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The inadequacy of standard few-body approaches in describing the ~NN system has motivated

searches for the responsible missing mechanism. In the case of md scattering, it has recently been

asserted that an additional short range b,N interaction can account for essentially all the discrepan-
cies between a few-body calculation and experimental data. This conclusion, however, has been

based on calculations where a phenomenological AN interaction is added only in Born term to back-
ground few-body amplitudes. In the present work we investigate the effect of including such a 3 N
interaction to all orders within a unitary few-body calculation of the m.NN system. Besides testing
the validity of adding the hN interaction in Born term in md scattering, our fully coupled approach
also enables us to see the influence of the same AN interaction on the processes NN~~d and
NN ~NN. For md elastic scattering, we find that the higher order b N interaction terms can have as
much influence on m.d observables as the lowest order contribution alone. Moreover, we find that
the higher order contributions tend to cancel the effect obtained by adding the hN interaction in

Born term only. The effect of the same AN interaction on NN~vrd and NN~NN appears to be as

significant as in m.d~~d, suggesting that future investigations of the short range hN interaction
should be done in the context of the fully coupled n.NN system.

I. INTRODUCTION

The study of the ~NN system is of fundamental impor-
tance in intermediate energy nuclear physics. It provides
the opportunity of studying many aspects of pion-nucleus
interactions in a few-body system, which is amenable to
exact solution. In the last ten years, there have been
many attetnpts at describing the trNN system (for recent
reviews see Refs. 1 and 2). Perhaps the most promising
of these are models that describe the mNN system by the
inclusion of pion absorption into an essentially three-
body Faddeev description. " These models respect
two- and three-body unitarity and describe, with the one
set of coupled equations, the processes n.d ~std,
NN ~~d, and NN ~NN. Despite the substantial
amount of physics included in these models, there remain
persistent discrepancies with data. The particularly
well-known discrepancies are over-estimation of the
backward angle ~d ~~d differential cross section at en-
ergies above the 5 resonance; the under-estimation of the
NN~m. d cross section; and the difficulty of describing
most of the polarization quantities in all the three reac-
tions md~a. d, NN~~d, and NN~NN. This situation
has led to a number of speculations concerning the nature
of the underlying pieces of physics that are missing in the
current calculations. One difficulty, recently pointed out
by Jennings, ' is the inadequacy of the current ways of in-
cluding pion absorption. Lamot et a/. ' have em-
phasized the importance of off-shell effects. Afnan and
Blankleider' propose an extension of the current models

to describe the nucleon and delta on an equal footing.
At the same time, Dosch et al. ' ' investigated the

eff'ect that a short range hN interaction may have on the
observables of n.d elastic scattering. Their procedure in-
volves calculating the lowest order contribution, illustrat-
ed in Fig. 1(a), and adding this, in Born approximation,
to partial wave md elastic amplitudes coming from a
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FIG. 1. The Born term contribution of the hN interaction to
the m.d scattering amplitude. (a) represents the short range hN
interaction which is usually missing from most models; (b) is the
corresponding one-pion exchange contribution which is includ-
ed in the few-body calculations of the vrNN system.
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separate few-body calculation of the mNN system. Their
AN interaction is described in a phenomenological way.
By using dispersion techniques, they are able to express
the diagram of Fig. 1(a) in the partial wave form

Bt I(E)= g FL (E)Ta~' a~Fr(E),
L'S'LS

where T~z ' ~z is an on-mass-shell AN t matrix defined
for a zero-width delta. By varying the parameters of this
effective AN t matrix, and by adding to the Faddeev am-
plitudes of Garcilazo's calculation, " they were able to
obtain excellent agreement with all the currently avail-
able md elastic scattering data. ' ' ' Such a bN interaction
should be distinguished from the "indirect" (u channel)
one-pion exchange contribution already included in Fad-
deev calculations, see Fig. 1(b). Rather, the phenomeno-
logical hN interaction represents a shorter range interac-
tion due to "direct" (t channel) meson exchanges and/or
quark-exchange effects. Previously, the influence of a
direct b,N interaction on observables of the ndsyste. m
was investigated in the context of dibaryon resonances.
Evidence for such a short range b,N interaction has also
come from other sources. In the description of inelastic
pion-nucleus scattering within the 6-hole model, a con-
siderable improvement is obtained by introducing a
strong zero-range AN interaction into the s-wave part of
the spreading potential. In addition, calculations at the
quark level predict short range bN repulsion in some
channels.

Although the fitting procedure of Dosch et al. has
been successful in describing md elastic data, a closer
analysis is needed before we can make conclusions about
the significance of their results. A number of questions
arise as to the reliability of their approach. Firstly, the
AN interaction is added only in Born term. One may
wonder how the results are modified if the short range
AN interaction were included to all orders. Because of
the coupling of md elastic scattering to absorption chan-
nels, it is essential to see the effect that the short range
AN interaction has on all the channels m.d ~m.d,
NN~n. d, and NN~NN. In addition, the expression of
Eq. (1.1) does not make it clear how the off-shell behavior
of the AN interaction enters the calculation.

