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The quantum correction to the Vlasov equation is considered using the Wigner transform of the

time-dependent Hartree-Fock equation without truncation in A order. Decomposing the Wigner

function in terms of test particles with the form factor in a phase space, quantum extension of the

Vlasov equation determines the equation of motion of the test particle which follows classical dy-

namics. The discrimination between the quantum and classical limits is related to a density matrix

condition which constrains the distribution of test particles.

i' =(T+ U)ttt
Bt

Here the wave function of the system, which should be
antisymmetric due to the Pauli principle, is represented
by a single Slater determinant built with occupied single
nucleon orbitals. In a Slater determinant, the density ma-
trix has the property of projection operator, i.e.,

p'=p (2)

and the one-body density matrix evolves according to,
from Eq. (1),

iA p =[Hp] .Bp
at

(3)

Here 0 =T+ U is the TDHF single particle mean-field
Hamiltonian.

Defining the Wigner transformation of an operator 0
0 (r, p)= Jd se 't"r"(r+s/2, o ~o~r —s/2, tr')

= Jd3r~d3r2e ' ' (r~, o'~O~r~, o'&

r)+12
X5 r—

2
(4)

I. INTRODUCTION

The time-dependent Hartree-Fock (TDHF) approxima-
tion has been used extensively in the past to analyze
heavy-ion collisions at low to moderate energies. Howev-
er, at higher energies, we should consider collision terms
which have been neglected in TDHF. In extended
TDHF, two-body collisions are incorporated through a
titne-dependent density matrix (TDDM) (Refs. 1, 2, and
3) with TDHF mean-field propagation. There is difficulty
in describing intermediate energy collisions which is re-
lated to the fact that TDHF is described in a con-
figuration space and that the nucleon-nucleon collision
induces abrupt momentum change of the nucleon in-
volved in intermediate energy collisions. The time-
dependent Ulasov equation, which is described in a phase
space, can be derived as a semiclassical approximation to
the TDHF equation. In TDHF, the single nucleon orbit-
als 1b, evolve according to

where cr represents the spin-isospin quantum number,
then a Wigner transform of density matrix p,

p(r, r', t)= g (r, o ~p~r', a. ) = g g'(r, t)g (r', t),

becomes

4f(r, p, t)= Jd se '&'~"p(r+s/2, r —s/2, t) .

Here the factor of 4 is used to represent the spin-isospin
degeneracy and the single nucleon orbital index a
represents all the quantum numbers including the spin-
isospin quantum number 0.. The phase space density
f(r, p, t), which is called the Wigner function, can be
defined as

f (r, p, t)= f(r, p, t)
4

(2trA)

1
d se 't"~ p(r+s/2, r —s/2, t) .

(2srk)

Notice here that the Wigner function f (or equivalently

f) can become negative at some region in the six-
dimensional phase space. In a classical limit, i.e., A~O
limit, a Wigner transformation of the density matrix con-
dition, Eq. (2), gives the condition on f(r, p, t) as

f '=I

Due to this condition the Wigner function in a classical
limit cannot have a negative value and thus becomes a
semiclassical distribution function; f can be only 1 or 0
due to the condition of Eq. (8). A Wigner transformation
of the TDHF equation (3), in a classical limit, gives a
time-dependent Vlasov equation for the time evolution of
the Wigner function f (r, p, t) as
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—f(r, p, t)+[V H(r, p)] Vf(r, p, t} [—VH(r, p}] V f(r, p, t)=0, (9)

where V and V~ mean the gradients in r and p space, re-
spectively, and

2

H(r, p) = + U(r, p)2' (10)

is the Wigner transform of the TDHF mean-field Hamil-
tonian H = T + U with an effective mass m *.

Using the phase space density f (r, p, t), it becomes
clear how to incorporate the mean-field propagation with
collision terms. The time-dependent Vlasov equation, re-

placing the right-hand side of Eq. (9}by the Boltzmann-
Uehling-Uhlenbeck (BUU} collision integral, has been
used extensively in the past to analyze heavy-ion col-
lisions at intermediate energies (details can be found in

Ref. 4). One of the problems with the Vlasov prescrip-
tion is related to the classical approximation. Therefore,
quantum effects have been neglected in the Vlasov
method except for the approximate inclusion of the Pauli
principle through Eq. (8). For a static nucleus, the self-
consistent density in Vlasov method with a momentum-
independent local mean-field potential has a sharp sur-
face ' in contrast to the TDHF case in which the density
ty has a long tail. Quantum extension of the Vlasov
prescription has been sought for a long time. Gregoire
et al. have obtained a diffuse surface by mapping the
phase space density with Gaussian packets in the classi-
cal Vlasov equation with a local mean-field potential.
Their one-dimensional slab calculations show that there
are very close similarities with TDHF. They have not
considered higher-order terms in A and claimed that the
diffuse surface comes from mocking up the quantum
effects through Gaussians with finite width. Kohl,
Schuck, and Stringari have considered higher-order
corrections in A' analytically for a spherical harmonic os-
cillator with separable quadrupole-quadrupole and
octupole-octupole time-dependent interactions. Since un-

derlying time-dependent forces are separable and are not
self-consistent, the quadrupole mode in this model has no
quantum correction and the octupole mode has only

second-order correction in A.
The purpose of this paper is the systematic quantum

extension of the Vlasov equation, Eq. (9), starting from
the exact Wigner transform of the TDHF equation (3).
Full Wigner transform of TDHF, which is a representa-
tion of TDHF in phase space, and its general properties
are summarized in Sec. II. In Sec. III the so-called test
particle method is discussed to solve the phase space rep-
resentation of TDHF. Numerical solutions for a nucleus
using this quantum extension of the Vlasov prescription
are compared with the TDHF solutions in Sec. IV. Con-
clusions are presented in Sec. V.

II. WIGNER TRANSFORM OF TDHF
AND ITS INVERSE TRANSFORMS

Defining the Wigner transformation of an operator as
in Eq. (4), a Wigner transform of a product OQ of opera-
tors 0 and Q follows

(0 Q~, )(r, p) =0 (r, p)e ' ~ Q (r, p)

where the direction of arrows over the gradients means
the gradients act to the quantities on that side of the gra-
dient. Using Wigner transformations, Eqs. (4) and (11), a
full Wigner transform of the TDHF equation [Eq. (3)] be-
cornes

a 2 +

f(r, p, t)+ ——f(r, p, t)sin —(V V —V V) H(r, p)Bt
''

A
''

2

=0.
(12)

This is a representation of the TDHF equation in a phase
space. Through the expansion of the sine function, Eq.
(12) can be rewritten as

a f(r, p, t)+[V H(r—,p)] Vf(r, p, t) [VH(r, p)].V~f(r, p, t)—at
2)i

H(r, p}(V V —V V} "+'f(r, p, t} .
)

(2n+1)! 2
(13)

A full Wigner transform of the density matrix condition,
Eq. (2), becomes

f(r, p, t)cos —(V V —
V~ V) f(r, p, t)=f(r, p, t),

(14)

where we have considered the spin-isospin degeneracy

factor. Through the expansion of the cosine function,
Eq. (14) can be rewritten as

f(r, p, t)f(r, p, t) f(r, p,t)—
2n

( —1}" fi

(2n )! 2

&&f(r, p, t)(V.V, —
V~ V) "f(r, p, t) .
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A classical limit, i.e., R~O limit, of Eqs. (15) and (13) be-
come Eqs. (8) and (9), respectively, as in the ordinary
Vlasov prescription.

