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Relativistic analysis of meson exchange currents in elastic electron-deuteron scattering
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The pay and coo.y meson exchange current contributions to the deuteron form factors are calcu-
lated in a relativistic quasipotential one-boson-exchange model. Recoil corrections to the two-body
EM current operator are kept. It is shown that a substantial reduction of the p~y graph occurs
especially at high momentum transfer as compared to the usual nonrelativistic treatment, where
only leading-order terms in p/M are retained. As a consequence, the cozy contribution becomes
also important at high momentum transfer. Using the value for the cary coupling constant from a
relativistic quark model, the elastic EM form factors are predicted in reasonable accordance with
the experimental data.

I. INTRODUCTION

In the past considerable effort has been made to recon-
struct two nucleon interactions from the nucleon-nucleon
scat tering data. Besides more phenomenological ap-
proaches such as in the case of the Reid interaction,
within a meson theoretical framework a highly successful
description has been achieved from the two nucleon in-
teraction which is able to describe the nucleon-nucleon
data up to a few hundred MeV Lab energy. Additional
information can in principle be extracted from the study
of elastic electron scattering on nuclear systems, the
deuteron being the most simple one. However, with in-
creasing energy and momentum transfer effects of subnu-
cleonic degrees of freedom and special relativity are ex-
pected to play an important role.

Several estimates have been made in the literature of
the mesonic exchange current (MEC) contributions. For
the deuteron the so-called pair term and the pray graph
contribution have been shown the most important ones.
Within a nonrelativistic approach these calculations ap-
pear to agree very well with the Saclay' and the SLAC
(Ref. 2) data, but the MEC corrections tend to shift the
dip to too high momentum transfer as compared to the
recent SLAC data for the magnetic form factor. On the
other hand, from studies of relativistic models in the
relativistic impulse approximation based on the one-
boson-exchange (OBE) approach, it has been clear that a
consistent treatment of both the nucleon-nucleon dynam-
ics and the electromagnetic (EM) interaction is needed in
order to get a reliable estimate of the effects of special re-
lativity. In particular, the pair term is grossly canceled
by a correction, depending on the XX dynamics. There-
fore an analysis of the MEC contributions within a rela-
tivistic approach is obviously of interest.

In the usua1 treatment of the MEC contributions it is
implicitly assumed that the kinetic motion of the nu-
cleons can be neglected as compared to their mass. As a
consequence the resulting effective EM operator becomes
a local one and therefore facilitates the computation of

these contributions. However, at higher momentum
transfers such an approximation is expected not to be val-
id any more and recoil corrections have to be included.
In this paper we study the relativistic two-loop p~y con-
tribution within a quasipotential OBE model, in order to
see how well such a local approximation is. In addition,
since we are using the same strong vertex form factors in
both the EM calculation and the nucleon-nucleon dy-
namics the analysis is at least consistently done within a
same model. Recently an estimate was made of the
effective cozy coupling due to vacuum polarization
corrections in a relativistic quantum hadron dynamical
(QHD) model, indicating that such a contribution to
MEC may also be important. For this reason we have
also examined in our relativistic model the cozy graph.

In Sec. II we give the relativistic expressions of the ver-
tex operator of the pm. y graphs including the boost
effects. The helicity formalism is used to describe the
deuteron wave function. Employing a quasipotential ap-
proximation the current is simplified in Sec. III. In par-
ticular the nonrelativistic limit is discussed. The results
of the fully relativistic calculations are described in Sec.
IV. Negative energy state contributions and boost effects
are found to be small, rendering the so-called static ap-
proximation to be good. Compared to the usual nonrela-
tivistic calculations based on the effective local EM two-
body operators, the magnetic form factor of the p~y
graph falls much faster. The result is that the deuteron
magnetic form factor is less sensitive to the pvry contribu-
tion as usually found. For the electric form factors of the
MEC the effects are not as large but still substantial. The
coo.y graph is discussed in Sec. IV. With the chosen cou-
pling constant, the contribution is found to be important
and comparable to the p~y contribution. The coo.y MEC
brings the deuteron EM form factors in better agreement
with the experimental data. For the deuteron form fac-
tors the complete results including the impulse approxi-
mation (IA) are described in Sec. V. We also investigate
in this section the sensitivity of the IA to the different nu-
cleon form factors. In the final section some concluding
remarks are made.
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II. THE pgy GRAPH

In the one-photon exchange approximation, the elastic
EM form factors of the deuteron can be expressed in

terms of the deuteron current. Denoting the deuteron
bound-state wave function with total four momentum P
and polarization M by ~P, M ), the current matrix ele-
ment is given by

(P', M')J„(q)~P, M) = f d p f d p' CI(D '(p', p')Sz(p', P')I (q, p', p', p, p)S2(p, p)CI'D '(p;P),
D 7T

(2.1)

I (q)=e(F, y„+ F2o„,q') .
2 N

(2.2)

The deuteron vertex function 4z ' satisfies the homo-
geneous Bethe-Salpeter equation, which has formally the
form

e' '=vs e' ',D 2 D (2.3)

where V represents the interaction between the two nu-
cleons. For the relativistic OBE model the normalization
of 4D 'is given by

where Sz(p, p)=i()p+gf —m) 'i()P —
gl

—m }
' is the

two nucleon Green's function and I „ is the EM vertex
operator at momentum transfer q, while p,p' are the rela-
tive four momenta in the initial and final state. In the im-

pulse approximation I „ is simply related to the one nu-

cleon current operator. It is given in that case by
(2~) I „(q)S' '

( —,'P'+p')Alp' —p —
—,'q), where the EM

coupling is given by

g N)viI(P)l'ql'„r'&"~tI(P ),
T

IIII'=gIIvv(I(P) 'V) (r) () r'P"iI(p ) (2.5)

2m

with E'o&23= —1 and where the strong meson-nucleon
form factors F are assumed to be of the monopole form

F (k)=F (k)=(1—k /A ) (2.6)

with A the cut-off mass. For the form factor of the pry
vertex we use vector dominance, " i.e.,

F (k)=(1—k /m ) (2.7)

where m is the mass of the cu meson. For the vertex of
Fig. 1(a) we have

2P„BM,M' 3 fd p 4D™p;P)
4a

X S (p, P} C)™(p;P)
I'=M'