In this paper we try to provide the answers to the
above questions. In our approach, we construct a partial
wave bN potential Vz& '

&z that gives rise to approxi-
mately the same t matrix Tz~~s';z~s~ as constructed by
Dosch et al. As this t matrix is assumed to act between a
nucleon and a zero-width 5, it is further necessary to
modify this interaction in order to take into account the
physical width of the A. Dosch et al. do this by allowing
the b, mass to become complex in the kinematical rela-
tion for the on-shell momentum of the 6, Eq. (3.2). We,
however, choose a dynamical description by assuming
that the potential Vz~ ' z~ acts between a nucleon and a
bare delta; in this way, the delta obtains the proper mass
and width by explicit dressing with one-pion loops. This
potential is then added to the driving term of the few-

body mNN equations of Afnan and Blankleider. By solv-
ing the resulting set of equations, the 4N potential is
iterated to all orders. Indeed, all contributions involving
cross terms between the short range bN potential and
terms of the ~NN multiple scattering series are included
in the solution of the equations. Since pion absorption is
included in the equations, we obtain results for all the re-
actions ~d —+m.d, NN~md, and NN~NN. In our for-
malism it is also simple to investigate the sensitivity of
our results to variations in the off-shell behavior of
rsL'S', LS

We find that adding our hN interaction in Born term
to the few-body vrd scattering amplitude, gives effects of
about the same magnitude as reported by Dosch et al.
The energy dependence of these effects is however
different in the two models. We show that this is prob-
ably due to the above mentioned different ways of taking
into account the finite width of the A. We further find
that the effect of including the AN interaction to all or-
ders can be very significant for the differential cross sec-
tion of md scattering. The AN interaction is also found to
be significant for the differential cross section and 3 0 of
NN~m. d as well as the phase shifts and inelasticities of
NN scattering. This suggests the importance of consider-
ing the short range hN simultaneously in all the reactions
nd +md, NN—~nd and NN~NN.

This paper is organized as follows: In Sec. II we
present the model and describe in detail the construction
of our hN interaction. In Sec. III we discuss our results.
Section IV contains a summary and conclusions.

II . CALCULATION

In a series of papers, Dosch et al. and in particular
Ferreira, Andrade, and Dosch' (FAD) have demonstrat-
ed that the addition, in Born approximation, of a phe-
nomenological AN interaction to md Faddeev amplitudes,
leads to a better agreement with experiment. In this
work our goal is to study the effects of such a hN interac-
tion incorporated consistently to all orders in the descrip-
tion of the ~NN system. Since we are interested in com-
paring the results of our model to that of FAD, we use
input that is similar (although not identical) to theirs.
The details of the mNN model and the hN interaction are
presented below.

A. m.NN model

For the few-body description of the m.NN system, not
including the short range bN interaction, we use the
model of Blankleider and Afnan (BA). Apart from some
modifications discussed shortly, all input and details of
the model are as presented in Ref. 6. Here we therefore
give only a brief discussion, concentrating on the
differences between the present model and that of BA.

For the particular case of separable two-body interac-
tions, the antisymmetrized ~NN equations are given in
operator form by
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gN
Xd d

—Zd gvhXh d+Zd N XNd

, d 5 d 4 d+dXd d+Z5 6 EX' d+Zb N XNd

gN
XN d

—ZN d +ZN dvdXd d +ZN QsQXg d +ZN N XN d

(2.1)
gN

Xd N
—Zd N+Zd &v&X& N+Zd N XN N,

with the corresponding t matrices given by

N, mN I 6& h(hhI f tNN, NN Ihd& d(hdI

Special attention needs to be given to the P» channel be-
cause pion absorption takes place in this partial wave.
We follow BA and parametrize the P» interaction in
terms of a two-term separable potential that describes the
phase shift data up to T =300 MeV, and that gives rise
to a pole in the t matrix at the nucleon mass. Thus,

Xb, N ZQ N +ZQ dvdXd N +Zg g'TgXg N +Zg N

gN
XN N

—ZN N+ZN dvdXd N+ZN gTgXg N+ZN N XN N,

tp =Ihp )rp (hp

where Ihp ) istherowmatrix
11

Ih „&=[Ih &Ih )]

(2.4)

