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Equivalence between deep energy-dependent and shallow angular-momentum-dependent potentials
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Marchenko inversion followed by Baye's supersymmetric transformation scheme determines shal-

low, I-dependent but energy-independent singular 1ocal potentials that are strictly phase equivalent

to given nonlocal resonating group model interactions. The resulting potential has none of the Pau-

li forbidden states present in the corresponding resonating group model interaction, but ensures that
a generalized Levinson theorem is still valid. The intermediate step of Marchenko inversion is in-

troduced to transform the energy-dependent deep local potentials of Horiuchi, which are phase and

spectrum equivalent to the resonating group model interaction, into an energy-independent poten-

tial, suitable for the application of Baye s supersymmetric scheme for the removal of the Pauli for-

bidden states.

I. INTRODUCTION

There is a long standing controversy as to whether
nucleus-nucleus potentials should be shallow or deep.
This was discussed in detail by Aoki and Horiuchi' in the
context of the resonating group model (RGM hereafter)
approach to two-cluster scattering. The nonlocal RGM
interactions support not only physical bound states, but
also have redundant solutions and consequently satisfy a
modified Levinson theorem. Aoki and Horiuchi' used
the Wentzel-Kramers-Brillouin (WKB) approximation in
their studies to determine deep equivalent local potentials
(ELP) that have a substantial energy dependence and, at
most a weak l dependence. This approach is generally
called the "RGM+ WKB" approach. These ELP are
deep because they have to support the so-called Pauli for-
bidden states (PFS) corresponding to the redundant solu-
tions of the RGM interaction.

But equally good fits to the same phase-shift "data"
were obtained by using shallow phenomenological poten-
tials that are strongly 1 dependent. The phenomenologi-
cal potentials for ++a scattering determined by Ali and
Bodmer are of this type. However, with no PFS these
shallow interactions do not reproduce the high-energy be-
havior of the RGM phase shifts. But, recently it has been
shown that by including a 1/r singularity, microscopic
phase shifts can be reproduced in agreement with the ex-
tension of the Levinson theorem as proposed by Swan.
Subsequently Baye was able to show that the supersym-
metry applied to the Schrodinger equation establishes an
exact relation between deep and shallow, but singular, lo-
cal potentials, both of which are energy independent.
The potentials related in this way are exactly phase
equivalent, while their wave functions are related, by a
differential operator. However, they produce a different

number of bound states while preserving the Levinson re-
lation, since, due to the exact phase equivalence, the
difference 5i(0) —5t( ~ ) is the same in each case. The
shallow potential has the required r singularity to
make this possible.

Baye successfully applied this procedure to the case of
a+a scattering. Using the energy-dependent local po-
tential of Buck et al. , which approximates the ELP of
the RGM interaction in the low-energy region, he applied
the supersymmetric relations to eliminate the two un-
physical PFS for l =0 and the one PFS for l =2 and ob-
tained shallow but strongly I-dependent potentials. These
potentials compared well with the well-known shallow
potentials of Ali and Bodmer. Therefore, they offer a
more rigorous explanation of the phenomenological shal-
low potentials by relating them to microscopic RGM in-
teractions.

However, the exact ELP to a RGM interaction is in-
trinsically energy dependent, since the nonlocality of the
RGM interaction is represented by the energy depen-
dence of the equivalent local potential. Aoki and Horiu-
chi' explicitly derived the ELP for the ++a nonlocal
RGM interaction and found a substantial energy depen-
dence over a more extended energy region. This energy
dependence becomes even more pronounced for the
scattering of heavier clusters than o.+e, e.g. , a+ ' 0.'

Unfortunately the supersymmetric relations cannot be
used to generate energy-independent shallow potentials
from energy-dependent deep potentials. This also follows
from their being intrinsically related to inverse scattering
theory as discussed by Sukumar. " Therefore, the appli-
cation of Baye's procedure depends crucially on the ap-
proximation of the energy-dependent ELP of Horiuchi,
by an energy-independent local potential (at low energies
in his example). Such an approximation, however,
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neglects the energy dependence, which simulates the non-
locality of the RGM interaction. It is this nonlocality of
the RGM which is responsible for the Pauli forbidden
states in the first place.