D

(2.4)

k k
X —g + ep p q'k l s(2)P r) r2,

P7l
p

(2.8)

-P —p
1
2

1pI I
2

-p —p
1
2

1 pI
2

kp

kp

1p+ 1pI +2
1p+ 1pI + I

2

in accordance with the correct value of the current at

q =0. In a relativistic field theory ' based on meson ex-
changes, the elastic EM form factors have been studied in
detail in the impulse approximation using both the
Bethe-Salpeter equation and quasipotential approxima-
tions to it. Contributions due to meson exchange
currents have been examined in the literature, ' show-
ing that the pay graphs given in Fig. 1, contribute
significantly at high momentum transfer. The structure
of I „for the pay graph can be found from the following
Lag ran gians:

where

C...=eg,"~IIg'.&Iv
' 'F.(k )FI(kI )

Pl
p

XF,, (q)b, (k )b, (k ) (2.9)

and A„and 6 are the scalar part of the propagators of
the n. and p meson, i.e., h„=(k —m„) '. The expres-
sions for Fig. 1(b) are very similar: just replace k and k
by the ones defined in Fig. 1(b). Due to the antisym-
metric Levi-Civita symbol e„& the p~y MEC contribu-
tion satisfies gauge invariance.

The analysis of Eq. (2.1) proceeds in a similar way as in
Ref. 4 for the single nucleon current operator. To relate
the current operator to the EM form factors it is con-
venient to calculate Eq. (2.1) in the Breit frame, i.e.,
P+P'=0. From P+q=P' follows that P'= —P= —,'q
and qo=0. Since the deuteron vertex function is most
easily obtained from the dynamical equations in the c.m.
frame, a boost transformation to the Breit system is need-
ed. We have

FIG. 1. The pm. y meson exchange current diagrams. +(M)(p p )
—

i()
( 1 )(+ )A(2)(+ )(p(M)(+ )p + )p ) (2.10)
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S(p, P)=A(X)S(X 'p, X 'P)A '(X), (2.1 1)

where L ' is the Lorentz transformation to the c.m.
frame and A(X ) = A' ' '(X )A' '(X ) the corresponding

boost operator for spin- —,
' particles. Let us now define the

intrinsic c.m. variables k and k '
by k =L p and

O'=L' 'p'. We may now shift all the effects of the
boosts to the EM operator I „. As a result we can rewrite
the current [only the contribution of Fig. 1(a)] to

(P', M'~Ji„'"r(q)~P, M) =
ti d k Jd k'4 ' '(k', P, )S (k', P,' )I „"(q,k', k)S (k, P, )4' '(k;P, ),

2MD (2ir )

(2.12)

where

I I„"(q,k', k)=A '(X')I „'' (q,p', p)A(X) .

Taking q=(o, o, q) the Lorentz transformation is defined by

'P'=5 'P =(MD, O) =P,

where

(2. 13)

(2.14)

&I+q O O

0 1 0 0
0 0 1 0

O O &I+q

q'

4M 2
(2. 15)

0 3

ED+MD
A(X)=

and + =X . In the Breit frame the boost operator for spin- —, particles is given by
1/2

ED+MD
(2.16)

where p is the component in the z direction and ED=(P +MD)' the energy of the deuteron. The vertex I „"can be
worked out to give for the charge operator

Jo(k, k )= —C r y(1)+ [y(1)k' —k y(1)] qy~(2)ti r, ri,
4M~

where y(1)=i [k '
y (1)—k' y'(1)], and for the current operator J+ =J, +iJ~

J+(k, k )= —
Cp r

T

y~(1) [y (1)ft.' —Ii y (1)] q(k'+ik )

y+( I)+ [y+(1)kp —k'py+( I )] qk ys(2)karl'r2, (2.18)

where y+(1)=y'(1)+iy (1).
Expression Eq. (2.12) for the deuteron current can explicitly be evaluated by substituting the expansion Eq. (Al 1) of

the nucleon propagator in the helicity spinors. Together with the definition of the deuteron vertex function [Eq. (A12)]
on this helicity basis the deuteron current can be written in the form

(P', M'~J&'(q)~P, M)= f d k d k' g P' '(k', a)S. , (k')I ",' ~,S (k)P' '(k a) (2.19)

where
I I

I „'',', , = V, (k') V, (k')I „'V '(k)V '(k)
I 2

(2.20)

and a =
I A, A, z,p, ,pi I. The two nucleon propagator S depends only on the p-spin indices p, and pz.

Within the helicity and p-spin formalism, we may introduce (see Appendix A) for the deuteron the partial wave state
components P„(k,ko) labeled by the quantum number n =

[JML, S ) and m =
j A i, kzp). This last label combines pi

and pz in a = [A,„l.z, p, ,p~I, where p represents the total energy spin of the NN system as defined in Eq. (A15). On this
p-spin basis the two nucleon propagator is given by Eq. (A19) and the deuteron current can be expressed as
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X g g g p„. .(k', ko)S, , (k')I ",' S (k)p„(k, ko), (2.21)
n, n' m, m'p'p

&'"(X)V„+(p) g L}' „'*(&„y)V„+ ( —,'P+p),
PI

A' '(X)Vq (p)~ g D'iq* „(o~,y}V„+(
—

—,'P+p},
Vp

(3.1)

where m =
I A i A, ~ p I. As compared to Eq. (2.19) we have

an extra summation of the indices p and p, due to the
fact that the two nucleon propagator is not diagonal in
the total p spin. The matrix elements I ",' can simply

be constructed from Eq. (2.20) by the recoupling of p,
and p& to p.

Using the parity transformation property of the wave
function as given by Eq. (A22) and interchanging the la-
bels for particles 1 and 2 for the helicity and p-spin in-

dices it can readily be shown that the contribution of
both graphs shown in Fig. 1 are identical.