For the Wigner transformation of Eq. (4), the inverse
Wigner transformation can be written as

0 '(r„r, )=&r, , o~O~r„o'& p(r, t)= f d pf(r, p, t) . (18)

Thus the integral over the p space of the Wigner trans-
form of an operator 0 gives the diagonal element of 0 in
the coordinate r-space representation. Specifically, we
get

3fdpdre ' ' 0 (r, p)
(2nA)

r)+r2
X5 r—

2
(16)

The inverse Wigner transform of Eq. (14) becomes

r&p r, r& p r&, r' =p r, r' (19)

This can be easily shown using the first expression of Eq.
(4). The inverse Wigner transform of the Wigner func-
tion f (r, p, t) becomes, considering the (2M) factor in

Eq. (7), the r-space representation of the density matrix
p(r„r2) at t. For the r~ =r2=r case, Eq. (16) becomes

0 (r)=&r, o ~O~r, ct''& = f d pO (r, p) .
(2M)

This is the r-space representation of the density matrix
condition Eq. (2). Similarly, the inverse Wigner trans-
fortn of Eq. (12) gives the r-space representation of the
TDHF equation (3) and the integral over p space of Eq.
(12), specifically, gives the time evolution of the local den-
sity p(r).

Now consider the integral over r space of the Wigner
transformation Eq. (4). From the second expression,

3'rOr, p=, 'r, d'r, e'r, ,o Or~, o-'e
(2M) (2nR)

= f d r, d3r2& p~r, &&r&, o ~O~rz, o'&&r2)p&=&p, o ~O~p, o''& .

Thus the integral over r space of the Wigner transform of
an operator 0 gives the diagonal element of 0 in the
momentum p-space representation, i.e.,

0 (p)=& per ~
O~po'& = f d'rO (rp)

(2m%')
(20)

We can generalize this relation to the similar form as in

Eq. (16). Using Eq. (4), we can show the following rela-
tion:

(pi p2)=&pi ct~Olp2 ct

3 3
—i (Pl —P2) r/fi

d rdpe
(2M)'

P&+P2
XO (r, p)5 p—

(21)

Equation (20) is a special case of Eq. (21) with p~ =p2=p.
The transformation, Eq. (21), of the Wigner function

f (r, p, t), considering the (2M) factor, becomes the p-
space representation of the density matrix g (p, , p2) at t
Integrating the Wigner function f (r, p, t) over r space, we

get

kind Wigner transformation as

0 (r, p)= f d qe'q' "&p+q/2, o~O~p —q/2, cr'&

= fd'p, d'p, "e" ""
&p), ~IOlp2, ~'&

P&+P2
X5 p— (23)

Eq. (21) is the inverse transformation of this second kind
Wigner transformation. The 0 (r, p) in Eqs. (4) and (23)
are the same. Thus we can call Eq. (21) the second kind
inverse Wigner transformation. To discriminate from
this second kind transformation, if necessary, we will call
the ordinary Wigner transformation (4) and the inverse
Wigner transformation (16) by first kind transformations.
Otherwise, we will keep the original name for the first
kind transformations. The first kind Wigner transforma-
tion (4) transforms an operator from the coordinate space
representation to the phase space representation. The
second kind Wigner transformation (23) transforms an
operator from the momentum space representation to the
phase space representation. Applying the second kind in-
verse Wigner transformation Eq. (21) to Eq. (14), we get
the density matrix condition (2) in p representation as

g(p, t)= fd rf(r, p, t) . (22) d P&R P~P] f Pi~P =R P~P (24)

Equation (21) is also an inverse transformation which
transforms phase space representation of an operator into
momentum space representation. Defining the second

Similarly, the second kind inverse Wigner transform of
Eq. (12) becomes the p representation of the TDHF equa-
tion (3) and the integral over r space of Eq. (12),
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[x, ,p, ]=i%5;, . (25)

Equation (12) is the phase space representation of the

specifically, gives time evolution of the density g (p) in

the momentum space.
Inverse Wigner transformations [Eqs. (16) and (21)] of

Eq. (12) give the TDHF equation (3). Specifically, in-

tegrating Eq. (12) over momentum space, we get back to
the r representation of the TDHF equation for the local
density p(r). Integrating over r space, we get the p repre-
sentation of the TDHF equation for g(p). In quantum

theory, only one of r and p is an independent quantum
variable due to the commutation relation

TDHF equation (3) treating r and p as independent clas-
sical variables, i.e., r and p commute each other. Thus, V
and V in Eqs. (11)—(15) also commute each other in this
six-dimensional phase space representation. Of course,
each component of r (p) does not coinmute with the cor-
responding component of V (Vr ). However, this phase
space representation has all the quantum aspects of the
system. By integrating over r or p, or through inverse
Wigner transformations more generally, we get back to
the usual quantum theory for the TDHF approximation.
Since V and V in the phase space commute with each
other, integrating by parts and dropping the integral of
total divergence, we get

f d pG, (r, p)(V V —V V) +'Gz(r, p)= f d p j [V G, (r, p)] V —[V G, (r, p)] V] [(V V —V V) G2(r, p)]

d p — 6, r, p
— 6, r, p V V —

V~ V 62 r, p

= —V f d p[V~G, (r, p}](V V —
V~ V) Gz(r, p), (26)

for arbitrary functions 6& and 62 in phase space and for
m ~0. Similarly,

f d rG, (r, p)(V V —V V) +'Gz(r, p)

=V f d r[VG, (r, p)](V V —
V~ V) G2(r, p) .

