be deduced directly from the
spectra of nuclei with two nucleons relative to an inert
core. For a recent example and full discussion of the
difficulties inherent in such methods, see the review of
Daehnick. The present approach is in many cases com-
plementary to that of Daehnick (since diff'erent data are
involved —single-particle spectra rather than two-
particle spectral. But, in addition, the technique allows
information to be extracted from situations in which the
method of Ref. 2 cannot be used, either due to a lack of
necessary spectroscopic data or because of excessive frag-
mentation of the two-particle states through configur-
ation mixing within the model space.

The reasons for using a purely empirical approach,
such as those of Refs. 1 and 2, or even a full fit to experi-
mental energy levels, are self-evident. It has proven im-
possible to construct an effective Hamiltonian which is
both sufficiently accurate for use in spectroscopic calcula-
tions and also firmly based theoretically. The deficiencies
of realistic interactions such as those produced by Kuo
and Brown ' are well known: when used in shell-model
calculations for nuclei towards the rniddle of the sd shell,
the Kuo interaction shifts whole bands of levels relative

to each other; similarly the Kuo-Brown interaction
for fp-shell nuclei produces spectra in which levels in-
volving nucleons not in the f7iz orbit appear too low in
excitation relative to levels involving only f7/p nu-

cleons. ' These defects can be traced to incorrect cen-
troids for the interaction between nucleons in different
single-particle orbits and the consequences are particular-
ly acute when the model space spans two major shells.
The agreement between calculated spectra and data can
be substantially improved by an empirical modification of
these centroids. One result of the present work is that
such adjustments can be made more reliably.

An alternative approach to effective interactions is
favored by Wildenthal and co-workers '" matrix ele-
ments of the effective interaction are regarded as parame-
ters to be adjusted in a fit to experimental energy levels.
This approach has met with considerable success in the
sd shell, where it is possible to perform shell-model calcu-
lations in which all Pauli-allowed sd-shell basis states are
retained. However, it is difficult to extend this method to
heavier nuclei. One of the problems is that the fitting
procedure, which relies on an iterative technique, is both
difficult and time consuming in large model spaces. It is
therefore advantageous to use as input an interaction
with accurate centroids, since this will greatly reduce the
number of iterations required to produce convergence
and should also help prevent convergence to a spurious
solution. The technique illustrated here can thus be re-
garded as providing accurate starting values for large-
scale fits to energy levels.

II. SUMMARY OF TECHNIQUE

The equations used to compute centroids from single-
particle energies can be derived in several ways ' their
structure is in any case intuitively obvious, so no further
details of their derivation will be offered here.

Let Ao represent a closed-shell nucleus with N=Z,
and A 0 a second inert core which comprises A 0 and the
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orbit p completely filled with X =2j +1 neutrons and
an equal number of protons, i.e., Ao= Ap+2%p Rela-
tive to the core A o, the energy of a single neutron in any
orbital q is eq( A o )=e&( Ao)+(N —5 )V '(pq) (9)

the roles of protons and neutrons are reversed, and Eqs.
(7) and (8) are replaced by

eq( A o ) =e"( Ao)+(2N —5 ) V(pq), (1)
and

where E"( Ao) is the energy of the same neutron with
respect to the core Ao. If q refers to an orbital below the
Fermi energy of the core A 0, then e ( A o ) is to be inter-
preted as a suitably defined single-hole energy. The
V(pq} are interaction centroids defined by

g(2J+1)(2T+1)V (pq)

V(pq}= g(2J + 1)(2T+ 1)
(2)

g(2J+1)V (pq)
J

g(2J+1) (3)

and

g(2J+1)V (pq)

V "~(pq) =
g(2J + 1)

(4)

the sums over J include matrix elements for fixed T and
all T for the isospin and neutron-proton centroids, re-
spectively. Any two of the centroids can be regarded as
independent; the remainder are given by the following re-
lationships, which can be derived by explicitly evaluating
the sum in Eqs. (2)—(4):

V(pq) = [ V "~(pq)+ V '(pq)]/2

= [ V (pq)+ 3 V '(pq)]/4

for pAq, and

(4j +1)V(pp) =(2j +1)V "~(pp)+2j V '(pp)

=(j+1)V (pp)+3jV '(pp)

for p =q, with j =j .
Consider the case in which the cores Ao and A o differ

through N neutrons occupying the orbit p, so that
A o

= Ao+N (neutrons), with NWZ for one of the cores
and N =Z for the other. Relative to these two cores, a
neutron in the orbital q has energies related by

eq( Ao)=eq( Ao)+(N —5 ) V ='(pq),

whereas a proton in orbit q has energies given by

e~( A o) =e ( Ao)+N V "~(pq) .