III. EFFECTIVE EM TWO-BODY pm@ OPERATOR

In a relativistic quasipotential approximation a certain
choice is made for the relative energy variable. As a re-
sult the current matrix elements simplify to a sixfold in-

tegration. The EM operator I „ is in general a function
of the relative energy variables and may lead to a non-

physical singularities depending on the choice made.
Following the prescription of Blankenbecler, Sugar and
Logunov, Takvlidze' (BSLT), where both nucleons are
treated on equal footing, we set po =pa =0 in Eqs. (2.17)
and (2.18). This has clearly the advantage that no singu-
larities occur in the meson propagators. It implies that
the second part of Eq. (2.18) drops out and retardation
effects in the meson propagators and strong form factors
are neglected.

One additional integration can be carried out explicitly
in the current matrix element. Due to rotational invari-
ance the integrand of Eq. (2.21) depends only on the vari-
able g —cp' except for a factor e ' ~e ' ". Hence one az-
imuthal angle can be done analytically. As a result we
are left with a five-dimensional integral, which has to be
carried out numerically. The actual reduction of Eq.
(2.20) involves lengthy but straightforward algebra. Use
has been made of the algebraic program' REDUcE to ob-
tain the explicit expressions.

In Ref. 4 it was shown that the so-called static approxi-
mation, where certain boost effects are neglected, gives a
reasonable description of the relativistic impulse diagram.
We employ this to discuss the reliability of the usual non-
relativistic treatment of the MEC contributions. A
reduction of Eq. (2.21) can be performed by keeping only
the terms of order U/c in the various boost transforma-
tions. This amounts to neglecting the Lorentz transfor-
mations on k and k' and neglecting the negative energy
spinor state components. In the Dirac space, however,
we have to replace the boost transformations in Eq. (2.20)
by

where O~ and Oz are defined similar to O& and Oz.

In the usual nonrelativistic estimates of the MEC con-
tributions such as those of Gari and Hyuga and Sitarski,
Blunden, and Lomon, ' a further approximation is made
by neglecting recoil corrections, i.e., only the leading or-
der in p/M~, p'/Mz, and q/Mz are kept in the EM
operator. Terms of the form p+p' are also neglected.
The resulting effective two-body EM current becomes lo-
cal and as a result facilitates the numerical calculations
substantially. If we use the helicity states as defined in
Appendix A, Eqs. (A6) and (A7), the expressions for I „
can readily be evaluated in the two-spinor form. They
are given by

1
Jo = Ci,„r(1+gzm )

1
[(k q)cr(1) k —(k k )cr(1) q] cr(2) k

2 N

(3.3)

and

J+ = —C „q(k'+ik ) o(2) k„,1

2M~
(3.4)

where the Pauli matrices are taken between the rotated
Pauli spinors defined in Eq. (A8). The effective operator
is defined as in Eq. (3.2). It should be noted that the
neglect of recoil corrections yields a current operator J+
which no longer depends on g z~, i.e., the tensor term.

We may now compare the results of the EM form fac-
tors using both forms of two-body currents. The cou-
pling constants and masses of the mesons are chosen the
same as used in the relativistic OBE model, ' we give
them for convenience in Table I. In this model
A =1.5M~ is used for the cut-off mass of the meson-
nucleon form factor. An additional parameter is the g
coupling constant where we take the value found from

where O, =O(]/p)p+p Op and Oz=O ~&&z~p+z
—

O&. These
replacements are correct up to negative energy contribu-
tions, which are of order (U/c) . The Wigner rotations'
reflect the fact that the helicities in the Breit frame and in
the c.m. frame are not equal, since the helicity is defined
as the component of the spin along the direction of
momentum. In the nonrelativistic reduction the vertex is
defined in the Breit frame and wave functions in the c.m.
frame, the Wigner rotations are needed to connect the
different helicities. In so doing we obtain as the effective
operator

y D ii2 ((9 }D1i2 (g
)tt)Vp p(pq

(3.2)



RELATIVISTIC ANALYSIS OF MESON EXCHANGE CURRENTS. . .

TABLE I. Meson masses and coupling constants of the OBE
model.

rn (MeV)

(g ) /4m

138.8 763.6 783.4
14.2 0.43 9.92

6.8 0

570.5 548.9 960.8
7.34 3.09 0.33

4n2.41 (palmy )

e m (1—m /'m )p v p

(3.5)

1P 2 p 7l''y
M

10 5

10-6
0

I

120
I

160

the decay width of p~~y. This constant is not well
known. Experiments performed by Gobi et al. ' yield a
value of g &=0.38, while more recent experiments by
Berg et al. ' give g =0.56. The value for the coupling
constant follows from the decay width, the relation can
be found using the coupling Lagrangian in Eq. (2.5), the
result is

However, nothing can be said about the sign of the cou-
pling constant. In the calculations we take g to be
positive. In Fig. 2 the calculated results of F&~ ~, F&~

and Fg~, together with their sign, are shown for the case
of the Reid soft core (RSC) wave function. The solid
lines give the results with the full effective two-body EM
operator used and g =0.56. The dashed lines corre-
sponds to the results for the usual localized nonrelativis-
tic EM operator, i.e., retaining the leading-order term in

p/Mz, p'/MN, and q/MN E.ffects of the higher-order
terms in p/M~, p'/Mtv, and q/MN are large even at low

q . In F&~ ~ and F&~ ~ the difference at q =0 is about
20%, but it is much greater in the magnetic form factor
Fgr. The latter is due to the tensor term which is absent
in the usual nonrelativistic current. In Fig. 2(a) we show
the nonlocal result without the tensor part of the contri-
bution (long dashed). The difference is now of the same
order as in the electric form factors. Inspection of the in-
tegral shows that for ~p

—p'~ —1 GeV/c there are still im-

portant contributions. In this momentum region the ten-
sor term is of the same order as the y terms in Eq. (2.18).
However these contributions have opposite sign and
therefore there is a large cancellation. This large momen-
tum dependence also explains the sizable effects of the
choice of the monopole form factors as found by Gari
and Hyuga. Their results are well reproduced with our
momentum space program. For comparison they are
also shown in the figures (dotted lines). In addition to
different strengths of the OBE paratneters a value of
gp y 0 38 was used in their calculations.