(27)

III. THE TEST PARTICLE METHOD

Solving Eq. (12) in a six-dimensional phase space is no
easier than solving Eq. (1) which is in three-dimensional
coordinate space. Introducing packets
F;(r —r, (t), p

—p, (t)) which are centered at r, (t) and

p, (t) in phase space and normalized by

Equations (26) and (27) are total divergences in r and p
space, respectively. Thus, we also have

f d rd pG, (r, p)(V V —V V) +'Gz(r, p)=0 . (28)

f d rd pF, (r r, (t), p——p, (t))=1,

we can represent the Wigner function f (r, p, t) as

(31)

Equation (12) together with the condition of Eq. (14)
for the Wigner function is a representation of TDHF in a
six-dimensional phase space. Solving Eq. (12) for

f (r, p, t) and satisfying Eq. (14) is equivalent to solving
Eq. (3) satisfying Eq. (2). Once we know the Wigner
function f (r, p, t) of a system, the inverse Wigner trans-
formation of f (r, p, t) gives the density matrix. The local
density can be expressed by the Wigner function through
Eq. (18). The expectation value of an operator 0 and its
time evolution in the system can be found by

(0)=Tr(Op)= f d r(Op)(r)

= f d r f d p(Op)(r, p)

= f d'r f d pO(r, p)f(r, p), (29)

i% (0)=Tr Oih =Tr(—0[H,p]) = —Tr([H, O]p}.d . Bp
dt at

(30)

Here Tr means a trace of a matrix representing an opera-
tor in a representation. For the last equality of Eq. (29),
Eqs. (11)and (28) are used.

f(r, p, t)= —g F, (r —r, (t),p —
p, (t)) .

i=]
(32)

Here A is the number of nucleons in a system and N is
the total number of packets. The packets
F;(r—r, (t), p

—
p, (t)) can be negative at some region in

the phase space and can have different forms for different
packets. One such example is the choice of F; to be the
Wigner transform of P (r)g (r'), where the P 's are wave
functions. ' In general, we can use different normaliza-
tion constants JV; of F; in Eq. (31) instead of JV; =1, and
we can allow change in the form of F; and the normaliza-
tion constant JV; in time with the condition of

,JV, ( t ) =N. With these general packets we can
represent the time-dependent Wigner function f exactly,
however, its time evolution is too complicated. Thus, we
fix F, (r, p) unchanged in time with JV, = 1. If we consider
only the collective behavior of a nuclear system, we may
not lose generality through these restrictions since we are
not interested in the details of each single nucleon wave
function. These fixed packets are called "test particles"
or "pseudoparticles" with form factor F;(r,p) in the
phase space. With infinitely large N, we can still
represent the Wigner function f exactly at given time us-

ing proper form factors F;. Usually, BUU calculations
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use a finite number (N) of test particles with the same
form factor F, =F, i.e., "identical test particles. " The
time evolution off is determined through the time evolu-
tion of the center r, (t }and p,.(t) of each test particle. The
time dependence of r; and p, should follow Eq. (12). Of
course, the distribution of r; and p; should satisfy the

TDHF density condition (14).
Let us consider Eq. (12) first. Since all the time depen-

dencies of the Wigner function in the test particle method
are represented only through the time dependencies of r,
and p, in Eq. (32), Eq. (13) can be rewritten as, dropping
the common normalization factor A /N,

Br;(t) Bp;(t)
V+ V F;(r—r, (t), p

—
p, (t))—g I[VH(r, p)] V —[V~H(r, p)] VIF;(r —r;(t), p

—p;(t))
I

2n

( —1)"~ „~, (2n+ I }!
H(r, p)(V V —V V) "+'F,(r —r, (t),p —

p, (t)) . (33)

This is the equation of motion for r;(t) and p, (t) in the six-dimensional phase space which retains all the information
about quantum effects as in TDHF. In this equation, r, (t) and p, (t) are coupled and expressed in the six-dimensional
phase space. From Eq. (33), we can extract the time evolution of r, (t) and p, (t) in a quantum description of the system.

As we discussed in Sec. II, we can get the usual quantum description corresponding to Eq. (33) through the integral
over p or r space, or more generally, through inverse Wigner transformations. Let us consider the integral over p space
of Eq. (33) first. Since r; and p; are independent of r and p, using Eq. (26), the integral over p space of Eq. (33) becomes

V gfd'p Br;(t)
+[V H(r, p)] F;(r—r;(t), p —p;(t)}

= —V g g C„f d p[V~H(r, p)](V V~
—

V~ V) "F,(r —r, (t},p —p, (t}) .
i n=1

(34)

This is a quantum description of the equation of motion for the r, (t) in r-space representation. Similarly, the integral
over r space of Eq. (33) becomes

V, y fd'r—Bp;(t) —[VH(r, p)] F,(r —r, (t),p
—p;(t))

=V g g C„f d r[VH(r, p)](V V —V V) "F;(r—r, (t),p
—

p, (t)) .
i n=1

(35)

This is a quantum description of the equation of motion for the p, (t) in p-space representation. The integral over r
space of Eq. (34) and the integral over p space of Eq. (35) are both zero. These represent the particle number conserva-
tion in TDHF, i.e., trace of Eq. (3) is zero. Equations (34) and (35) are TDHF equations for the density in r and p space,
respectively, in terms of the time-dependent basis functions F;(r—r;(t), p —p;(t)).

Since V is the common factor in Eq. (34) and V is the common factor in Eq. (35), these equations can be rewritten as

y fd'p—Br, (t)
+[V H(r, p)] F;(r—r;(t), p

—
p, (t))+C„

= —g g C„fd p[V~H(r, p)](V V —V V) "F;(r—r;(t), p —
p, (t)),

i n=1

ap, (t)
g fd r +[VH(r, p)] F;(r—r;(t), p —p;(t))+C

(36)

= —g g C„f d r[VH(r, p)](V V —V V) "F;(r—r, (t),p —p, (t)) .
i n=1

(37)

Here, C„and C are constants in r and p variables. These equations are the quantum equations of motion of r;(t) and

p,.(t) with unknown constants C„and C . We will come back to these constants later. In Eqs. (36) and (37), r and p are
the independent quantum variables, respectively, and r;(t) and p, (t) are parameters characterizing the centers of test
particles.

Now consider the integral over r space of Eq. (36) and the integral over p space of Eq. (37) which are nothing but the
expectation values for the corresponding operators in a quantum description. Due to Eq. (28), the right-hand sides of
Eqs. (36) and (37) have zero integrals over r and p space, respectively. Except the constant terms (C„and C ), all other
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terms in Eqs. (36) and (37) have finite integrals over r and p space since they are physical quantities. Thus C„and C
are necessarily zero. Finally, since r, and p; are independent of r and p, using Eq. (31), we get

Br;(t) + f d rd p[V H(r, p}]F,(r —r, (t},p —p;(t)) =0, (38)

ap, (t) + f d rd p[VH(r, p)]F;(r r;(—t), p p, (—t)) =0 .
I

(39)

Equations (38}and (39) are the equations of motion for r; (t) and p;(t), i.e., for the motion of test particles. Notice here
that these equations are necessary but not sufficient conditions of Eqs. (34) and (35).