(7)

(8)

If, on the other hand, the excess nucleons occupying or-
bital p are all protons, so that AO=Ao+N (protons),

where VJr(ij }=(ij
~ V~ij; JT) is a diagonal matrix ele-

ment of the effective interaction for spin J and isospin T.
If we also consider cores with neutron or proton

excesses, then further centroids can be extracted. These
are defined by equations similar to Eq. (2):

e'( A o }=e"( A o ) +N V "~(pq ) . (10)

for a single particle and a single hole, respectively. In-
teraction centroids may then be extracted using Eqs.
(7)—(10). We prefer to use in Eq. (1) the binding energy of
the state of the nucleus (A, +1) with largest single-
particle strength, rather than the center of gravity of the
single-particle strength; this point is further discussed in
Sec. IV.

There are, however, a number of complications in the
application of Eq. (11). One problem is the effect of the
Coulomb force on the value of e"( A, ) deduced from Eq.
(11). Since the intention is to extract centroids of the nu-
clear interaction, the effects of the Coulomb interaction
must be eliminated. The method we have used to do this
is discussed in the next section.

There is a further difficulty when the core has NWZ.
Assuming that the excess nucleons are neutrons in orbit
p, then single-particle states can be constructed from the
core by adding a neutron to any orbit q above the neutron
Fermi level or by removing a neutron from the orbital p.
The single-particle energy of such a state can then be
used directly in Eqs. (7) and (10). Further single-particle
states are formed by removing a proton from below the
proton Fermi level of the core or placing a proton in the
orbital p; the single-particle energy of these states can be
inserted directly into Eqs. (8) and (9). Other single-
particle states can be constructed by adding protons
above the neutron Fermi level or removing neutrons from
below the proton Fermi level. In general, however, this
process does not produce a state of unique isospin; the
single-particle state is, in fact, a linear combination of a
state of isospin T„„+—,

' (the analog of a single-particle
level of the neighboring nucleus) and a state of isospin
T„„,——,

' (the corresponding antianalog state}. The ener-

gies of the two physical states, suitably combined with
the appropriate isospin coupling coefficients, yield an esti-
mate for the single-particle energy eq(A, ) which may
then be used in Eqs. (7)—(10).

III. APPLICATION TO NUCLEI WITH A =28 —64

As an extended application of the proposed technique,
we discuss single-particle states in the mass range
A =28—64, with the orbitals 2s&&z, ld3&z, 1f7&z, and

2p3/p considered active. The ground states of Si, S,
Ca, Ni, and Ge are therefore assumed to comprise

closed shells; in addition, the ground states of Si, S,
Ca, and Ni are regarded as neutron-rich inert cores.

Furthermore, Si is also taken to be good closed-shell nu-

The basis of the proposed technique is that the energies
e ( A, ) for the core A, should be deduced from experi-
mentally determined binding energies B ( A, J ) using

e ( A, )=+[B(A, +1,J"=j") B(A—„O+)]
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TABLE I. Values (in MeV) of single-particle energies E'q( A )

(upper) and e~(A, ) (lower) extracted using Eq. (11) and experi-
mental binding energies from Refs. 14—17.

A,

28

30

32

34

36

40

56

60

64

S 1/2

—8.47
—2.75

—10.61
—7.30

—15.04
—8.87

—12.19
—12.99'
—13.10
—18.11
—10.85
—13.67'
—15.81
—19.83
—10.09

—12.25

d3/2

—7.20
—1.36
—6.59
—4 33'
—8.64
—2.28
—7.54
—9.80
—9.89
—8.39

—15.64
—8.33

—13.69'
—16.17
—20.40
—10.73

—12.70

—4.85
0.70

—3.46
—1.20'
—5.71

0.41
—2.43(5)