10 2

10
—3

I I

F p7r'y
C

IV. RELATIVISTIC ANALYSIS

With the effective two-body EM currents as given in
the previous section we have carried out a quasipotential
calculation using the relativistic OBE model of Ref. 15.
We have used in our study the symmetric choice of BSLT
for the quasipotential Green's function. This is obtained
by replacing the scalar part

10 5
0

I

120
I

160 So = [(—,'P, m
—k )

—m + i e]

X [(—,'P„, +k ) —m +ie] (4.1)

10 4

of the two nucleon propagator in Eq. (2.3) and Eq. (2.12)
by

1So=im6(ko).
(E+Ek) (E„E—ie)—(4.2)

10-7
0 40

I

80
I

120
I

160

where E =
—,'Po, Ek =+K + m . In the BSLT approxi-

mation the two nucleon propagator becomes diagonal in
the total p-spin representation. Using Eq. (4.2) we get

S++(k,P, ) = —,
' 1
' Ek —E —tc.

FIG. 2. The pay MEC form factors for the RSC wave func-
tion. The dashed line is the result with the nonrelativistic two-
body EM operator the solid line with the full EM operator, and
the long dashed line the y contribution as defined in Eq. (2.18).
For comparison the Gari and Hyuga (Ref. 9) results are shown
(dotted line).

E —E
S (k, P, )= —,

''
(El,.+E)

S(kP, )=S (kP, )= —1' Ek+E

(4.3)
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(4.4)

where H(k) =El, E.—In this OBE model the interaction
V in Eq. (2.4) is described by exchange of Ir, p, co, e, rI,
and 5 mesons. To calculate the deuteron vertex function
the quasipotential equations are solved' with the BSLT
prescription for the two-nucleon Green's function. In
Fig. 3 are shown the EM form factors for the pay graph
using the two-body EM operators as described in the pre-
vious section. For the nonrelativistic (local) two-body
EM current the results are shown for both RSC (dotted)
and BSLT (dashed) wave function. From this we see that
there is a large wave function dependence.

We have examined in some detail where this large sen-
sitivity comes from. The major reason is that there are
substantial contributions from the momentum range

10—1

10 2

N~".-~.. ~'"
~..

10—5

10M
0

I

40
I

120
I

160

10 2

I I

F p7TQ
C

10—3

The quasipotential two nucleon propagator can be writ-
ten in the more compact form

S (k, P, )=H(k)S"'( 'P,— +k)S' '( 'P — —k)

0.5-1.0 GeV/c in the loop integrals where the various
deuteron vertex functions differ significantly (see Fig. 4).
Also the D-wave components contribute in an important
way, its magnitude being very different in the two vertex
functions because of their different D-state probability.
Moreover, a large cancellation takes place between the S
and D wave contributions, so differences in the wave
functions become more enhanced.

The solid lines give the results with the full effective
two-body EM operator and the BSLT wave function.
Effects of the higher-order terms in P/M~, p'/M~, and
q/MN are in FCI'" and F&~ of the same order as when a
RSC wave function is used, see Fig. 2. The results for the
magnetic form factor has however a dip at much lower q
as found for the result with RSC wave function (Fig. 2).
Inspection shows that this dip is mainly due to large can-
cellation between the y contribution and the tensor con-
tribution, as we discussed already in Sec. III. Compar-
ison between the y contributions of Fig. 2(a) and Fig.
3(a) (long dashed) shows similar wave function depen-
dence as found earlier. As a consequence of the cancella-
tion the magnetic form factor is very wave function
dependent.

The boost corrections to the static approximation of
the two-body EM current can be calculated. They are
shown in Fig. 5. For comparison the static results (dot-
ted) with the full effective operator are shown. The
dashed line is the result with boost effects taken into ac-
count, while the result with the negative energy state con-
tributions (with boost effects) are given by the solid line.
As can be seen from the figure, these corrections are
small.

We now turn to the discussion of the cozy MEC contri-
bution. The calculation is similar to the p~y graph, us-

ing the procedure as described in Sec. II. For the La-
grangians we take

I- yv g..v~" (P)e"(P )

10 4

10-5
0

I

40
I

120
I

160

g QQII (p)r„eI"II (p')

eg,
(4.5)

10 3

10-4

10 5 0.5

SLT
SLT
SC

SC

10 7 I

40
I

120
I

160 0.0

FIG. 3. The pvry MEC form factors for the BSLT wave func-
tion. The dashed line is the result with the nonrelativistic two-

body EM operator, the solid line with the full EM operator, and
the long dashed line the y contribution as defined in Eq. (2.18).
For comparison the nonrelativistic result with the RSC wave

function is also shown (dotted line).

—0.5
0.0

I

l.5

p (Gev/c)
FIG. 4. The S- and D-wave components of the deuteron ver-

tex function.
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FIG. 5. The pry MEC form factors. The solid line is with
boost effects and negative energy states included, while the
dashed line is without negative energy states. For comparison
the dotted line is with the full two-body EM operator.

FIG. 6. The cosy MEC form factors. The solid line

represents the results with the nonlocal EM operator and the
dashed line the results with the nonrelativistic EM operator,
both for the BSLT wave function. Using the RSC wave func-
tion the results are shown as the dotted and long dashed lines.

which gives for the charge operator

Jo(k„k„)=—C„, yo(1)q k,

and for the current operator

J+(k„k„)=C„, [y'(1)+iy (1)]q k,

(4.6)

g(1)—
k (1)q

(k,'+ik, )
m„

(4.7)

where C„, is defined similar to C and all retardation
terms are left out. Because of the cosy coupling, this
current is gauge invariant. No experiments exist to
determine the cozy coupling constant. To get an estimate
of it various theoretical models have been studied in the
literature. Using a relativistic quark model Chemtob,
Moniz, and Rho" arrive at the result g y gp
More recently using a quantum hadron dynamical (QHD)
model the e6'ective coEy coupling constant has been de-

duced by Horowitz in the random-phase approximation
(RPA). In this analysis g„,z can be expressed in terms of
g,zz and g zz, resulting in a value of ~g, ~

=1. If our
relativistic OBE model parameters are used we get
~g, ~ ~

=1.6. An experimental upper limit can be set by
the decay co~2~ y and by the condition
I (cu Ey ) &3I (co 2ny), where .I (co 2~ y) &0. 14
MeV. ' The Lagrangian for the ~ay coupling gives a
similar relation between the decay width and the cou-
pling constant as for pay. With the above upper limit for
co-2m'y we get lg.„I

& 2.4.
Since the boost eAects and the negative energy contri-

butions appear to be small, we have only analyzed the
coo.y graph in the static approximation. In Fig. 6 the re-
sults are shown for the case that g, = —0.56 as ob-
tained from the relativistic quark model and the value of
the pry coupling constant. The S-wave contribution is
the most important contribution to the electric matrix
elements resulting in a very small wave function depen-
dence of F~' . From the figure we see that only for the
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FIG. 7 The electron form factor for the OBE model of the
deuteron in IA with various choices of one nucleon form fac-
tors. The data are from Ref. 1.