Fortunately there is a way out of this dilernrna as we
will demonstrate in detail in the next sections. From the
phase shifts and bound states (including the PFS) of the
energy-dependent ELP, we construct by means of the ex-
act inverse scattering formalism of Marchenko, ' an
energy-independent but 1-dependent equivalent local po-
tential. This potential is deep and nonsingular and has
the same PFS as the ELP. Consequently it obeys the gen-
eralized Levinson theorem

5t(0) —
5&( ~ )=npm+n p.ps77,

where n~ equals the number of physical bound states and
5 pps equals the number of Pauli forbidden states.

In a second step we eliminate the PFS by means of su-
persymmetry according to Baye's prescription. The po-
tential obtained in this way is shallow and even more
strongly / dependent. It is also singular and satisfies the
same Levinson relation and therefore represents a
rigorous explanation of the phenomenological shallow
potentials based on extensions of the Levinson theorem in
the context of the RGM theory and Horiuchi's
"RGM+ WKB" approach.

( T~ + VD + Vv E)p—( R ) =0,

V~/(R)= f dR'UA
2

and

X exp[ —( —,'a+y)(R —R') ]P(R')

' 3/2

(7)

Uz(R ) = —Vo(4m —2w)
4a

a+2y exp( —2aR ) (8)

with the additional orthogonality condition

The values of the parameters of the NN force are given
b i3

consisting of several terms given in Ref. 13. The solution
$(R) of the integrodifferential equation of the RGM is
not necessarily orthogonal to the function Po(R), but a
physically meaningful solution P(R) must be.

We therefore have P(R ) =Pog(R ) with
Po= 1 —~Po)(Po~. Kukulin et al. ' have shown that the
RGM equation can be simplified as follows:

II. SCATTERING OF TWO DINEUTRONS

The (2+2) system corresponds to the shell-model
configuration s p . In this system one S state of the rela-
tive motion is forbidden by the Pauli principle and has
the wave function

(()o(R)=(2a/n. )'~ exp( —aR ') .

The effective interaction is chosen to be of the form

V(r)= —Vo(w +mP, ) exp( yr ), — (4)

where w and m are the usual Wigner and Majorana ad-
mixtures, respectively, and J' is the Majorana operator.
The direct potential is then given by

' 3/2

VD(R) = —
Vo

2a
2&x+ f (4w —2m)

2cxpX exp — R
2(x+ p

The exchange kernel of the RGM is more complex

To illustrate our method, we consider a particularly
simple model example of the scattering of two dineutrons
in the RGM, which was originally studied by Kukulin et
a/. ' The internal spatial function of the dineutron is
chosen as simple as possible, i.e., as a translationally in-
variant shell-model function of a (Os) configuration in its
ground state in a harmonic-oscillator well of width pa-
rameter n:

y(r) =(a/m ) "exp( —,'ar ), —

a=men/2' .

Vo=73 MeV,

@=0.46 fm

w =m =0.5

while

a=0.22 fm

The ELP of the nonlocal interaction of Eq. (7) is ob-
tained by using Horiuchi's "WKB+RGM" method,
which in this case reduces to the old Percy-Buck pro-
cedure. The ELP, VD+ VL, phase equivalent to the po-
tential VD+ V~, is determined from

VL(E, R)

= Utv(R) exp [VD(R)+ Vt (E,R) E]—
i)i (a+2y)

(10)

Note that this potential is independent of /.

This energy-dependent potential has a forbidden Os

state with a binding energy of 8.3 MeV, which, according
to Kukulin et a/. ,

' has a wavefunction very closely ap-
proximating Po(R). Therefore, the orthogonality condi-
tion Eq. (9) is automatically satisfied in this case. They
also found that in the low-energy region for E =0, Vt (R )

can be approximately represented by

V~ (R ) = —
VoL exp( trR ), —

where VoL =20.5 MeV and ~=0.30 fm
The ELP, however, has a substantial energy depen-

dence which at low energies can be represented by
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Vot (E)= VOL (E =0) exp( E—/Eo),

where Ep=84 MeV. For E Ep the well depth of

V(r)= VD(R)+ VL(E,R)

has the approximate form Vo(E) = Vo ,'E—w—hich clearly
indicates that it is not negligible at all. This also shows
up in the fact that VL(R ) given by Eq. (11) has a binding
energy of only 6.74 MeV instead of 8.3 MeV for VL(E, R)
given by Eq. (10).

III. ENERGY-INDEPENDENT DEEP POTENTIALS
BY MARCHENKO'S INVERSION METHOD

IO-.

0

-10-

- 30-.