—4.30
—3.86'
—8.36
—1.09
—9.95
—9.63

—16.43
—7.17

—14.96'
—9.53

P3/2

—3.54
1.60

—3.05
—0 71(5)'
—5.42

0.57

—3.66

—6.42
0.63

—5.15
—5.60'

—10.25
—0.74

—11.39
—4.80

—15.03(40)'
—5.02(27)

'Averaged over states of different isospin (see text).
Generated from the energy of an analog state and computed

Coulomb energies (see text).
'Binding energy of 'Ge from systematics (Refs. 14 and 15).

cleus, with excess neutrons in both the s, &2 and d3/p or-
bits; the formalism of the previous section, when suitably
modified, also applies in this case. The possibility of the
nucleus Si being a doubly magic nucleus was the subject
of a recent experimental investigation. ' Its use as a core
permits a significant extension to the range of values of
(Z, N) that can be probed.

The single-particle and -hole energies computed using
Eq. (11) and measured binding energies' ' are listed in
Table I. The numbers in parentheses are uncertainties in
the single-particle energies due to uncertainties in mea-
sured ground-state binding energies; they are shown only
where they exceed 50 keV. In cases where no spectro-
scopic information is available as a guide, assumptions
have been made as to which observed excited states cor-
respond to single-particle excitations. In addition, there
still exists an unfortunate lack of reliable data for nuclei
around Si. For some excited states in neighboring nu-
clei we have assumed spin-parity assignments which are,
at best, tentative; some single-particle energies for
A, =34 must therefore be used with appropriate caution.
The ground states of S and Ca are isobaric analogs of
the Si and S ground states, respectively, and can
therefore be used as proton-rich inert cores. The relevant
single-particle energies are given in Table II. Analysis us-
ing these energies provides a second estimate of centroids
found using the neutron-rich cores, and in a few instances
provides additional information.

As explained above, use of Eqs. (8) and (9) requires the

TABLE II. Values (in MeV) of single-particle energies
e'( A, ) (upper) and 6q( A, ) (lower) for proton-rich cores. Ener-

gies are extracted using Eq. (11) and experimental binding ener-

gies from Refs. 14—17.

A,

30

36

S I /2

—13.05
—4.40

—18.96(7)

—10.13'
—0.28(5)

—14.79(5)
—2.56

'Averaged over states of different isospin (see text).

separation of the nuclear and Coulomb contributions to
e"( A, ). In applications of Eq. (8) the cores Ao and Ao
have the same Z, as do the two single-particle nuclei, so
that their Coulomb energies cancel and no further correc-
tion is necessary. This assumes that the Coulomb energy
is independent of mass, which is only approximately true;
the same assumption is in any case made when extracting

In the application of Eq. (9), however, the Coulomb
energies do not cancel. For the case N =Z, removal of
the Coulomb energy EP( A, } from the experimentally
determined values of e ( A, ) should produce the corre-
sponding neutron energy E"( A, ). In other cases, with
NWZ, we have assumed that the Coulomb energy is
equal to EP(A, ) for the N=Z core with the same Z.
Again, this assumes mass independence of the Coulomb
energy. A check on the results is provided by the fact
that, if the Coulomb correction is calculated with
sufficient accuracy, the value of e for a neutron-rich core
should be equal to the neutron energy e' for the corre-
sponding proton-rich core; an average difference of 100
keV is found for the four cases for which such a compar-
ison may be made.

Interaction centroids extracted using Eqs. (7)—(10}and
the single-particle energies of Tables I and II are present-
ed in Tables III and IV. Centroids for different pairs
(Ao, Ao) are shown separately in order to illustrate any
dependence on mass or model space. Where the same in-
formation is available from both neutron- and proton-
rich cores, the two values agree extremely well and aver-
ages are tabulated. Two values listed in Table I have
been computed from the binding energies of isobaric ana-
log states, with Coulomb energies estimated as in Ref. 18,
since the necessary information about the parent states is
not available. Except in one instance, the value of V(pq)
has been computed from the corresponding centroids V "~

and V =' together with Eqs. (5) or (6), rather than ex-
tracted directly using Eq. (1). It is easily shown that the
value of V(pq) from Eq. (1) with cores (A &, A3), where
A, and A3 are adjacent cores with N=Z, should be
identical to V(pq} calculated using V ' with cores
(A, , A2~ and V "~ with cores (Az, A3), where A2 is the
intervening neutron-rich core; this is confirmed by calcu-
lation.