FIG. 8. The magnetic form factor of the deuteron in IA with
various choices of one nucleon form factors. The data labeled
by ~ and 6 are from Refs. 2 and 3.

quadrupole form factor, the recoil corrections make a siz-
able difference, while there is a clear wave function
dependence in I'M'~. Moreover, the quadrupole and mag-
netic form factors have a dip at moderate momentum
transfer. The one in I'&'~ is due to a change of sign in the
D-wave contribution, whereas the dip in the magnetic
form factor is caused by an interplay between the various
contributions including the S-wave matrix elements.

In addition to the pvry and suey MEC there are more
isoscalar currents. If the mesons in the OBE model are
used, there are three more isoscalar MEC's: copy, p5y,
and 5my. The 5 is a scalar meson. Therefore the 5~y
coupling has the form c,„,&I"'k&kp„. Since at the 5m@

vertex we have k&+q=k, due to the antisymmetric
Levi-Civita tensor this graph does not give a contribu-
tion. The p5y has roughly the same structure as the ~ay
MEC. The differences are only in the isospin structure
and the tensor part of the pNN coupling. If we compare
the couplings of the mesons to the nucleons (see Table I)
for both currents we see that that p5y current is much
smaller and can be neglected. This is not the case for the
copy MEC, which structure can be compared with the
pry MEC. Calculations show that the electric form fac-
tors are negligibly sma11, but that the magnetic form fac-
tor is a factor 2 or 3 smaller as the cozy form factor. In
this calculation we used a value 0.56 for the copy cou-
pling (in that case the curly contribution to the magnetic
form factor is of opposite sign as the ~ay contribution).
Experimental upper limit to this value is set by Andrews
et al. Their highest value I (to~ay }=29+7keV gives
with a relation similar to the one used for the pm. y cou-
pling a value ig „z i

=0.96.

V. DEUTERON EM FORM FACTORS

Within the Bethe-Salpeter (BS) and the relativistic
quasipotential formalism an extensive study of relativistic
effects has been made previously ' for the electric and
magnetic form factors in the impulse approximation (IA).
Use was made of dipole form factors for the one nucleon
EM form factors. Various other parametrizations of
these form factors have in the meantime become avail-
able. In particular, the behavior of the neutron form fac-
tor can differ substantially at higher momentum transfer.
%'e have studied in the relativistic OBE model the sensi-
tivity of the deuteron form factors on the choice of these
parametrizations. In Figs. 7 and 8 are shown the effects
of the Garj-Krumpelmann and the Hohler et gl. form
factors on the IA. For the dipole form factors, we use
the phenomenological dipole form factors

—0. 12F, (q )=b(q ) 1+

—0. 12
F2(q )=b(q )

where h(q )=(1—
q /A), r=q j(4M&), and A=0.71

GeV. We also show the results for the dipole form fac-
tors of Iachello, Jackson, and Lande.

In our calculations we use the BSLT prescription for
both the initial and final states. It should be noted, that
strictly speaking both wave functions cannot have at the
same time k0=0, because of momentum conservation.
To deduce a possible form in this approximation for the
IA, we start with the deuteron current in the c.m. frame,

(P', M'~J„' iP M) = f d k 4&' '(k', P,' )S"'( ,'P,' +k'}A '(X')I—„"'(q)A(X)S(kP, }N' '(k;P, ) .
8n MD
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In the reduction as studied in Ref. 24 only the positive energy intermediate states were considered. Both ko and ko are
set to zero in the integrand and the scalar parts of the propagators are replaced by its++(k', P', )S++(k,P, ). In
this approximation the deuteron current can be written in the form

(P', M'~J„' ~P, M) = Jd k O'D '(k', P,' )S++(k', P,' )A'+"(k')
Sm MD

XA-'(X )r„"'(q)A(X}A',"(k)A'g'(k)S„(k, P, )e' (k;P, (5.3}

The normalization condition can be verified by letting q ~0 in Eq. (5.3). In the BSLT quasipotential framework, this
condition takes instead of Eq. (2.4} the form

T

2P g, = d'k @~xr~(k P) S»LT(k P) @~sr'~(k P)p MM'
4 D gp 2 D

D

(5.4)

In the special case that we only keep the positive energy states in the current matrix elements, we have for @=0in the
limit q ~0

( P', M'~J O~P, M) = Jd k 4p) '(k;P, )S++(k,P, )A'+'(k)
8m MD

X y(')"A'i"(k)A'+'(k)S++ (k, P, )4P)'(k; P, ) .

It can easily be verified that the normalization condition Eq. (5.4) indeed holds in this approximation.
We generalize the prescription Eq. (5.3) for the deuteron current to include also the negative intermediate states,

(P', M ~J'"IP M) = ' d'k 4' '(k'P' )S""(k'P' )
8n M D & c.m. 2 c.m.

D

xyo 'A '(2')I„'"(q)A(x)s " (k p )4' '(k;p, ) .

(5.5)

(5.6)

This deuteron current gives the same result as Eq. (5.3) if
we keep only the positive energy states. Comparing Eq.
(5.4) with Eq. (5.6) we find that except for the ( ——)

states, the normalization condition holds. For these
states a correction of the form 4E„/(E-
+E„)A yo"yI, 'A has to be added to the charge
operator in order to satisfy Eq. (5.4). Explicit estimates
of this correction show that it is very small and therefore
it can be safely neglected. In the whole momentum
square region 0-200 fm its correction to the charge

10"

form factor is below 1%. Only at very high momentum
transfer (q ) 120 fm ) the correction is somewhat
(&5%} higher for the quadrupole form factor of the
deuteron.