-40-

~ ~r
.r . ~

+ g M, hI '(k;, r)h&+'(k;, s), (13)

and where the hi+I are Riccati-Hankel functions for out-
going wave conditions, while the M, are the bound-state
normalization constants (where both the physical and
forbidden bound states are included). The local potential
producing St(k) is obtained from the diagonal part of the
output kernel by

VI(r) = —2 KI(r, r) .
d

(14)

To be able to apply the supersymmetric scheme of
Baye we first have to generate E-independent but l-

dependent potentials which have the same spectra as the
ELP of Eq. (10), including the PFS, by means of the Mar-
chenko theory.

The Marchenko spectral inversion equation for each
angular momentum I is given by

Kt(r, s)+F&(r,s)+ J KI(r, t)FI(t, s)dt =0, (12)
I'

where the input kernel F&(r, s) is obtained from the S ma-
trix via

F&(r, s) =(2m )
'
1 hi I(kr)[l —SI(k)]hI+ (ks)dk

np + npFS

I 2 3 4 5
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FIG. 1. The direct potential VD(r) ———,the ELF at zero
energy VD(r)+ VL(0, r) ———,and at Eb = —8.3 MeV, i.e.,
VD(r)+ VL(Eb,r), and the potential Vo (r), ob-
tained by the Marchenko inversion of the whole spectrum of
VD( r) + VL (E, r) for l =0, are plotted.

potential is quite deep and supports the corresponding
Pauli forbidden state at —8. 3 MeV.

IV. REMOVAL OF PAULI FORBIDDEN STATE

We now proceed to remove the PFS at Eb = —8.3 MeV
from the spectrum of Vo (r) using Baye's supersymmetric
scheme.

In this method the Hamiltonian, in units where
II1 /2m = 1, is given by

Hp= — + Vp
dT

where Vp includes the centrifugal, Coulomb, and nuclear
potentials. The Hamiltonian Hp and its supersymmetric
partner H

&
are factorized as

We represent S,(k) in rational form by Hp = A p A p +op, H) = A p A p +ep, (16)

k+a„
S,(k)= g

, k —a„
(15)

which allows us to perform the integral in Eq. (13) analyt-
ically and solve Eq. (12) for Kt ( r, s ) (Refs. 14—16) assum-
ing arbitrary values for the normalization constants M, .
It can be shown' ' that for a unique set of values of the
M;, only a short-range potential is obtained. Otherwise
the potentials V, (r) determined from Eq. (14) have
long-range tails. In our simple example only one Pauli
forbidden state occurs for l =0 at —8.3 MeV. The corre-
sponding bound-state normalization parameter M& is
determined according to the short-range criterium as de-
scribed in Refs. 14 and 15 and is given by M, =9.91. In
Fig. 1 we show VD(r), VD(r)+ VL(0, r), VD(r)+ VL(Eb, r)
(where Et, = —8.3 MeV), and Vo (r), the potential ob-
tained by the Marchenko inversion of the whole spec-
trum of VD(r)+ VL(E, r) It is seen that t.he Marchenko

where

4,(E)=(E—eo) ' Ao Vo(E) . (17)

The choice of op =Ep
' makes the spectrum of H, iden-

tical to the spectrum of Hp, except for the absence of the
ground state of Hp. In this case the potential corre-
sponding to H, is given by

V, = Vo —2 ln+o(EO ) .
67

(18)

A o =( A 0 ) = — + in+0(eo) .
dr dr

The nodeless wave function 40(eo) is the solution of the
Schrodinger equation at the factorization energy E'p. We
must therefore have E'p Ep ', where Ep ' is the ground-
state energy of Ho, while the eigenfunctions 40(E) and

4,(E) of Ho and H, are related by
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For small values of r we have

V&
—Vo+2(l +1)r -(!+1)(l +2)r

which behaves as a nonsingular potential with angular
momentum I. However, V, and Vo are not phase
equivalent. To achieve this, the supersymmetric partner
H2 of H

&
with e, =Eo

' as factorization energy is re-
quired. Since e, & E', ' the ground-state energy of H&, the
function %,(e, ) is not square integrable and behaves
asymptotically as exp(+yor), where yc=( —Ec' ')'~2, but
can be chosen to be regular at r =0. The bound-state
spectra of H, and H2 are identical. To any physical state
of H, with energy E corresponds a state of Hz with the
wave function

(19)

where 0'z(E) and +c(E) have the same phase shift
5z(E)=5O(E) and where qiz(E) is normalizable for the
bound states. The corresponding potential is given by

dV2= Vo —2 in[+o(EO ')V, (E(') ')], (20)
r

which behaves for small r like
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FIG. 2. The potentials Vo (r) —- ——for S waves obtained

by the Marchenko inversion of the corresponding spectra pro-

duced by the full equivalent local potential VD(r)+ VL(E, r) is

shown. We also plot the potential V&(r) obtained by the

first step described by Eq. (18) in supersymmetric procedure to
remove the PFS and the final potential V2(r), which is

phase equivalent to Va (r) but has no bound state. The poten-

tial V, (r) has a r singularity described by Eq. (21).