It has previously been established' ' that particle-hole
states of isospin T„„,——,

' (with T„„WO) are not well de-
scribed by models such as the weak-coupling model of
Bansal and French. ' One might therefore expect that
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Ap, Ap

s&/, -s&/2 interaction
V(ss)' V "~(ss) V '(ss)

28,30
30,32
34,36

—2.23
—2.16

—2.28
—2.23

—2.14
—2.02
—1.36

Ap, Ap

d 3/2 d 3 /2 interaction
V(dd )' V "~(dd ) V ='(dd)

30,34
32,36
36,40

—0.92
—1.05
—0.95

—1.37
—1.53
—1.44

—0.32
—0.42
—0.30

TABLE III. Centroids of the interactions V(pq) with p =q
(in MeV).

since the energy difference is ultimately divided by fac-
tors such as N and 2N, the uncertainty in the centroids
due to fragmentation is further reduced.

Nevertheless, core breaking leads occasionally to
significantly larger uncertainties. In order to ascertain
the extent to which fragmentation affects the interaction
centroids, we have also calculated single-particle energies
using the center of gravity of the single-particle strength
in Eq. (11),whenever sufficient data exist. The results are
unfortunately sensitive to states which carry only a few
percent of the strength but lie several MeV above the
state of largest strength. Since these states may be popu-

Ap, Ao
f7/3 f7/3 interaction

V(ff)' V"'(ff) V T= 1(ff)

TABLE IV. Centroids of the interactions V(pq) with pAq
(in MeV).

40,48
48,56

—0.68
—0.43

—1.07
—0.84

—0.23
0.03 Ap, Ap

s I /2 -d 3/2 interaction
V(sd)' V "~(sd) V '(sd)

Ap, Ao
p3/2-p3/2 interaction

V(pp)' V"'(pp) V' '(pp)

56,60
60,64

—0.74
—0.62(6)

—1.02
—0.91

—0.37
—0.24(13)

'Calculated from V "~(pq) and V '(pq) using Eqs. (5) or (6).

28,30
30,32
34,36
30,34
32,36
36,40

—0.59
—0.13
—0.37

—0.25
—0.50

—1.47
—'1.01
—1.18
—1.22
—1.01
—1.28

0.31
0.74
0.44

0.51
0.29

centroids derived from the energies of levels of mixed iso-

spin would be less reliable than centroids from states of
isospin T„„+—,

' only; there is, however, no evidence of
this in Tables III and IV.

IV. DISCUSSION OF THE RESULTS

Ap, Ap

30,34
32,36
36,40
40,48
48,56

—0.36
—0.31
—0.37
—0.23

—1.07
—1.02
—0.98
—0.84

d 3/3 f7/3 interaction
V(df)' V "~(df) V T =l(df)

0.26
0.35
0.40
0.24
0.39

The accuracy of the interaction centroids presented in
Tables III and IV (and also their interpretation) depends
on the extent to which the ground states of the cores ap-
proximate closed-shell configurations. The assumption of
shell closure, as indicated by the excitation energy of the
first excited state of the core nucleus, is apparently
reasonable in cases such as ' Ca, Si, and S where
this energy exceeds 3 MeV, but certainly questionable for

Si, Ni, and Ge, where the energy is less than 2 MeV.
A further indicator is the magnitude of the energy gap at
the Fermi surface, which can be ascertained from Table I.
This suggests that the N=Z nuclei S, Ca, and Ni
form the best inert cores, and that the assumption of pro-
ton shell closure is also valid for Ca.

The effect of core breaking is also evident from the de-
gree of fragmentation of the single-particle states. In
determining the single-particle energies of Table I, we
have used the binding energy of the state of the nucleus
(A, +1) with largest spectroscopic strength, rather than
the center of gravity of the single-particle strength com-
puted from measured spectroscopic factors. The latter
energy might be considered more appropriate in some
circumstances, but frequently it cannot be determined
since the relevant transfer reactions are not possible. The
center of gravity typically lies about 0.3 MeV above the
energy used, but since the centroids are determined by
differences in single-particle energies this systematic error
should, in most cases, cancel on average. Moreover,

Ap, Ao
f,/, p3/3 interaction

V(fp)' V"'(fp) V T=l(fp)