(2.5)

where Xd d, XN d, and XN N are amplitudes for the pro-
cesses m.d~m. d, n.d~NN, and NN~NN, respectively.
The equations also involve the off-shell amplitudes Xz d
and Xz z describing intermediate state b, formation via
the processes nd-Nb and NN~Nh. The Z ampli-
tudes in Eqs. (2. 1) are the corresponding lowest order
contributions. We note that the 5 subscript in Eqs. (2.1)
refers to a n.N quasiparticle in any partial wave, although
for the rest of this paper the symbol b, is indeed intended
to mean the P» resonance. Similarly the d subscript in
Eqs. (2.1) refers to an NN quasiparticle in any partial
wave. We also note that, at this state, all amplitudes of
Eqs. (2.1) are not properly normalized. However, only a
further multiplication by two-body bound state normali-
zation factors is needed to yield the physical amplitudes
Td d, TN d, and TN N. The input to the mNN equations
(2.1) consists of partial wave separable potentials for the
reaction ~N~mN, as well as for NN~NN below pion
production threshold. For the partial wave mN, and NN
potentials (excluding the n.N P„pole term), we respec-
tively write

and ~z is a 2 X 2 matrix. The form factors
ll

h;(k) =(k Ih; ) (i = 1,2), as indeed all our input form fac-
tors, are parametrized with the Yamaguchi form

Ck'h(k)=
(k +P )"

(2.6)

Our fit to the P» phase shift is shown in Fig. 2(a}, the
corresponding form factor parameters are given in Table
I. The t matrix can be written in terms of pole (P} and
nonpole (NP) parts

P NP (2.7)

(e+p?.)

tp (e)= tp (e),
11 2e 11

(2.g)

Although the exact form of this "splitting of the P&,
" is

specified within the unitary theory, other forms are some-
times taken for the sake of simplicity (although at the ex-
pense of exact two- and three-body unitarity) ~ Here we
depart from BA and adopt a prescription that is the non-
relativistic analog of the one used by Garcilazo:
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FIG. 2. Fitted mN phase shifts in channels (a) P11 and (b) P33 The corresponding potential parameters are given in Table I.
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(e —m~)
11 2e I 1

(2.9)

We note that, with the form factors as defined above, the
Z amplitudes of Eqs. (2.1) can be written in operator
form as

Z p=F 13(h IGOIhp), a, l3=h, d, N, (2.10)

where G0 is the vNN free Green's function, and I'
I3 is a

constant arising from the antisymmetrization of the nu-
cleons.

We also depart from BA and describe the P33 interac-
tion in terms of an elementary delta particle that is
dressed by mN rescattering. In particular, we take the
potential term as

1

33 e —m0~
(2.11)

Here e is the total energy available in the m.N c.m. system
and mz is the nucleon mass. We deem this prescription
more appropriate as Garcilazo's model was used to pro-
vide the background amplitudes in the work of FAD. A
further advantage of this prescription is that it makes the
separate contributions of the pole and nonpole pieces
small —an empirically motivated choice that provides a
better description of tzo. In the notation of Eqs. (2.1),
we have, in the P» channel,

(e+m~)
rp (e),

2e

(e —m~)
ra(e) —= r~ (e),

2e

8. 4X interaction

The second part of our model involves constructing the
short range AN interaction. Let us recall that the poten-
tial of Eq. (2.11) leads to the off-shell nN c.m. t matrix

tp (k', k;e)=h~(k'„)r~(e)h~(k ), (2.12)

%'e note that, as in Ref. 6, we use relativistic kinematics
for the pion and nonrelativistic kinematics for the nu-
cleons.

The lowest order contribution to ~d elastic scattering
involving an intermediate hN state, will be called the
Born term Bd d. Likewise, the lowest order contribution
involving a short range bN interaction, illustrated in Fig.
1(a), will be called the b,N Born term Bd d Nu. merically
they are given by

~d, d(E) Nd f "dp p'Zd, a(p p

XZz d(p, p;E),
&d d(E) =Nd f dp'dp p'p'Zd ~(p,p', E)ra(e')

(2.14)

X Tzz(p', p;E)r~(e)Z& d(p, p;E),
(2.15)

where Nd is the deuteron wave function normalization
factor, and TaN(p', p;E) is the short range o+shell hN t
matrix. The total two-body c.m. energy e is related to the
total energy E and the relative AN momentum p by

where

ra (e)=e —mz
—

1 0

hq(k)
dk k~

0 e —(k +m„)' k12—m~ —m~

(2.13)

where m z is the bare delta mass. The range and strength
of the form factor hz(k) are chosen in order to fit the P33
phase shifts as we11 as the 6 resonance width. At the
same time, the bare mass is chosen to ensure that the re-
sulting t matrix has the resonance pole at
m& =1211—i50 MeV. The parameters of our best fit are
given in Table I. By contrast, we note that BA used an
energy independent P33 potential. Our present descrip-
tion is closer to the chiral bag interpretation of the h.
Within this interpretation, the elementary hN interaction
is viewed to take place between the nucleon and the bare
delta.

e=E — — —m& .
2m~ 2(m~+m )

(2.16)

We assume that Taz(p'p;E) results from an underlying
energy-independent potential V~~(p', p) between a bare
delta and a nucleon. Furthermore, we assume that
V ~(p', p ) is separable:

V~N(P', P ) =hen, (P')Aaxhan, (P) . (2. 17)

We relate V&z(p', p) and T&&(p',p;E) by a Lippmann-
Schwinger equation with a dressed 6 propagator defined
as in Eq. (2.13),

P, ifm ') m, (MeV)n,

TABLE I. Form factor parameters of Eq. {2.6) for the n.XP„and P33 separable potentials. The cor-
responding fits to ~X phase shifts are shown in Fig. 2.