For the electric form factor the results with the Gari-
Krumpelmann form factors are in close agreement with
the experiment, whereas the calculated magnetic form
factors are too low in magnitude for moderately large
momentum transfer, while the dip occurs at too low q .
In Figs. 9 and 10 are shown the OBE results with the
pry (boosts and negative energy states included) and the
cozy graphs included. Use is made of Hohler et a/. form

10—1

10

10 "

B

10

IA

IA + p7rpMEC

IA + p7I p+ cozyMEC

---.-- IA(GK) +p7ry + cusp MEC

10-' '

1011-, , i. . . l. . . I

0 40 80 120 160 200

q'(fm ')

10
—7

10-'

10 ~ ~ a I

FIG. 9. The electric form factor of the deuteron, including
the MEC contribution, with Hohler et al. form factors and
BSLT wave function. Dotted-dashed line is with Gari-
Kriimpelmann nucleon form factors.

80 120

q (fm )

160 200

FIG. 10. The same as Fig. 9, but for the magnetic form fac-
tor.
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factors. The IA results are close to those found in the
Bethe-Salpeter calculations. As compared to the experi-
mental data including the MEC calculations clearly yield
a significant improvement both in the A and B form fac-
tors. The p~y contribution brings the result for A in
better agreement with the data. In particular, the coo.y
contribution causes the dip in the magnetic form factor
to shift to higher momentum transfer to roughly the ex-
perimentally found value. If the one nucleon form fac-
tors of Gari and Krumpelmann are used, the overall
agreement with experiment can be qualified as better than
with the Hohler et al. form factors. However it should
be noted that the results at high momentum transfer are
very sensitive to the cue. y coupling constant. If, for exam-
ple, the value predicted by the RPA formalism is used,
the dip in B disappears completely, while the results for
A are lowered, yielding a significant deviation from the
experiment. The sign of the g coupling constant is
also very important. The full result for the electric form
factor A (Fig. 9) is in better agreement with the data if a
positive value is used. A negative value would bring the
total result even below the IA result.

In Figs. 11 and 12 are shown the nonrelativistic results
for the RSC wave function and using again the Hohler
et al. form factors. In this case the pay MEC contribu-
tion is considerably larger if one uses the nonrelativistic
approximation for the current operator. As a result there
is an overshoot of the electric form factor and the dip in
the magnetic form factor completely disappears. Using
the full (nonlocal) two-body current operator for the
MEC graphs however leads to a strong weakening of the
pay contribution, resulting in good agreement with the
data. Moreover, from the figures we see that the RSC
wave function IA results are in better agreement with the
magnetic form factor data than those of the BSLT wave
function. This can be ascribed to the larger D-state prob-
ability of the RSC wave function. The above efFect is also
found in the calculations of Chung et a/. , where the
best results regarding the data are found with the AV14
potential, having the highest D-state probability of the
potentials considered by them.

10 "

10
—3

10

B IA

IA +p7rpMEC(local)

IA + p7rpMEC(f ~l/)

10-'

1O-'

1Q 11

40 80 12Q

q'(fm ')

i.

160 200

FIG. 12. The same as Fig. 11, but for the magnetic form fac-
tor.

Recently new results of precision measurements of
the electric form factor A became available at low
momentum transfer. In Fig. 13 we compare our results
with these experiments. For momentum transfer q & 10
fm the IA with Hohler et al. form factors and BSLT
wave function is below the data. Inclusion of the MEC's
improves the result but the contribution of the MEC's is
small. If use is made of Gari-Kriimpelmann form factors
the data can be described. This same result can be
achieved if a RSC wave function is used with Hohler
et al. one nucleon form factors. These results show that
for low momentum transfer the MEC's are negligible for
the electric form factor.

Low momentum transfer study of the form factors
gives us information about the quadrupole moment Qd
and the magnetic moment pd of the deuteron (see Appen-
dix B). In Tables II and III we show our calculations of
these moments for BSLT and RSC wave function and
Hohler et al. form factors. A very large wave function
dependence is seen in the magnetic moment and a some-
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FIG. 11. The electric form factor of the deuteron, including
the p~y MEC, with Hohler et al. nucleon form factors and
RSC wave function.

FIG. 13. The electric form factor A for low momentum
transfer, data from Ref. 26.
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TABLE II. Results for the magnetic moment of the deuteron for the IA and the MEC's included.
Experimental value pd =0.857 406+0.000001.

BSLT
RSC

IA

0.858
0.837

pm y(10 )

local

0.483
0.840

pay(10 ')
full

0.140
0.444

pay(10 ')
complete

0.154

o)c.y(10 )

local

—0.123
—0.289

cozy(10 ')
fu11

—0.110
—0.228

what smaller effect in the quadrupole moment. As al-
ready discussed in Secs. III and IV this is due to large
contributions of high momenta in the integral. This ex-
plains also the large effect if no expansion is made in the
EM operator (full result). Inclusions of boost effects and
negative energy state contributions (complete result) only
give small effects, 10% and 3%, for, respectively, the
magnetic moment and quadrupole moment as compared
to the fu11 calculation. The effect for the magnetic mo-
ment is totally due to the negative energy states. If the
BSLT wave function is used, the IA result for the mag-
netic moment is close to the experimental value. The
RSC result is much lower. This tendency, although not
so pronounced, is also found by Chung, Keister, and
Coester, where wave functions with a PD of about 5%%uo

give the best result. In the OBE model the BSLT wave
function has PD =4. 5%%uo. Other choices for the one nu-

cleon form factors show a negligible dependence on these
form factors. Inclusion of the p~y and ~my MEC do not
change the IA results, also due to the cancellation of the
contributions. For the quadrupole moment, the IA is for
both wave functions below the experimental value. Only
the pnyMEC .gives a small contribution (0.4%%uo). Howev-
er, the total result Qd=0. 270 is still below the experi-
mental value.