40,48
48,56
56,60

—0.31
—0.17
—0.09

—0.78
—0.64
—0.59

0.16
0.30
0.42

Ap, Ap

s l /2 f7/3 interaction
V(sf)' V "7'(sf) V T=l(

28,30
30,32
34,36

40,48
48,56

—0.13
—0.31

—0.03
—0.19

—0.95
—1.13
—0.94
—0.62
—0.77

0.70
0.52

0.56
0.40

Ao, Ao

d 3/2 p 3/2 interaction
V(dp) V "~(dp) V ='(dp)

32,36
32,40
36,40

56,60

—0.13
—0.69
—0.49

0.44

Ap, Ao
s, /2-p3/2 interaction

V(sp)' V "~(sp) V '(sp)

28,30
30,32

56,60

—0.45
—0.49

—1.15
—1.18
—0.54

0.24
0.21

'Calculated from V "~(pq) and V ='(pq) using Eqs. (5) or (6).
bExtracted directly using Eq. (1).
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TABLE V. Centroids (in MeV) of the interactions of Kuo
and Brown (Refs. 3 and 4).

SS

sd
dd

ff
fp
pp

df
sf

V(pq)

—2.57
—0.65
—0.74
—0.44
—0.32
—0.86
—0.42
—0.19

V "~(pq)

—2.88
—1.18
—1.25
—0.71
—0.54
—1.12
—0.79
—0.53

V T =
1(pq)

—1.95
—0.12
—0.07
—0.13
—0.10
—0.52
—0.05

0.14

lated in nucleon transfer reactions through two-step pro-
cesses rather than direct transfer, a DWBA analysis is
inappropriate and the resulting spectroscopic factors are
meaningless. The contribution of such states to the
single-particle energy, which is often a few hundred keV,
will, in these circumstances, be entirely spurious. This
further analysis reveals that the single-particle strength is
highly fragmented over several states in one case only.
The s, &2 hole energy relative to S is shifted by approxi-
mately 1.7 MeV by this fragmentation and, as a result,
several estimates of the s, &2-s, &2 centroids are altered by
a considerable amount. Otherwise, fragmentation shifts
the single-particle strength by up to 0.8 MeV, with the
center of gravity being on average 280 keV above the lev-
el of largest spectroscopic factor. The resulting change in
the interaction centroids is occasionally as large as 0.8
MeV, although the average change is only 120 keV. The
lack of sensitivity to fragmentation is thus confirmed for
the majority of centroids.

Interaction centroids with p =q (displayed in Table III)
are relatively insensitive to the choice of cores. One ex-
ception is V ='

(ss); although there exists some uncer-
tainty about single-particle energies for A, =34,
differences apparent in Table III are probably significant.
The model-space dependence of V ' (ff) has already
been noted, although in a different context. The values
of V "~(pq) for pAq, shown in Table IV, also display little
dependence on (Ap, A p), apart from a general reduction
in magnitude with increasing mass. This is particularly
noticeable for the s, &2-p3/2 interaction, where the spread
in values of (Ap Ap) is largest. There is substantially
more sensitivity in the results obtained for V ='(pq),
where variations of up to 0.5 MeV are found; nonetheless,
the average variation is considerably less than this, and
does not appear to be correlated with mass.

For comparison, centroids of the realistic interactions
of Kuo and Brown ' are presented in Table V. Different
centroids are appropriate to different model spaces, and
should therefore be compared with values from Tables III
and IV for an appropriate combination of cores. The
purely sd-shell interaction of Kuo and Brown is calculat-
ed for an ' 0 core, whereas fp-shell and cross-shell ma-
trix elements include core-polarization corrections for a

Ca core and are intended for nuclei above A =40.
Comparison reveals no strong trends, although the Kuo-
Brown centroids V "~ tend to be less attractive by about

TABLE VI. Centroids of fitted interactions (in MeV). The
interaction matrix elements are from the references listed in the
footnotes.

V(pq)

ss —2.24'
sd —0.59'
dd —0.95'

V "~(pq)

—2.47'
—1.15'
—1.40'

—1.77'
—0.03'
—0 35'

V '(pq)

ff —0.69;—0.56' —1.06; —0.84'

fp —0.31' —0.71'
pp

—0.45 —0.93
df —0.28" —1 Q1" —Q 98'

dp —0.97', —0.643

sf —0.75'

'Reference 11.
Reference 23.