I —2n + I
Channel C, (fm' '

) I,

Pll (i =1)
Pll (i =2)

759.367 2
1.105 6
0.566 84

3.50
3.555
1.076 875

—1
—1

{e—mo~) 1391.08
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T~w(p', p;E) = Var(p p)

+f dpp
0

X Ta~(p",p;E) . (2.18)

The separability assumption allows one to solve Eq. (2.18)
algebraically. Thus

T~~(p', p;E)=h q~(p')r~~(E)h~jv (p),

where

ra~(E) =~g~ —f dp p'h'a~(p) ~~( e) .
0

(2.19)

(2.20)

Equation (2.19) enables one to write Eq. (2.15) in the sim-

ple form

Bd d(E)=Fd a(E)TaN(po po, E)F~ d(E), (2.21)

where

00 h~x(p)
Fd a(E) =

Nd d—p p Z~ a(p„,p;E)ra(e)
0 EN(PO )

(2.22}

and po is some as yet unspecified AN relative momentum.
At this stage we note that Eq. (2.21) is formally the same
as the corresponding expression, Eq. (1.1), as used by
FAD. However, the starting point for the two calcula-
tions is very different. FAD use a covariant formalism in
which the F function, corresponding to our Fd a(E), is
calculated in terms of dispersion relation. Perhaps an
even more fundamental difference is in the way the AN t
matrix, corresponding to our Taz(po, po', E) is treated in
the two models. Here FAD describe the inherently off-
shell AN t matrix in terms of an effective on-shell t ma-
trix,

T~w(p' p'E)= Var(p'' p)

+ f dp "p"Va~(p p")G.~(E p")
0

X Tax(p P E} . (2.24)

where the parameters of Va~(p', p) are varied in order to
minimize the difference between np—~~po Ta~(po, po;E)
and Tz~(E). The —vrp~~po factor is needed as we use
the convention of Goldberger and Watson; here, as
later, we use a tilde on quantities that are expressed in the
conventions of FAD. In the above we use nonrelativistic
kinematics for the nucleon and delta, thus

mgmN
PAN + N

2

Ga~(E,P ) =E+— —m~ —m q,
I b, N

(2.25)

(2.26)

is the free AN propagator, and the on-shell momentum po
is defined by

2

+mN+mg
po

2p
(2.27)

We note that this way of constructing Taz(E) gives no
inelasticity (i.e., ri= 1), and because we do not introduce
complex momenta, our on-shell t matrix is strictly zero
below the hN threshold (T =150 MeV). Although nei-
ther of these restrictions are imposed in the FAD model,
their 'P3 amplitudes are purely elastic while the S2 ones
show substantial inelasticity only below T =200 MeV.
We therefore make contact with their model only in the
restricted energy region 200& T &300 MeV, where the
inelasticities of the FAD amplitudes are close to zero.

For the purposes of fitting to the FAD amplitudes, the
form factors ha&(p) are parametrized in terms of
Yamaguchi forms, as in Eq. (2.6). It is found that one

Tq~(E) =—(rie ' —1),1

2L
(2.23)

0.6 0 6 I t ~ I ] \

where the on-shell hN momentum is taken to be complex
(we elaborate on their approach in Sec. III}. It is Taz(E)
that FAD treated as a complex parameter to fit md elastic
scattering data. By contrast, our F function is calculated
nonrelativistically, and our t matrix Taz(po, po;E) arises
dynamically from an underlying hN potential. In addi-
tion, both Fd a(E) and T~~(po, po;E) are dependent on
the form factor h~~(p) and are thereby coupled.

We now would like to construct our potential
V~~(p', p) by fitting to the AN interaction of FAD.
However, because of the above-discussed differences,
there is no unique way in which this is to be accorn-
plished. We choose to proceed in the spirit of the FAD
model, and assume that the amplitude T~~(E) can be de-
scribed by the scattering of a nucleon and a stable 6 of
mass mz =1211 MeV. The underlying potential will then
be identified with Vzz(p, p). It is now natural to identify

po with the on-shell momentum of the stable 5 particle.
Thus we solve the equation

0.4
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4 4
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0
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FIG. 3. The real and imaginary parts of the (zero width 6)
AN t-matrix T ~~ in channels (a) 'S& and (b) 'P3. The solid lines
are our fits obtained by solving the scattering equation (2.24).
The open squares and solid circles are the real and imaginary
parts of T ~&. as given in Ref. 19, which here are taken as data.
We note that in the energy range 200—300 MeV, both 'Sz and
'P3 t matrices correspond to elastic AN phase shifts of approxi-
mately 30 .
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TABLE II. Form factor parameters of Eq. (2.6) for the bN
separable potentials corresponding to the fits shown in Fig. 3 ~

Channel

S
5p

C, (fm' '
)

1.955 253

5.989 537

P; (fm ')

2.913668

2.130922

n,

0 1

1 2

III. RESULTS AND DISCUSSION

In the work of FAD, the effect of the AN interaction
was investigated for m.d elastic scattering only. To make
contact with their work, we first describe our results for
m.d elastic scattering, and then show the effect of this in-
teraction on pion production and on the NN phase shifts.

term separable potentials are sufficient to provide reason-
able fits in the above-mentioned energy region. The fits
for both S2 and P3 partial waves are shown in Fig. 3
where we compare with the AN amplitudes of FAD. The
corresponding parameters are given in Table II.