Now let us consider the physical meaning of Eqs. (38) and (39). First consider the inverse Wigner transform of
[V~H(r, p)]. From Eq. (16), integrating by part and dropping the integral of total divergence,

f d pd re ' ' [V H(r, p)]5 r—r, +rz
2

t ir -r )is t (rz —ri)

(2M)
r&+rz

2

= —(r„cr ~(Hrz riH) r—z, o') = —(ri, cr ~[H, r]~rz, o'),

where r is an operator representing the position vector. Thus [ ifiV H—(r, p)] is a Wigner transform of the commuta-
tor [H, r], i.e.,

[V~H(r, p)]= f d se 'i" "(r+s/2, cr~ [H, r]~r—s/2—, o') . (40)

Similarly, the inverse Wigner transform of [VH(r, p}] becomes, from Eq. (16) and using the integral property of the
gradient of the delta function,

r, +rz1
d 3 3 IP (r& r&)/R

(2M) 2
(V)+Vz) f d'pd re ' ' H(r, p)5 r—

= —(r„cr~(VH+HV)~rz, o') = —(r„o ~( VH+HV—)~ri, o')
= —(r, , cr ~[H, V]~r„o'& .

Here —iRV is the r-space representation of the momen-
tum vector operator p. Thus [iRVH(r, p)] is a Wigner
transform of the commutator [H, p] = —i h[H, V], i.e.,

[VH(r, p)]
= —f d se 'i" "(r+s/2, o ~[H, V]~r —s/2, o.') .

(41)

We can get the same relation using the second kind trans-
formations Eqs. (21}and (23}.

Since [V~H(r, p}] is the Wigner transform of operator
i /A[H, r] [Eq. (40)], using Eqs. (32), (29},and (30), the last
term of Eq. (38) becomes

system, i.e., the expectation value of nucleon field veloci-
ty operator V in a mean-field Hamiltonian H, which is
represented by V(r, p)=[V H(r, p)] in the phase space.
Similarly, the last term of Eq. (39) becomes

g fdirdip[VH(r, p))F;(r r, (t), p —p;(—t))

= ——f d r[H, V]p(r)
A

= ——Tr([H, V]p)
N

g f d rd p[V H(r, p))F;(r r, (t},p p;(t))— — i N N d
AA ' AdtTr([H, p]p)= ———(p) . (43)

d r [H, r]p(r) =———Tr([H, r]p)
i N i

A A Afi

=——(r& .
d

A dt
(42)

This is the relation connecting the time evolution of the
expectation value of an operator r, which is the c.m.
coordinate ( r ) of the system, to the c.m. velocity of the

This is the relation connecting the time evolution of the
expectation value of an operator p, which is the c.m.
momentum (p) of the system, to the total force acting
on the system, i.e., the expectation value of force opera-
tor 7 of nucleon field in a mean-field Hamiltonian H,
which is represented by V(r, p)= —[VH(r, p)] in the
phase space. Using Eqs. (42), (43), and (32), Eqs. (38) and
(39) can be rewritten as
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—(r)=—yd
dt

=&V) = f d rd p[V~H(r, p)]f(r, p, t), (44)

a

dt X,. Bt

=(7)= —f d rd p[VH(r, p)]f(r, p, t) . (45)

Br;(t) =f d rd p[V H(r, p))F, (r r, (t), p
—
p, (t))—at

= f d rd pH(r, p)V F;(r—r, (t), p —
p, (t)), (46)

Bp;(t) = f1 rd p[VH(r, p)]F, (r —r;(t), p —
p, (t))

= f d rd pH(r, p)V;F;(r r, (t),p p;—(t)), —(47)

then Eqs. (38) and (39) are automatically satisfied. Here,
V, and V mean the gradients respect to r; and p;.

l

Equations (46) and (47) are sufficient but not necessary

I

These equations represent that the time evolution of the
c.m. coordinate and momentum of the system can be
represented by the time evolution of the centers r, (t) and

p;(t) of the test particles, respectively. The c.m. motion
of the system follows classical dynamics with the average
mean-field velocity ( V } and force ( 9'} of the system in a
quantum description. This quantum description of c.m.
motion is well known. The test particle method for the
quantum extended Vlasov equation (12) correctly de-
scribes the motion of c.m. coordinates through Eqs. (44)
and (45) and the motion of test particles through Eqs. (38)
and (39) in a quantum description.

In Eqs. (38) and (39), all the test particles are coupled
through the summation. However, if these equations are
satisfied for each test particle separately, i.e.,

conditions for Eqs. (38) and (39). These equations
represent that the time evolution of the centers r;(t) and

p, (t) of the ith test particle follow classical dynamics"'
with averaged mean-field velocity ( V); and force ( 7);
over the packet F, (r —r;(t), p —p;(t)) of the test particle.
These are equations of motion of test particles in a full
quantum description obtained by using Eq. (12) without
truncation in R order and are the same as in Ref. 7 which
is a classical limit considering Eq. (9) without higher-
order terms in fi. Once we start with the proper initial
distribution of test particles described by the proper form
factor F;(r,p) for a system with mean-field Hamiltonian
H, the time evolution of test particles is determined
through Eqs. (46) and (47). Then, we know the Wigner
function f (r, p, t) of the system through Eq. (32). The in-
verse Wigner transform of the Wigner function becomes
a density matrix. Specifically, the local density can be ex-
pressed by the Wigner function thrugh Eq. (18). The ex-
pectation value of an operator 0 and its time evolution in
the system can be found by Eqs. (29) and (30), respective-
ly. This is an exact quantum description of the system
except we have used sufficient but not necessary condi-
tions, Eqs. (46) and (47), for Eqs. (38) and (39).

Up to now we have considered only Eq. (12) which is
the Wigner transform of the TDHF equation (3). In
TDHF we have density matrix condition, Eq. (2), which
is represented by Eq. (14) in a phase space. Thus, for this
to be a correct quantum description, the distribution of
test particles with form factor F, (r, p) should be restrict-
ed to properly represent the Wigner function f(r, p, t)
which should satisfy the Pauli principle. The details of
the system using the test particle method entirely depend
on the restriction on the distribution of test particles in-

corporated with the form factor F;(r,p) of the test parti-
cle. The density matrix condition (14) gives special re-
striction on the distribution of test particles and on the
form factor F, (r, p). Using Eqs. (7) and (32), Eq. (15) be-

comes,

gF;(r —r;(t), p
—p;(t)) — gF (r —r, (t), p

—
p (t))—1

A (2iri}i)

1 j

A (2vrfi) (
—1)" A'

X 4 (2n)! 2

= gg g C„'F,(r —r, (t), p
—

p, (t))(V V —V V) "F~(r—r, (t), p —
p, (t)),

(48)

The right-hand side of Eq. (48) has zero integral over phase space due to Eq. (28). Thus, using the normalization condi-
tion (31), from Eq. (48) we get

A (2n.iri)' .V
g g f d id pF, (r r, (t), p —p, {t})F—(r —r (t),p —

p (t))=—g 1=1 .
I J i =-]

(49)

The density matrix condition (14) gives the constraint on
the distribution of test particles of form factor F, (r, p)
through this overlap integral. This condition [Eq. (49)] is
the same for the classical limit case [Eq. (8)] and can be
implemented through the proper distribution of test par-

ticles (r, and p, ) incorporated with the form factor nor-
malized by Eq. (31}. However, since Eq. (49) is not a lo-
cal constraint in the phase space, this is a necessary but
not sufficient condition for the density matrix condition
Eqs. (14) or (8), which are local conditions in phase space.
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The conditions, Eqs. (8) and (14), discriminate between
classical limit and quantum case. With a proper distribu-
tion of r; and p, satisfying the condition of Eq. (49), the
form factor F, (r, p)=5(r)5(p) or F;(r,p) ~8((2(r) —p)
satisfies Eq. (8), which is a classical limit, but does not
satisfy Eq. (14). This means that the discrimination be-
tween the quantum description and the classical limit can
depend on the choice of the form factor F, (r, p) as well as
the distribution of test particles.