'Reference 28.
References 8 and 23—26.

'References 8 and 24 —26.
Reference 29.
Reference 24.

"Reference 26.
'Reference 25.
'Reference 26.
"Reference 27.
'References 25 and 26.

0.21d' 0.24c
—0 13'+0 10'
—0.23g' —0.71"'+0 19'

+0.45"

200 keV, whereas the centroids V ' are on average 200
keV more attractive. There are, however, some
differences which are substantially larger, illustrating the
previously described defect of these realistic interactions.

The accuracy (and consequent utility) of the present
technique is best illustrated by comparing with effective
interactions from large-scale fits to energy levels. The
centroids displayed in Table VI are restricted to fits in
which matrix elements were allowed to vary without ex-
cessive constraint and in which the fitted data spanned a
reasonable range of nuclei. The sd interaction of Wil-
denthal" should be compared with centroids from the
present work averaged over A =28-40. The fitted in-
teraction is mass dependent; we have computed centroids
appropriate to A =34. Comparison with values from
Tables III and IV shows excellent agreement, although
V '(sd) from the present work is consistently more
repulsive by about 400 keV. There has been no compara-
ble investigation of the fp-shell interaction. Centroids
listed in Table VI were compiled from several sources in
which fits were performed in smaller subspaces or for a
limited range of nuclei in the full space. Values have
been averaged where this is meaningful. Comparison
with the present results for ( A p, A p ) = (40,48) seems
most appropriate, except for centroids from Refs. 29 and
28 which should be compared to (56,64) and perhaps an
average for A =40—56, respectively. The agreement is
once again impressive; the spread of fitted values of
V '(pp) highlights the sensitivity of the T =1 centroids
to the model space (or simply to the choice of data to be
fitted). Information for interaction matrix elements con-
necting different major shells is even more limited.
Values taken from Ref. 27 should be compared to present
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results averaged over A =32—40; for the remaining cen-
troids, use of (Ao, Ao)=(40,48) is more appropriate.
Where comparison is possible, excellent agreement is
found.

V. CONCLUSION

We have shown how average values for two-body ma-
trix elements of the effective interaction can be obtained
empirically from single-particle spectra: centroids of the
interaction are deduced by comparing single-particle en-
ergies with respect to different inert cores. In the mass
range under investigation there is a large number of as-
sumed inert cores; this often allows a given centroid to be
extracted using more than one combination of cores, so
that the model-space dependence of the effective interac-
tion can be studied. The interaction apparently becomes
less attractive on average with increasing mass, although
the T=1 centroid is evidently more sensitive to the
effects of core polarization.

The centroids are estimated to be accurate to about
100 keV, in general, although the uncertainty may exceed
this by a significant amount in special circumstances.
One particular difficulty, whose effect cannot be
quantified, is the incorrect identification of the single-
particle states due to a lack of spectroscopic information.
Two further sources of error are inaccuracies in the ex-
traction of the Coulomb contribution to nuclear binding
energies and exceptional fragmentation of the single-
particle strength. Fragmentation is unfortunately
difficult to avoid. Use of centers of gravity calculated

with measured spectroscopic factors, as in the previous
section, is, in fact, inconsistent. We should also use the,

center of gravity of the closed-shell configuration in place
of the ground state of the core and, moreover, include
single-particle strength built on excited states of the core
nucleus; these two effects will tend to cancel. Compar-
ison of the present results with centroids of fitted interac-
tions shows that surprising accuracy is achieved without
the need to correct for fragmentation of the single-
particle strength —in fact, the overall agreement is better
if fragmentation is ignored.

The interaction centroids, which are responsible for
the gross properties of nuclei, are an important measure
of the effective interaction. Realistic interactions, which
are calculated from bare nucleon-nucleon potentials, are
known to suffer from inaccurate centroids in many cases.
Nonetheless, one can greatly enhance the predictive
power of realistic interactions by performing ad hoc ad-
justments to the defective centroids. One aim of the
present work is to allow such adjustments to be made re-

liably, by providing, in a straightforward manner, empiri-
cal estimates for the centroids. The success which can be
achieved is demonstrated by the shell-model calculations
of Refs. 8 and 9.
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