Once the bN interaction is constructed, it may be in-
cluded into the few-body calculation to all orders by sim-

ply making the replacement

Zq q(p', p;E)~Zq q(p', p;E)+ Vqjv(p', p;E) (2.28)

in the Eqs. (2.1).

A. md~a. d

where pz is the on-shell hN momentum given by

p = [(E +m —m ) 4E m—]'1

2F. N (3.2)

with m&=1211 MeV. In Eq. (3.1), g&„z is the bnXcou-
pling constant (g&„~=257 GeV ) and fJ is a recou-
pling coefficient equal to —,

' for the S2 channel and —,', for
the P3 channel. Comparison with our formulation of
Sec. II immediately gives the relationship between our F
factor Fd ~ and the one of FAD, Fd ~.

2
2 —2 2 pn. I AN -D 2

Fd, ~
= ,'g ~x.fJ-— (Fd q)

mgmN P
(3.3)

We shall use Eq. (3.3) to compare the F factors of the two

Having constructed our S2 and P3 hN potentials by
fitting to the FAD phase shifts, it is interesting to com-
pare the actual AN Born term, Bd d, used in the two mod-
els. The connection between the models can be most
clearly obtained in the limit of a zero width A. In this
limit the Born term in the FAD model is expressed as'

TD

' m, m„ I .„" ~I,~Re(p, )
'

(3.1)
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FIG. 4. Comparison of our 'S2 and 'P3 vertex functions Fd ~ (solid lines), defined in Eq. (2.22), with the ones of Ferreira et al.
(Ref. 19) (dashed lines). For this comparison, the results of Ref. 19 have been shifted by 25 MeV towards the higher energies, and Eq.
(3.3) has been used to relate the different conventions.
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models also in the case of a dressed b, . This is reasonable
as the effect of the dressing is expected to be contained
not in the conversion factors, but inside the loop integral
expressions for the F factors themselves. In Fig. 4 the F
factors are shown where, for the purposes of comparison,
the results of FAD were taken from Ref. 19 and shifted
by 25 MeV in the positive T direction (although the ori-
gin of this shift is unclear, it is small on the energy scale
of interest, and might for example be due to the different
treatment of recoil effects). Apart from the overall 25
MeV shift, the real and imaginary parts of the I factors
are very similar in the two models. For the P3 channel
we recall that our F factor, given by Eq. (2.22), goes to
infinity as the on-shell (zero-width) 6 momentum, po, ap-
proaches zero (T„=150MeV). As shown in Figs. 4(c)
and 4(d), there is nevertheless a good agreement above
180 MeV with the F factors of FAD. The close similarity
of the I factors in the two models enables us also to use
Eq. (3.1) to compare the corresponding b,N t matrices in

the case of a dressed A. In our model we implement this
dressing dynamically As disc.ussed in Sec. II, this means
that we start with an underlying potential between a bare
6 and a nucleon, and then generate the dressing by ex-
plicitly calculating pion loops. By contrast, FAD imple-
mented this dressing through a prescription where m z in

Eq. (3.2) is taken to be complex (ma =1211—i50 MeV).

These two radically different ways to obtain the AN t ma-
trix for a dressed 6 may now be compared using the rela-
tion

Tt~(E)
Tt n (po p'o'&) =

1' a Re(p g )
(3.4)

which follows directly from Eqs. (2.21), (3.1), and the
identification of Eq. (3.3). This comparison is presented
in Fig. 5 where, for consistency with the E-factor com-
parison, we have added 25 MeV to T„ in the results of
FAD. In contrast to the close similarity of the I' factors,
the AN t matrices differ markedly especially at the lower
energies. Below 200 MeV this may be partly due to the
already substantial differences in the zero-width AN t ma-
trices (Fig. 3). Above 200 MeV, however, the differences
can only be attributable to the different handling of the
delta dressing. In this respect we conclude that the
prescription used by FAD to take into account the dress-
ing of the delta, is not compatible with a dynamical ap-
proach.