The local conditions in six-dimensional phase space for
Eq. (14) of the quantum case or for Eq. (8) of the classical
limit case are very difficult to implement in the test parti-
cle method. Even for the global condition (49), it is hard
to find the correct constraints on the distribution of test
particles with the form factor through which this global
condition is maintained in the time evolution. Thus, we
relax the Slater determinant condition (2) by requesting
only the Pauli condition, which is represented in a phase
space by

(50)

2

H(r, p)= +U(r) .
2m

For this case, Eqs. (46) and (47) reduce to

(}r,(t) =fd'rd'p~F;(r —r, (t), p —
p, (t)),Bt m

(52)

ap, (t) = —f d3rd p[VU(r)]F;(r —r, (t),p —
p, (t)} .

The integral over p space can be done explicitly. Using
the normalization condition (31), these equations become

Br, (t) p;(t)
dt m

(}p;(t) = —f d r[VU(r)]S;(r r;(t}—}
dt

(53)

test particle method.
For the momentum-independent mean-field potential

case, Eq. (10) becomes

For this case, the overlap condition (49) for the distribu-
tion of test particles with the form factor F, (r, p) will also
be relaxed to

= —f d rU(r)V;S;(r r;(t—)),
S;(r—r, (t))=f d pF;(r —r, (t), p

—
p, (t)) .

(54)

(55)

2M gg f d rd pF;{r—r;(t), p —p;(t)}
J

XF,(r —r, (t},p —
p, (t)) & 1 .

This kind of relaxation of Slater determinant condition
has also been used in the usual quantum description of
the nuclear system. In the random-phase approximation
(RPA), BCS pairing, or extended TDHF, the wave func-
tion of the system is no longer a single Slater determinant
and thus the density matrix condition (2} is not valid. In-
stead, we have p ~p in a density matrix diagonalized
representation. For these cases, the shell effects are
smeared out through the averaging effects over the state
of the system which can be represented as a linear com-
bination of many Slater determinants. In the BCS pair-
ing case, the shape of a nucleus depends on the gap ener-
gy. A ground-state nucleus in BCS can be a spherical
shape depending on the pairing scheme even for the nu-
cleus which has a deformed ground state in TDHF.
These situations correspond to the different restrictions
on the distribution of test particles and on the form fac-
tor F;(r,p) in the test particle method in a phase space.
The density matrix condition (14) in TDHF is less restric-
tive than its classical 1imit, Eq. (8), and more restrictive
than the Pauli condition, Eq. (50). Thus the Pauli condi-
tion, Eq. (50), is closer to the condition in Eq. (14) than to
the condition in a classical limit, as in Eq. (8), and can be
implemented easily through the proper distribution of
test particles (r; and p;) satisfying the condition of Eq.
(51) incorporated with a specific choice of the form factor
normalized by Eq. (31). Implementing this Pauli condi-
tion [Eq. (50)] is much easier than implementing the clas-
sical density matrix condition [Eq. (8)]. Therefore, this
relaxation of the Slater determinant condition is what ac-
tually happened in the usual BUU calculations using the

F( )
—r /(2h )e —

P 6 /(2s )

(2vrfi)'
(56)

(ii) Packet with finite width in r space and zero width
in p space:

F(r, p) =S(r)&(p) (57)

S(r)=S(x)S(y)S(z),
(58)

We can also use the spherical form for S instead of Eq.
(58):

Here we have assumed that F;(r,p} has even parity in p
space, i.e., F;(r, —p)=F;(r, p) to get Eq. (53). Since
H(r, —p) =H(r, p) for the mean-field Hamiltonian of Eq.
(52}, the form factor F; of the test particle may be as-
sumed to have even parity in p space without losing gen-
erality. For the momentum-independent mean-field po-
tential case, we need only to specify the form factor in r
space S;(r) for the test particles instead of the form factor
in the phase space F, (r, p) for the evolution of the test
particles, Eqs. (53) and (54), and thus for the evolution of
the system. We still need to know the form factor in p
space as well, in order to evaluate the expectation value
of the momentum-dependent operator such as the kinetic
energy or momentum of the system. However, we can
factorize the form factor into r- and p-space parts sepa-
rately for this case.

In the Vlasov prescription, "identical test particles"
with the following forms of F(r, p) have been used.

(i) Gaussian packet with finite width in both of r and p
spaces:
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3 I' TS(r)= 1 ——
L9 1 ——

b
(59)

(iii) Point test particle, i.e., packet with zero width in
both r and p spaces: Eq. (57) with

S(r)=6(r) . (60)

IV. NUMERICAL RESULTS OF THE
TEST PARTICLE METHOD

The maximum value of the width of the packet (6 or b)
should be restricted by the surface thickness of the
Wigner function f(r, p, t) for a real nucleus to avoid un-
physical surface. Thus, the maximum value of 6 or 6 is
of the order of 1 fm. The minimum value of the width b,

or b should be large enough to give a smooth function

f (r, p, t) in r and p space. Therefore, 5 or b should be
larger than the mean distance between test particles. For
a smaller width of the packet, we need a larger number of
test particles (larger N). For a smaller N, we need a
larger width of test particles. The parameter
y=poRsN/A is defined in Ref. 12. Here po is the nu-

clear matter saturation density and R& is the root-mean-
square radius of the packet. For y ~ 25, ' the fluctuation
in f (r, p, t), due to the finite number of packets with finite

width, can be neglected. This means that we require at
least N/A =170 test particles with R&=1 fm for the
pa=0. 145 fm case.

F (r —r„p —
p, ) =S(r—r; )5(p —p, ),

S(r—r, ) =5(r —r, ),
Eq. (54) can be simplified as

Bp, (t)
at

(64)

(65)

For the potential U(r) in Eq. (65), we require to calculate
the local density p(r) which is, from Eqs. (18) and (32),

self-consistent density has a diffuse surface with p(r)=0
outside of a sphere of finite radius R (see the dotted lines
in the right column of Fig. 1 for Ca). The binding ener-

gy of " Ca is —10.04 MeV per nucleon. On the other
hand, self-consistent Hartree-Fock density for the poten-
tial Eq. (61) has a diffuse surface with an infinite tail for
both of the force parameter sets [see the dashed lines in
the left column of Fig. 1 for the local force, Eq. (62), and
in the right column for the Yukawa force, Eq. (63)]. For
Hartree-Fock density, the same code used in Ref. 13 is
used for the mean-field potential of Eq. (61). The
ground-state binding energy per nucleon of Ca are
—12.49 MeV for Eq. (62) and —9.12 MeV for Eq. (63).