V2 —Vo+2(21+3)r —(1+2)(l +3)r (21) 120 ''L

The singular potential V2 is shallow and has one bound
state less than Vo. From the equality of the phase shifts
it follows that 5&(0)—5I( 00 ) is the same for Vc and V2, in

spite of V~ having one bound state less than Vo as proved
by Swan. This two-step process can be iterated to re-
move all the nonphysical bound states.

V. RESULTS

Applying the procedure described in the previous sec-
tion to eliminate the PFS at —8.3 MeV from the deep
potential Vc (r), obtained by the Marchenko inversion
for I =0 as shown in Fig. 1, we find the corresponding
phase equivalent shallow potential V2(r) having no
bound state. It is shown in Fig. 2, together with the un-
physical potential V, (r) obtained in the intermediate step
which corresponds to Eq. (18). It is seen that the poten-
tial Vz(r) is purely repulsive in spite of having a phase
shift with the property 5&(0)—5o( ac ) =rr, like the original
Vc(E, r) and Vc (r). This is possible since, as discussed in
the introduction, it has an r singularity.

Finally, similar to Baye for ex+a scattering, we take
the potential VD(r)+ VL (O, r), which approximately
represents the ELP at low energies and is energy indepen-
dent, as the starting point of the supersymmetric con-
struction of the shallow potential Vz. This potential has
a PFS at Eb = —6.74 MeV. In this case the Marchenko
inversion as an intermediate step can be omitted due to
the absence of an E dependence. This shallow potential
is compared in Fig. 3, to the one derived previously for
1=0, using VD(r)+ VL (E, r) by employing the Marchen-
ko inversion. The corresponding difference in their phase
shifts is shown in Fig. 4. It is seen that neglecting the en-
ergy dependence of VL(E, r) of Eq. (10) and replacing it
by VL (O, r), does have a considerable effect on the phase
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FIG. 3. The potential V, (r) ———- is compared to the po-
tential V2(r) obtained by applying Baye's method to re-

move the PFS at —6.74 MeV of the energy-independent poten-
tial VD ( r) + VL (0,r).
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FIG. 4. The difference of the phase shifts of the potentials
V, {r) and V2(r). For the definition of the potentials see previ-
ous figure captions.
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shift even at low energies. The potentials themselves also
di6'er substantially in the region from 1 to 3 fm.

VI. CONCLUSIONS

We have presented a mathematically rigorous scheme
to obtain shallow singular potentials which are strictly
phase equivalent to a given RGM nonlocal interaction
excluding the Pauli forbidden states while still preserving
the 5i(0)—fii( ac ) given by the generalized Levinson
theorem for the RGM phase shifts.

The scheme does not depend on the neglect of the ener-

gy dependence of the deep local potential of the Horiuchi
equivalent to the RGM. Its aim is achieved by convert-
ing the energy dependence of the ELP into an l depen-
dence by means of the Marchenko inversion method in a
first step. In a second step these deep I-dependent poten-
tials are transformed into shallow I-dependent singular
potentials by using Baye's supersymmetric scheme to re-
move the Pauli forbidden states. This two-step pro-
cedure, in general, increases the l dependence, as com-

pared to the one obtained when an approximate energy-
independent ELP, valid only for low energies, is em-
ployed (as in Baye's example for a+et scattering).

In the first step (Marchenko inversion) the phase shift
and bound-state spectrum of the RGM interaction can be
used directly as input. The construction of the deep ELP
is not even necessary for this purpose. In this way exact
phase equivalence between the RGM interaction and the
shallow potentials can be achieved. This could be of
some importance if the energy-dependent ELP of Horiu-
chi is not quite phase equivalent to the RGM interaction,
within the accuracy required. Even in this case, however,
the construction of the deep local and energy-dependent
ELP to the RGM interaction could still be very useful for
comparison purposes.
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ics of the University of Melbourne for a guest professor-
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