Having discussed the numerical differences between
our calculation of the AN Born term and the one of
FAD, we now turn to our main goal of investigating the
effect of adding the AN interaction to all orders in the
~NN system. At first, we follow FAD and add the 'S2
and P3 b,N interactions only in Born approximation to
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FIG. 6. The md differential cross sections at pion lab kinetic
energies of 140, 180, 217, and 256 MeV. The solid curves are
the results of our unitary m.NN calculation with no short range
hN interaction. The results of adding the AN interaction in
Born term are given by the dashed lines, while adding it to all
orders is given by the dotted lines. The dash-dotted lines result
when we use the AN t matrix of Ferreira et al. (Ref. 19) and add
it in Born term to our background amplitudes. Data are from
Refs. 28 and 29.

our background few-body amplitudes. That is, Bdd is
numerically added to the few-body amplitude Tdd in
both the J =2+ and J =3 channels. The resulting
effects for ~d observables are presented in Figs. 6 and 7
where we show the differential cross section and the vec-
tor analyzing power iT„ for four energies spanning the
delta resonance region. We shall not explicitly show the
tensor polarizations since, in their case, the effect of the
AN interaction is small, especially compared to the un-
certainties in the current experimental data. In Figs. 6
and 7, the solid line corresponds to the calculation
without 4N interaction, and the dashed curve is the re-
sult of including the AN interaction in Born term. For
lab pion kinetic energy T = 140 MeV the effect of adding
Bd d is to increase the differential cross section at back-
wards angles bringing it into agreement with the data.
At T =256 MeV addition of Bd d decreases the
differential cross section at backward angles, and thus
resembles the effect obtained by FAD. In other words in
our case the bN interaction has the opposite effect at
T =140 as compared to T =256 MeV. FAD do not ob-
tain this behavior; in their case the effect of Bd d always

—0.3

—0.5 I I I I I

0 30 60 90 120 150 180
8 (deg )

FIG. 7. The md vector analyzing power iTll. We use the
same notation as in Fig. 6. Data are from Refs. 30 and 31.

has the same sign, namely it always lowers the differential
cross section at backward angles. This discrepancy with
our energy dependence of the hN effect is not surprising
considering the differences in the underlying AN interac-
tion, as illustrated by Fig. 5. Indeed, if we add to our 140
MeV amplitudes the b,N Born term of FAD, constructed
directly from Eq. (3.1) with ma complex in Eq. (3.2), we
obtain the dash-dotted curves in Fig. 6, showing a very
similar effect to that reported by FAD.

Looking at the influence of the short range b N interac-
tion on iT», Fig. 7, we observe a very large effect at the
higher energies. Further examination shows that this
effect comes mainly from the change in the J =3 ampli-
tude brought about by adding Bd d. Within their model,
FAD obtained a much smaller effect. To clarify the ori-
gin of this behavior, we may again construct FAD's Bd d
and add it to our amplitudes. The result is shown as the
dash-dotted line in Fig. 7. Once more this resembles the
effect obtained by FAD (of course since we add the FAD
Born term to our background amplitudes, we do not ex-
pect the effect to be completely the same as reported in
Ref. 19). The conclusion to be drawn is that the observ-
able iT» can be very sensitive to relatively small changes
in the 3 amplitude, and therefore one should take care
in attaching significance to the fitting of this observable
within a given model ~

The effect of including the constructed hN interaction
to all orders inside the few-body calculation is now indi-
cated by the dotted lines in Figs. 6 and 7. Comparing
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these results with the ones where the bN interaction has
been added in Born term (dashed curves), it can clearly be
seen that the addition in Born term generally overesti-
mates the effect of the AN interaction. In fact, except for
the cross section around 217 MeV, the effect of the itera-
tions can be as important as the effect of the Born b,N in-

teraction itself. We therefore believe that if the AN in-

teraction is to be included phenomenologically by fitting
the data, the fully iterated amplitudes must be used for
the fit.

As shown in Fig. 7, the effect of the iterations for the
vector analyzing power iT» appear to be smaller than for
the differential cross section. On the other hand the
iterations are not negligible, especially when compared
with the small uncertainties in the new data of Ref. 31.

As compared to Ref. 19, one feature of our dynamical
approach is that our Born term of Eq. (2.21) in principle
depends on the off-shell behavior of the hN interaction.
This can explicitly be seen in Eq. (2.22) for the F func-
tion, which contains hzz(p), the form factor of the separ-
able AN interaction. In the approach of FAD, however,
the Born term depends only on the on-shell AN t matrix.
To test if this underlying assumption is correct, we have
tried various forms of the form factors hzz(p) that result
in the same fits to the b,N data as shown in Fig. 3. We
indeed find that different forms for hz~(p), e.g. , sum of
two monopoles or rank-2 separable potential form fac-

tors, lead to no significant changes of the final results,
and in this sense we find the FAD model consistent.