Since we are considering the momentum-independent
potential case, we need only to specify S (r) of Eq. (55) for
the evolution of the system, or equivalently, for Eqs. (53)
and (54). If we choose point test particles for the form
factor, i.e.,

In BUU calculations, the following form of
momentum-independent mean-Geld potential has been
used:

—[r—r'[ /a

U(r) = A p(r)+Bp (r)+ Vo Id r', p(r') .
/r —r'[a (61)

The test particle method of Sec. III is applied to Ca for
this mean-field potential with the following two sets of
parameters:

A = —816.74 MeVfm, B=3238. 1 MeVfm

0.2

0.16-

0.12

0.08
I

E 004

0.
0.2

0.16-

LVL

o =2, V0=0;

A =0, B =3238. 1 MeVfm, 0.=2,
Vo= —668.65 MeV, a =0.45979 fm .

(62)

(63)
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0.04-
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The Coulomb interaction and the symmetry energy are
neglected for numerical simplicity. The local force set in
Eq. (62) and the Yukawa force set in Eq. (63) have the
same nuclear matter properties: the binding energy of
E/A = —15.77 MeV, the saturation density of po=0. 145
fm, and the compressibility of K =368 MeV. The
self-consistent density of static Vlasov equation (9) with
the mean-field potential of Eq. (61) can be found. This
has been discussed in detail in Refs. 5 and 6. For the
force parameter set of Eq. (62), which has local force
only, the self-consistent density has a sharp surface with
p(r) =po inside of a sphere (see the dotted lines in the left
column of Fig. 1 for Ca). This has the binding energy
of —15.77 MeV per nucleon. For the force parameter set
of Eq. (63) which has a finite range Yukawa force, the

RAD(US (fm)

FIG. l. Nuclear densities of Ca. The underlying force is
the local force, Eq. (62), for the cases of LVL and LHF (left
column) and the Yukawa force, Eq. (63), for the cases of YVL
and YHF (right column). Dotted curves are the self-consistent
density of the static Vlasov equation (9) with the aforernen-
tioned force for each case. Dashed curves are the static
Hartree-Fock density with corresponding force. Solid lines are
the densities averaged over the time period of each evolution of
a nucleus using the test particle method. The initial densities
for the time evolution are the static Vlasov densities (dotted
lines) for LVL and YVL, and the static Hartree-Fock densities
(dashed lines) for LHF and YHF with corresponding forces.
See text for details.
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(66)

This local density is a very fluctuating function of r for
test particles of Eq. (64) no matter how large N is. Thus,
a local averaged density of Eq. (66) over a sphere cen-
tered at r with the radius of b is used for the density re-
quired by Eq. (65) instead of the local density. This local
averaged density for point test particles is equivalent to
the local density itself for test particles with the form fac-
tor of

S(r—r, }= 9 1—
4m' b3 b

However, these two are not equivalent for the evolution
of p;, Eq. (54), and for the evaluation of some physical
quantities such as the root-mean-square radius of the nu-
cleus.

For the numerical evolution of Eqs. (53) and (65),
N/A =200 test particles per nucleon has been used. The
local averaged density is evaluated on the three-
dimensional Cartesian grid points with the grid spacing
of 1 fm averaged over the sphere with the volume of
(4n/3)b =7.fm . For the local density at point r; which
is not on the grid point, three-point interpolation in each
three Cartesian directions is used. We also need to speci-
fy the initial distribution of the test particles, i.e., r; and

p; at t =0. First, the positions r; for test particles are
distributed stochastically according to the corresponding
self-consistent density of a static nucleus. Four cases are
considered here for the initial distribution.

(1) Point test particles are distributed initially such that
the local density p of Eq. (66) depicts the self-consistent
density of the static Vlasov equation with local force (dot-
ted lines in the left column of Fig. 1). We denote this
case by LVL.

(2) Point test particles are distributed initially such that
the local density p of Eq. (66) depicts the self-consistent
density of the static Hartree-Fock equation with local
force (dashed lines in the left column of Fig. 1). We
denote this case by LHF.

(3) Point test particles are distributed initially such that
the local density p of Eq. (66) depicts the self-consistent
density of the static Vlasov equation with Yukawa force
(dotted lines in the right column of Fig. 1). We denote
this case by YVL.

(4) Point test particles are distributed initially such that
the local density p of Eq. (66) depicts the self-consistent
density of the static Hartree-Fock equation with Yukawa
force (dashed lines in the right column of Fig. I). We
denote this case by YHF.

Then, for each case, the momentum p, of the Eth particle
has been assigned randomly in a Fermi sphere with a ra-
dius of local Fermi momentum. In each case, the nucleus
has been evolved through Eqs. (53) and (65}with the cor-
responding potential up to t =180 fm/c with the time
step of ht =0.3 fm/c. In these calculations, the energy of

a nucleus increased by about 2 MeV per nucleon for local
forces (LVL and LHF) and about 1.5 MeV per nucleon
for Yukawa forces (YVL and YHF) at t = 180 fm/c due
to the numerical inaccuracy. The binding energies per
nucleon were —13~ 1 MeV for LVL, —12.1 MeV for
LHF, —9.4 MeV for YVL, and —8.9 MeV for YHF ini-
tially (at t =0) in these calculations which are different
(excited) from the self-consistent solutions due to the sto-
chastic distribution. In the LVL calculation which start-
ed with the initial distribution of test particles having a
sharp surface, test particles diffused and the local density
[Eq. (66)] at the surface became similar to the solid line in
Fig. 1 even before 10 fm/c (see Fig. 4 of Ref. 5). If we im-
plemented the classical condition, Eq. (8), exactly and the
numerical calculation was exact, the sharp surface should
be maintained in the LVL calculation.