Finally in Fig. 14 is shown the calculated tensor polar-
ization of the deuteron. The relativistic IA result is
close to the nonrelativistic RSC prediction, in agreement
with Frankfurt et al. , but in contrast to the finding of
Dymarz and Khanna. ' The first dip in the relativistic
IA result is due to a dip in Fc and the second one is due
to a dip in the quadrupole form factor F&. In a nonrela-
tivistic RSC calculation the dip in F& is for lower
momentum while also a second dip in F& occurs. As a
result the second dip in t2O is shifted to higher momen-
tum transfer. Inclusion of the MEC contributions do not
have an effect at low momentum transfer, where the
agreement with the existing experiments is good. At
higher momentum transfer the MEC corrections are
significant, thereby shifting the zero in tzo to higher

momentum transfer. In this case use of the Hohler et al.
or the Gari-Krumpelmann form factors does not lead to
large differences, except at very large momentum
transfer.

VI. CONCLUDING REMARKS

We have studied the p~y graph in the relativistic OBE
model. In the usual calculations an expansion in

p/Mz, p'/Mz, and q/M~ of the current operator is
made, keeping only the leading terms. We have shown
here that such an approximation is not reliable and the
full EM operator is needed. In the analysis we have as-
sumed in the two-body EM current that the relative ener-

gy variable is zero. To get some idea about the sensitivity
on the specific choice of the relative energy variable we
have considered also the case that the EM operator is cal-
culated assuming the nucleons on mass shell. A problem
is the second part of the current in Eq. (2.18) proportion-
al to k . Because of the Levi-Civita tensor [Eq. (2.8)] k
can also be replaced by k

p Energy momentum conserva-
tion forbids to put both nucleons on mass shell. If we
force the nucleons independently on mass shell, the rela-
tive energies of the p and m. mesons are equal but of oppo-
site sign. We therefore neglect the term in the current
operator proportional to the relative energy. In Fig. 15
we show the results where still the retardation effects in
the meson propagators and form factors are neglected.
From this we see that the largest sensitivity of the pry
graph is found for the magnetic form factor. However
the recoil corrections are such that the contributions at
large momentum transfer are considerably reduced. If
retardation effects are taken into account the results are
very similar to the results if using the BSLT constraint.
The effects in both electric and magnetic form factors are
comparable to the effects found for the electric form fac-
tors in Fig. 15.

Boost effects and contributions from negative energy
states have been studied in the relativistic OBE model
with a BSLT wave function, showing that they essentially

TABLE III. Results for the quadrupole moment of the deuteron for the IA and the MEC's included.
Experimental value Q„=0.286020.000 15.

BSLT
RSC

IA

0.269
0.279

p~y( 10-')
local

0.121
0.174

p~y( 10-')
full

0.107
0.153

p~y( 10-')
complete

0.104

cozy(10 )

local

—0.668
—0.913

~ay(10 }
full

—0.307
—0.396
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FIG. 14. The deuteron tensor polarization t2p for the relativ-
istic OBE wave function with Hohler et al. one nucleon form
factors. The data are from Ref. 28.

can be neglected. Comparison of static results in this
model and of static results with a RSC wave function
show a large wave function dependence. The pm. y graph
depends sensitively on the D-wave component of the
deuteron wave function. The D-S, S-D, and D-D matrix
elements are of the same order as the S-S matrix ele-
ments, but there are large cancellations between the
different matrix elements.

Using the deuteron wave function as obtained from the
relativistic OBE model we have found that the agreement
with the experimental data is rather poor when we only
take the IA contribution into account. In particular, the
calculated magnetic form factor is too low, even for the
Gari-Kriimpelmann nucleon form factors. Inclusion of
the pay and suey MEC contributions improves consider-
ably the calculated deuteron EM form factors. In view of
the substantial reduction of the p~y graph due to recoil
corrections, the coo.y contribution becomes more impor-
tant at high momentum transfer, moving both the elastic
and magnetic form factors in the proper direction.

In the relativistic model studied here we find, that the
MEC contributions are needed to account for the experi-
mentally found elastic EM deuteron form factors. It
should be emphasized that the calculations are sensitive
to the choice of the various EM coupling constants such
as the g „„which are not very well known at present.
Even a small contribution like from the copy MEC is very
important in the dip region of the magnetic form factor
of the deuteron. Moreover, the short-range character of
the MEC graphs leads to considerable dependence on the
choice of the strong form factors in the n.NN and pNN
vertices.

10 2

10 4
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F p77+
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APPENDIX A
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In the calculation of the current matrix elements we
use the helicity and p-spin formalism in the Dirac spi-
nors, following Kubis and Fleischer, together with the
convention of Bjorken and Drell. %e start with the spi-
nors

10—5

1

ux(P) =N~
2A,

E„+M
2A,p

F. +M

(A 1)

0 20
I

40
I

80

FIG. 15. The p~y MEC form factors. The solid line is the
result with zero relative energy and the dashed line the on-
mass-shell case. The full EM operator and the BSLT wave
function are used here.

( I /2)+&1
Wz (p) = (

—1) '&»(m. ) wz (p)
(A2)

which are the positive and negative energy solutions of
the Dirac equation. g& are the Pauli spinors with helicity

and with normalization N =Q(E +M+ ) l2E . ln
case of two particles we define for particle l

U~ (p)=u,. (p),
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and for particle 2

(1/2) —
A2

Uq (p) =( —1) 'A3, (~)u~ (p),
(A3)

are the scalar parts of the propagators.
The deuteron vertex function 4 D '(p; P, ) satisfies

the homogeneous Bethe-Salpeter equation (BSE). Using
the helicity states basis we can define in the two nucleon
c.m. frame

where A,„(a) is a rotation in the plane defined by the a
axis and the b axis:

(p a)=V2. (p)V3. (p)~'D (p P. (A12}

A,b(a) =cosa/2+y y "sina/2 . (A4)

A12(%)A31(8)A12 (9 )Vk(p) '

For particle 1 we have

(A5)

In p-spin notation we define Vp&(p), with Vz (p)= U3 (p)
and V& (p) = IV3 (p). The rotated spinors are defined by

' 1/2

DM:«, )(()(lpl po, o }, (A13)

where

where a =
[ A, A.2,p1,p2 ) . Since the deuteron is a J = 1

state, the angular dependence can explicitly be separated
out,

V3'. (P}=N,

V3 (p)=Np

0' p
E +M

cT 'p
E +M

X., (8 V»

X~,(8 V»

(A6)

Dgg(II ) =e '~ &d,g(8)e'~& (A14)

are the Wigner rotation matrices. ' Using standard
recoupling the states in Eq. (A12) labeled by J, M,
k„, A, 2, p, , and p2 can be related to states labeled by
n =

I J,M, L,S I and the total energy spin p, given by the
combinations

and for particle 2

E +M

+=(+,+), —=( —,—),
e=[(+,—)+( —,+)]/3/2,

o=[(+,—)
—

( —,+)]/3/2 .