B. NN~md

The next part of this work consists of examining the
effect of the hN interaction on pion production and on
the NN phase shifts. Since these channels are coupled to
the md system, one should simultaneously consider them
in judging the effect of any additional interaction on the
m.d system. Here we examine the effect of our construct-
ed AN interaction on the observables of pp~~ d. The
deficiencies of conventional mNN calculations for
NN~nd are well known. ' The differential cross sec-
tions tend to fall below the data in most models, as do the
polarization correlation parameters +zz +yy and A».
The discrepancy in the correlation parameters is thought
to be indicative of a missing strength in the triplet NN
channels. The analyzing power A 0 also tends to be bad-

ly reproduced, although in this case this is a particularly
diScult task because of the many important interference
terms that go to make up this observable. Considering
the deficiences of the standard calculations, it is therefore
particularly interesting to see the effect of the AN interac-
tion on NN ~md observables.

In Figs. 8-13 we show the differential cross section
and polarization observables for nucleon lab kinetic ener-
gies T&=567, 647, 721, and 800 MeV. We emphasize
that these pion production results and the md elastic
scattering results discussed above have been calculated
simultaneously from the same set of coupled equations,
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FIG. 8. The differential cross sections of pp~m+d at proton
kinetic energies of 567, 647, 721, and 800 MeV. The solid
curves are the results of our unitary m.NN calculation with no
short range hX interaction. The successive addition of the 'S2
and 'I'3 AN interactions (both included to all orders) are given

by the dashed and dotted lines, respectively. Data are from
Refs. 32—34.
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FIG. 9. The analyzing power A o in pp~m+d. We use the
same notation as in Fig. 8. Data are from Refs. 35—37.
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FIG. 10. The correlation coefficient A,„ in pp~m d. We
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FIG. 12. The correlation coefficient Ayy in pp~m+d. We
use the same notation as in Fig. 8. Data are from Refs. 40 and
41.
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FIG. 13. The correlation coefficient A„ in pp~a. +d. We
use the same notation as in Fig. 8. Data are from Refs. 39 and
40.
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Eqs. (2.1). Thus the four energies for Tz correspond
directly to the four energies for T in Figs. 6 and 7. In
each case the solid curves are the results of the few-body
calculation without the hN interaction, and the dotted
curves are the results where both the S2 and P3 hN in-

teractions are included to all orders. In Figs. 8—13 we
also show the results of including just the S2 b,N interac-
tion to all orders (dashed curves).

From Fig. 8 we see that the effect of the AN interaction
on the differential cross sections is strongly energy depen-
dent. As in the case of md elastic scattering, below the 6
resonance the effect of the AN interaction is to increase
do /d Q, bringing it close to the data, whereas at higher
energies the effect is reversed. Although in general the
effect of the hN interaction is substantial, this strong en-
ergy dependence leads to a "cross over" energy, at
around T&=721 MeV, where the hN interaction has
minimal effect. This cross over energy was also seen in
md~md, and moreover, it was at the same three-body
c.m. energy (equivalent to T =217 MeV). This is not al-

together surprising since the energy dependence of both
processes is basically determined by the 6 resonance. As
an illustration of this underlying mechanism, consider the
F factors of Fig. 4. When plotted in the argand plane,
they display the characteristic looping behavior of a reso-
nance. In this respect we note that the Born term contri-
bution of the AN interaction to NN ~md is
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which is the equivalent Eq. (2.21) for md scattering, and
has its behavior likewise influenced by the looping F fac-
tors. Figure 8 also displays the expected result that the
contribution of the s-wave hN interaction to the cross
section is substantially larger than the p-wave contribu-
tion.

The effect of the hN interaction on A 0 is shown in
Fig. 9. The usual overestimation of A o at the higher en-
ergies is made worse by the addition of the AN interac-
tion. This observable is very sensitive to fine details of a
model, and, at this stage, not too much significance
should be placed on the resulting large discrepancy with
experimental data. Closely related to A 0 is the correla-
tion parameter A„„displayed in Fig. 10 (essentially they
are, respectively, the imaginary and real parts of interfer-
ing scattering amplitudes). For both these observables we
obtain substantial sensitivity to the b,N interaction with a
significant amount of cancellation between the Sz and

P3 contributions.
A more serious discrepancy with data exists for the

correlation parameters A Ayy and A As seen from
Figs. 11—13, for A„and A„ there is a very large
amount of cancellation between the S2 and P3 bN con-
tributions, and Ayy appears very little affected by either
of these. Since the original AN interactions were con-
structed phenomenologically, there is little reason to be-
lieve that these cancellations are in any way fundamental.
On the other hand our results indicated that it is unlikely
that AN interactions, not too different from ours, will
resolve the long standing problem with the correlation
parameters in NN ~md.
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FIG. 14. The NN phase shifts 5 and inelasticities g as a func-
tion of the nucleon lab kinetic energy. The solid curves are the
result of our unitary ~NN calculation with no short range AN
interaction. Including the short range AN interaction (to all or-
ders) results in the dashed curves —the 'S2 interaction contrib-
uting to the 'D2 NN channel, (a) and (b), and the 'P& interaction
contributing to the 'F& NN channel, (c) and (d). The data are
from Amdt et al. 's phase shift analysis program sAID (1988 ver-
sion, Ref. 42).
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C. NN~NN