The local averaged densities are shown in Fig. 1 (solid
lines) for each case. These densities are averaged over a
time period of 30—180 fm/c. Since our initial distribu-
tions are not exact self-consistent ground states of a static
nucleus due to the stochastic prescription and due to the
fact that we have used 5(p —

p, ) in Eq. (64) with p; distri-
buted randomly in a local Fermi sphere, there are some
excited oscillation modes in the propagation of the sys-
tern. Relaxing the density matrix condition to satisfy
only Pauli condition also introduces an oscillation mode
similarly as in going from TDHF to RPA or to extended
TDHF. These oscillation modes are removed through
the time average. As we can see in Fig. 1, the nuclear
density at the surface region is much closer to the
Hartree-Fock density than to the classical Vlasov solu-
tion for all the four cases independently of the initial dis-
tribution. Notice here that the slope at the surface region
depends on the underlying force (the left column of Fig. 1

for the local force and the right column for the Yukawa
force), but not on the initial distribution (similarity be-
tween LVL and LHF and between YVL and YHF).
Specifically, for the YHF case, this calculation repro-
duced the Hartree-Fock density quite well over a whole
nucleus except for the small ripples at the central region.
There are some spatial oscillations in the central region
of Hartree-Fock densities due to the shell effects in con-
trast to the classical Vlasov solutions (see Fig. 1). Since
we have used the local averaged density over a sphere of
radius b =1.2 fm instead of the actual local density in the
force calculation of Eq. (65), we cannot have these de-
tailed oscillations in our calculation. Due to this dimin-
ishing effect of average density, the shell structure, which
is a quantum effect, cannot be reproduced in our calcula-
tion. The local force cases, which have a larger shell
structure at the central region than the Yukawa force,
have a larger discrepancy from the HF self-consistent
central densities and this caused some discrepancy for the
surface density as well. If we kill the shell structure
through the average in the local Hartree-Fock density,
the central density would become constant for the local
force. The central density is about constant in the LHF
calculation (solid line) which started with the initial den-
sity having large oscillations in the central density
(dashed line). If we choose a form factor for the test par-
ticles better than the point particle and use actual local
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N

R„,=—d rr p(r)= —g r;
i=1

(68)

density instead of local averaged density' for the force
calculation of Eq. (54), we would have oscillations in the
central density through the test particle method. Even
with point test particles using local averaged density,
some of the quantum eAects in the density appears. Fig-
ure 1 shows that the test particle method, Eqs. (46) and
(47), reproduces the nuclear density much closer to
TDHF than to the Vlasov equation which is a classical
limit of TDHF.

Once we have the distribution of test particles in a nu-
cleus at any time, we can calculate physical quantities.
For the form factor of Eq. (64), the root-mean-square ra-
dius of a nucleus in configuration space R, , and in
momentum space P, , become

force (YHF). These correspond to the monopole oscilla-
tion energy (fico=2mk/T) of 27 MeV for the local force
and 25 MeV for the Yukawa force; this is in good agree-
ment with the empirical formula

E ( 0+ ) =823 '~ MeV=24MeV .

A self-consistent calculation in a classical Vlasov equa-
tion' gives monopole oscillation energy of about 32 MeV
for the Yukawa force which is too high. The empirical
monopole energy also is reproduced by the test particle
method.

We can also study the quadrupole oscillation mode.
The quadrupole moments Q„of a nucleus in the
configuration space and in the momentum space are, for
point test particles,

Q„=2&4rr/5 J d rr Y2(9, $)p(r)

N

P„',=—J d'pp'g(p)= —g p
i=]

(69)

N

p 3z2 —I2pr = 2z; z; y (71)

N

(R P) =—f d rd p[r p]f(r, p)= —g [r p ]S,.
(70)

also represents the monopole mode. Here Eqs. (29), (32),
and (64) are used. These are shown in Fig. 2 for the LHF
case on the left column and for the YHF case on the right
column. The oscillation period T is about 45 fm/c for the
local force (LHF) and about 50 fm/c for the Yukawa

3.8
3.6
3.4
3.2

184

E 176-

where g(p) is the nucleon distribution in momentum
space, i.e., Eq. (22). From the time dependence of these
two quantities, we can extract information about a mono-
pole oscillation mode of the nucleus. Since a monopole
mode is the radial vibration of a nucleus, the time depen-
dence of

N

Q = J d P(3P P )g(P) X (2P P P~~y) (72)

20
15-
10-

0
5

—10-

These are shown in Fig. 3 for LHF on the left column
and for YHF on the right column. There is a phase shift
of n between Q„(t) and Q (t). This phase shift and
nonzero Q indicate that there is a quadrupole deforma-
tion in the local Fermi sea for the quadrupole oscillation
of a nucleus. The quadrupole oscillation period T is
about 70 fm/c for the local force and about 75 fm/c for
the Yukawa force. These give the quadrupole oscillation
energy of 18 MeV for the local force and 17 MeV for the
Yukawa force which are again in good agreement with
the empirical formula E (2+ ) =60A ' MeV = 17.5
MeV. Neglecting the quadrupole deformation of the
Fermi sea, the self-consistent calculation in a classical
Vlasov equation gives a very low quadrupole oscillation
energy (about 6 MeV for the Yukawa force). ' The quad-
rupole oscillation mode is also well reproduced through

A
CL

Q

V

168-
I I

60-
40-

20 P0 V
I I

0 40 80 120 160 0 40 80 120 160

TIME (fm/c)

—15-

20

0
D

—20

FIG. 2. Monopole oscillation mode in the test particle
method. R„, is in units of fm, P, , is in units of MeV/c, and
(R.P) in units of fmXMeV/e. These are defined by Eqs.
(68)—(70). The left column is for the local force and the right
column is for the Yukawa force. The initial densities are
Hartree-Fock densities (LHF and YHF) for the corresponding
forces.
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FIG. 3. Quadrupole oscillation mode for the same calcula-
tions as in Fig. 2. Q„and Q~ are defined by Eqs. (71) and (72).
The left column is for the local force (LHF) and the right
column is for the Yukawa force (YHF).
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the test particle method of Sec. III.
In Figs. 2 and 3, we can see that the monopole and

quadrupole oscillations are not simple harmonic oscilla-
tions. To study the structure of this oscillation in detail,
we consider the Fourier transform

m
A(co)= f dt e ' 'G(t),

0

I(co)=
i
3 (co)i

(73)

where G(t) represents any of the time-dependent mono-

pole or quadrupole moment. The time t should be large
enough to include at least few period T of the oscillation.
Thus, for this Fourier analysis, the system has been pro-
pagated up to t =750 fm/c. For Fourier analysis, we

also considered octupole moments defined as

0„=2&4m/7 f d rr Y3(8,$)p(r)
N

rz 5z —3r p r = z 2z2 —3z. —3y~
i=1

(74)

N

OI,
= f d pp, (5p, 3p —}g(p}=g p,,(2p;, —3p;„—3p;~) .