(A15)

V3 (p) =N

cT 'p
E +M

X-2,(8 V»

(A7}

(A16)

Denoting the recouplings to the above p-spin states as
C(p;p1, p2) and using the transformation matrix

1/2

( Jg g
l
JLS ) ( LSi( 1/21/2S

1 2 2J + 1
QADI A& A&A,

where y3(8, g) are the rotated Pauli spinors,

cos8/2

e '~sin8/2
(A8)

we have the desired result
' 1/2

2L +1
(t...(p Po}=

X—1/2(8~ tp) =
—e 'q'sin 8/2

cos8/2
XC(P;P„P2)p(lpl, po, n, p) . (A17)

Defined in this way the spinors are normalized as
I

V2. (P) Vk'(P) =&pp'&23. ' (A9)

where i =1,2. This expression can also be written in the
form S"'(p)=A'+(p}S+(p)+A' (p}S (p), where S (p)

and form a complete set

gV (p)V (p)=+A (p)y =1, (A10)
PA, P

where A (p)=+&V&(p)Vp2(p) are the p-spin projection
operators. These spinors can be used to expand the nu-
cleon propagators

S1"(p)=(P MN+ie)—
yk VA. (P)VA. (P} yA. Vk. (P)VA. (P}

p —E —ie p +E —Ie

(Al 1)

The states $„(p,po) with m = [A, 1,12,PI are defined by
Eq. (A17) without the coupling C(p;p„p2}.

In the notation +'LJP of Gammel, Menzel, and Wort-
man, the following eight states $(lpl, po, n, p) for the
deuteron exist,

1:S&+, 2:D1+ 3:S1 4:D1
5.1pe 6.3po 7.1po g.3p& (A18)

The last two states are odd in po and disappear in the
case of the BSLT quasipotential.

An expansion of the two nucleon propagator
S2(p, P) =S'' ( ,'P+p )S' '( ,'P —p) —can be mad—e on the p-
spin basis given in Eq. (A15). If the total p-spin states are
given by

lpga.

, X2P ) we may write

S2(P, P) = g App (P)Spp (P,P), (A19)
PP

where
App (p) =+2,

, 2., lpA1A2p) (PA1A2p'l. The scalar

part of the two nucleon propagator S (p, P) has the
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form as given in Ref. 36 and is no longer dependent on
the helicity.

A useful result is the property of

lp'1'2p&0. , (p pD) (A20)

under a parity transformation. The free two particle
states IPA, ,A~,p2& transform to

e2iky( 1)2s+Alp~ ~ p~ & (A21)

if we reverse the sign of p, i.e., O~m. —6, y~g+~, and

po ~—po. Together with symmetry relations of the
Clebsch-Gordan coe5cients and Wigner rotations ap-
pearing in Eq. (A17) we get

lp~&'p&0, (p pD)

-(—1) + + 'IPA2A, ,p&P (p, —pD), (A22)

The scalar functions are connected to the charge, quadru-
pole and magnetic form factors, by the relations

Fc =F, + —', g[F, +(I+g)F2 —G, ],
Fg=F, +(1+q)F2 —G, , F~=G, ,

(B4)

Fc= (&P', M'I JDDIP M &~M, D5M, D
3e I+g

+&P M IJD IP M&$M+~ DfiM+~ D)

where ) = q
—/4MD and Fc(0)=1, F&(0)=MDQ& and

FM(0) =(MD/M~) pz Q." and pz are the quadrupole and

magnetic moment of the deuteron. These form factors
can be related to the current matrix elements
&P', M'IHIP, M &. In the Breit frame Eq. (B2) gives the
relations

where p and m means that p, and pz and A,
&

and A, z are in-

terchanged. F, = '
(&P,M IJ.'IP, M &SM, DSM, , D

2ge 1+g
(B5)

APPENDIX B

The scattering amplitude for elastic electron-deuteron
scattering is given in the one-photon exchange approxi-
mation by

M=ieu~(k')y„u~(k)
2

&P', M'IJ)IP, M&,
q

(Bl)

where the initial and final electrons are described by dirac
spinors u& and u&. with momenta k and k'. P and P' are
the four-momenta of the initial and final deuteron with
polarizations M and M'. The deuteron current can be
decomposed into three scalar functions as follows form
Lorentz covariance and time-reversal invariance and can
be written in the following form:

&P' M'IJD IP M»M+& D&M'+& D)

F = &P', M'IJ', IP,M&S,
e 2g(1+g)

=crM, «[A(q )+8(q )tan —,'8, ],
e

(B6)

where OM, « is the Mott cross section and 0, the electron
scattering angle. The electric and the magnetic form fac-
tors are defined by

The cross section for scattering of unpolarized electrons
on unpolarized deuteron only depend on two form fac-
tors,

&P', M'IJglP, M &

(P'+P)" e" eF, —e" qe q 2M~

(q2):F2+ 8'q2F2+ 2 "IF2

8(q ) = —', )(1+'))FM
(B7)

—(e""c, q
—E" qE")G, (B2)

Electron scattering on polarized deuteron gives the ten-
sor polarization tzo which is defined by

where we suppressed the dependence on the momenta
and polarization of the polarization four vectors e(P, M)
and e(P', M') of the initial and final deuteron which are
defined by

e'(P, M) e(P,M')= —5~~',

where

FgX= YJ
3 Fc

—x(x+2)+y/2
1+2(x +y)

(Bg)

P„Pg e„'(P,M)e„(P,M) = —g„„+

P c(P,M) =0.

(B3)
2 1 0,

y = —g —+(1+g)tan
3 2 2

FM
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