For NN elastic scattering we may take advantage of
well established partial wave analyses in comparing our
results with experiment. As we are interested to see the
effect of the S2 and P3 AN interactions, we restrict the
discussion to NN scattering in the 'D2 and F3 channels.
In Fig. 14 we compare our phase shifts 5 and inelastici-
ties g with the results of the partial wave analysis of
Amdt et al. The standard few-body calculation, solid
line, is only able to reproduce the gross features of the ex-
perimental results. At this stage it should be remembered
that the present calculation generates the NN force pure-
ly through pion and nucleon exchanges. In particular we
have not included the various heavy meson exchanges
and therefore important contributions to the short and
intermediate range NN interaction are missing from our
calculation. It should also be noted that part of the
inadequacy in the NN elastic channel, particularly the
small inelasticities, originates in the missing strength in
the NN ~md channe1. This may, to some extent, be seen
on the inclusion of the short range AN interactions. The
results including both the S2 and P3 AN interactions
are presented as the dashed curves in Fig. 14. Although
the effects of this addition are small compared to the
large discrepancy with the data, the sensitivity to the AN
interaction is of similar magnitude to that seen in both
~d~~d and NN~n. d. Although the inelasticities are
mostly increased by the AN interactions, the S2 AN in-

teraction decreases the 'D2 inelasticity above 800 MeV
incident nucleon energy. This behavior may be a
refiection of the energy dependence of the AN interaction
seen in Fig. 8 for the NN~md cross sections. This sug-
gests a strongly coupled and significant role for the AN
interaction in describing both NN~~d and NN elastic
scattering.

IV. SUMMARY

We have investigated the effect of including a S2 and
'P3 AN interaction into a fully coupled few-body calcula-
tion of the reactions md~md, NN~vrd, and NN~NN.
The AN interaction was taken to be separable and was
constructed from the parametrization of Ferreira et al. '

(FAD). In this sense our model endeavors to extend the
work of FAD, who examined the effect of the lowest or-
der AN interaction on the observables of ~d scattering.
In particular, we have examined the effect of including
the AN interaction to all orders, and besides m.d scatter-
ing, we have also investigated the effect of the same AN
interaction on pion production and NN elastic scattering.

For ~d elastic scattering, our expression for the lowest
order b,N contribution is given by Eq. (2.21) and agrees
formally with the one of FAD. Moreover the F factor,
which basically describes the md ~AN amplitude, is nu-
merically very similar in both models. However, despite
similar input, our effective AN interaction differs
significantly from the one of FAD. This is mainly due to

the different ways the finite width of the A is taken into
account in the two models. FAD parametrize the in-
teraction between a stable A and a nucleon in terms of
scattering Sz and P3 phase shifts. They then include
the effects of an unstable A by allowing its mass to be-
come complex in the kinematical relation of Eq. (3.2). In
our model we use the FAD phase shifts to describe the
interaction between a bare A and a nucleon. The effective
AN interaction for a physical delta is then obtained by ex-
plicitly dressing the bare A with one pion loops.

For m.d scattering where the AN interaction is added in
Born term, this difference in the AN t matrices results in
a different energy behavior for the AN effect in the two
models. The magnitude of the effect, however, is similar.
Both for nd differential cross sections, Fig. 6, and to a
lesser extent for iT,

&
Fig. 7, we find that the iteration of

the AN interaction is important, particularly at energies
away from about 217 MeV pion kinetic energy. It seems
likely that an analysis, like the one of FAD, where one
fits the AN interaction to observables of the ~NN system,
would yield significantly different results depending on
whether the AN interaction is added in Born term or
whether it is included to all orders.

For NN ~~d, we find that the effect of the AN interac-
tion is particularly significant for the differential cross
section, Fig. 8. Most standard few-body calculations
have di%culty in describing this observable, and our re-
sults suggest that it might be important to include such a
short range AN interaction in future calculations of pion
production. Although the analyzing power A 0 is also
sensitive to the AN interaction, other polarization observ-
ables appear to be less so. Thus the long standing prob-
lem with the correlation parameters A Ayy and A„
does not appear to be solvable by the introduction of a
AN interaction, and some other mechanism needs to be
sought.

The sensitivity of NN elastic scattering to the AN force
was found to be small but also significant. However, in
our calculation one needs to include major contributions,
most likely heavy meson exchanges, before one can come
closer to the results of experimental data.

Perhaps the most important conclusion of our study is
that a AN interaction, if its magnitude is not too different
from the one proposed by FAD, will significantly affect
all the coupled processes of m.d —+md, NN~n. d, and
NN~NN. As mentioned in the introduction, there are a
number of mechanisms, usually missing from current cal-
culations, which can affect mNN observables, and which
need to be carefully investigated before definite con-
clusions can be made about the true strength of the AN
interaction. In this sense, the complete coupled descrip-
tion of ~NN will be essential to discriminate among the
possible additional mechanisms.
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