(75)

The time dependencies of multipole moments in r and p
space for YHF are shown on the left columns in Figs. 4
and 5, respectively. These are from the extended evolu-

tion up to r =750 fm/c of the system used for Figs. 2
and 3. The right columns are the same calculation (YHF)
as the left columns except the test particles have different
initial momentum at t =0 through different randomiza-
tion which has positive Q (t =0) in contrast to negative

Qp(t =0) for the left column case (see Fig. 5). This new

initialization also shows a phase shift of gabe.tween Q„(t)
and Qz(t) (Figs. 4 and 5). The nucleus is quite stable up
to t =200 fm/c but, after that, it is growing in r space
(see Fig. 4) due to energy nonconservation originating
from numerical inaccuracy. However, the system is quite
stable up to t =750 fm/c in p space as we can see in Fig.
5, except P, , which has a quite stable oscillation mode
defined as

'2

M (t)=P, ,(r) Po+P—2 (76)

In Fig. 5, M +Pc are shown (dotted lines) with

P~=172.2 MeV/c for the left column and Po=172.7
MeV/c for the right column; P2=10.9 MeV/c and
t =750 fm/c. The intensity I(co) for the Fourier trans-
form, Eq. (73), of M (t) (first row), Q (t) (second row),
and Oz(t) (last row) are shown in Fig. 6. Figure 6 illus-

trates the rich structure of vibration modes which is simi-
lar to the extended TDHF with TDDM. The details of
the spectrum depend on the initial distribution,
differences between the left and the right columns in Fig.
6. However, both initializations show quite similar peak

400-
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I

400 600 200 400
I

600

Tl ME (fm/c)

FIG. 4. Time dependence of monopole (R, , ), quadrupole (Q„), and octupole (0„)modes in r space. The left column is for YHF
and the right column is the same as YHF but with different initial momentum distribution.
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FIG. 5. Same as in Fig. 4 but in p space. The dotted lines in the first row are the corresponding M~+Po of Eq. (76). P, , is in the
unit of MeV/c, Q~ in 10' (MeV/c )', and O~ in 10' (MeV/c)'.

positions. The monopole mode peaked at about 25 MeV
and the quadrupole mode at about 16 MeV as seen from
Figs. 2 and 3. There clearly are two peaks in the octupole
mode; one at about 6 MeV and one at about 30 MeV.
These are in good agreement with the empirical formula
533 MeV=4. 5MeV, " for the low lying octupole
mode, and 1083 ' MeV=31. 6 MeV, ' for the giant
octupole resonance. A self-consistent calculation in a
classical Vlasov equation'" gives an octupole oscillation
energy of 12 MeV for the Yukawa force which corre-
sponds to the surface vibration in a liquid drop model. '

A classical Vlasov equation for a spherical harmonic os-
cillator with a separable octupole-octupole force without
self-consistency does not give a low-lying octupole mode .
The octupole oscillation modes are also well reproduced
by the test particle method.

Fourier analysis (Fig. 6) shows that the test particle
method reproduces multipole modes very similar to
quantal RPA (Ref. 9) or TDDM (Ref. 3) calculations
rather than to TDHF itself. In practical calculations of
the test particle method, the density matrix condition
[Eqs. (14) or (8)] is relaxed to Eq. (50) similarly as in the
RPA or TDDM. However, there is no clear way to con-
trol this relaxation (p —p) in contrast to the RPA or
TDDM case. Two-body collisions are responsible for this
relaxation in TDDM and Eq. (2) is satisfied up to first or-
der of 5p=p —

po in RPA. Response calculations using
the Vlasov equation with a self-consistent residual in-

teraction' also produce similar results for vibration
modes. p

—
p is nonzero in this calculation' ' as in

RPA which corresponds to a small amplitude approxima-
tion of TDHF. Except for the classical solutions of Ref.
14 which explicitly satisfy Eq. (8), all other calculations
using a self-consistent residual interaction compared
here, produce similar resonance energies which are close
to empirical values. However, without the m '/m
correction, the test particle method gives a dipole reso-
nance energy which is too low.

V. SUMMARY AND CONCLUSION

Quantum extension of the Vlasov equation has been es-
tablished using the test particle method to the full
Wigner transform of TDHF without truncation in A or-
der. Decomposing the Wigner function in terms of test
particles with the form factor in a phase space, quantum
extension of the Vlasov equation [Eq. (12)] provides the
equation of motion [Eq. (33)] for the test particles. In-
tegrating Eq. (33) over p or r space, which are the special
cases of inverse Wigner transform, we get the quantum
description for the equation of motion of test particles,
Eqs. (36) and (37). Integrating these equations over r or p
space, respectively, which correspond to taking the ex-
pectation value, we get coupled equations of motion [Eqs.
(38) and (39)] for the test particles. Notice here that these
equations are necessary but not sufficient conditions of
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FIG. 6. The intensities I(co) of the Fourier transform, Eq. (73), of the corresponding multipole vibration modes in p space (Fig. 5).
The first row is for M~ in units of 10 ' [(MeV/c)(fm/c)]', the second row is for Q~ in [10'(MeV/c )' (fm/c)], and the last row is for

O~ in [10 (MeV/c)'(fm/c )]'.

Eqs. (36) and (37). The sufficient but not necessary condi-
tions of Eqs. (38) and (39) give the equations of motion
[Eqs. (46) and (47)] for each test particle which follow
classical dynamics with averaged force and velocity of
the test particle. These equations are exactly the same as
the equations of motion for the test particle used in BUU
calculations with the classical Vlasov equation. '

The discrimination between quantum and classical
description is related with the constraint on the density
matrix, namely Eq. (14) for the quantum case and Eq. (8)
for the classical case. Since imposing these conditions in
the test particle method is very hard, these have been re-
laxed to satisfy only the Pauli principle represented by
Eq. (50). The condition (14) is more restrictive than the
condition (50) and less restrictive than the classical condi-
tion (8). Therefore, without explicit use of the condition
of Eq. (8), the test particle method becomes the quantum
description of a system, naturally. Furthermore, the re-
laxation of the density matrix condition makes the test
particle method become more like some extensions of
TDHF, which involve more than one Slater determinant,
instead of TDHF itself. The details of the solution de-
pend on what conditions are actually satisfied by the
Wigner function. This is the actual reason why we have
quantum effects (such as diffuse surface) in the test parti-
cle method, not because of using Gaussians for the form
factor as claimed in Ref. 7. Using Gaussians may give a
better answer because we can use a more accurate numer-
ical procedure but not because of any special characteris-

ties of Gaussians.
Through numerical calculations using the simplest

form factor of Eq. (64) (point particle) for the test parti-
cles, we have shown that the test particle method actually
reveals quantum effects in the nuclear density distribution
and even in the multipole vibration modes. Due to the
numerical error related with using point test particles, we
have studied limited observables only. Since Eqs. (38)
and (39) are not the sufficient conditions of Eqs. (36) and
(37), there are some extra missing conditions to be
satisfied by test particles. Furthermore, we have only
shown that Eqs. (46) and (47) are sufficient conditions to
be satisfied by each test particle without any considera-
tion of necessary conditions. There is no clear way to
control the amount of violation of the density matrix con-
dition (p —p). If we can implement the density matrix
condition Eqs. (14) or (8) exactly, then the test particle
method becomes equivalent to the TDHF or the semi-
classical Vlasov calculations, respectively. These points
should be investigated further.
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