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Test of distorted wave kinematic coupling approximation calculations for knockout reactions
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A test has been devised to check the validity of conventional distorted-wave impulse approxirna-
tion (DWIA) treatment of knockout reactions. The conventional DWIA formalism separates the
three-body final state Schrodinger equation for a knockout reaction into two two-body Schrodinger
equations by assuming an asymptotic constant value for the three-body coupling term commonly
known as the kinematic coupling approximation (KCA). In the test case, which consists of an ex-

treme asymmetric situation where one of the distorting optical potentials is assumed to vanish, the
three-body final state Schrodinger equation can be solved exactly as a product of two two-body solu-

tions using one particular set of relative coordinates. Large influence of the three-body coupling
term is seen in the comparison of the exact and KCA results for (a, 2a) and (p,pa) knockout reac-
tions when the distorting optical potentials are weakly absorbing.

I. INTRODUCTION

In the recent past increasing evidence has been found
for the failure of the conventional distorted-wave impulse
approximation (DWIA) calculations for the knockout re-
actions in reproducing the experimental data. ' As the
inputs to these DWIA calculations are generally reason-
ably well defined it appears that the reason for this failure
lies in some simple-minded approximations made within
the framework of the DWIA formalism. ' ' Although
many of the approximations are empirically justified" "
it has been found that the approximation leading to the
decoupling of the three-body final state into two two-
body systems has never been tested properly. ' ' It is
the aim of the present investigation to shed some light on
this aspect. Some discussion can be found on this three-
body final state problem in the form of a diproton model
(DPM (Ref. 13) or in the comparison of results from the
kinematic coupling approximation (KCA) and the poten-
tial coupling approximation (PCA), ' ' however, there
exists no estimate of the amount of discrepancy due to
these approximations with respect to some exact results.
As the validity and the applicability of the diproton mod-
el are very much restricted, ' ' generally the calculations
employ the kinematic coupling approximation,

' ' or in
some cases even the potential coupling approximation
has been employed. ' '

II. FORMALISM

The final state Hamiltonian Hf for a knockout reaction
A(a, ab)B having three free particles in the final state is
generally taken as'

Hf =A, +Ab +AB + T, + Tb + TB

+ V B ( r B ) + VbB ( rbB )

where Ts and &'s represent the kinetic energy operator
and internal Hamiltonian, respectively, for a, b, and 8,
and V, (r ) is the interaction between x and y which is

commonly replaced by the corresponding optical poten-
tial. The interaction V,b is supposed to be taken care of
by the impulse approximation. '

In terms of relative coordinates r,B and rbB (see Fig. 1)
the final state Hamiltonian Hf can be written as' '

Hf =&, +Nb +KB + Tg B + TbB

+ V,B(r„B)+ VbB(rbB )
— V,B V bB .

Ply

Here the term fi /mB—V,B VbB couples the relative
motion of the three-particles in the final state. When this
coupling term is replaced by k,B kbB /mB (where k,B and

kb~ are the asymptotic momentum vectors conjugate to
the relative coordinates r,B and rbB, respectively) it
amounts to the kinematic coupling approximation. The
same final state Hamiltonian Hf can be written in terms
of another set of relative coordinates r, „and rbB (see Fig.
1) as"

Hf =A, +Nb+NB+ T,„+TbB

+V,B(r,B)+VbB(rbB) . (3)

It is to be remarked that the coupling shows up here
through the interaction V,B(r,B) which is a function of
r,B and not of r, ~. When V,B(r,B ), where

my pub
r, „— r,

Ply mp

is approximated by V,B[(m „/mB )r, z ], it amounts to the
potential coupling approximation. '

Although the representation Eq. (2) of the three-body
final state in terms of (r,B,rbB) coordinates is symmetric,
it is seen that in a situation where the interaction
V,B(r„B) is weakly distorting the coupling still shows up
in Eq. (2) through the V,~-V» term while the eftect of
the coupling decreases with the weakening of the interac-
tion V,~(r,~ ) in Eq. (3) for the potential coupling formal-
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FIG. 1. Relative coordinates r,& and r» used for kinematic
coupling formalism and r, „and r» used for potential coupling
formalism of the three-body final state treatment of the
A (a, ab)B reaction.

isrn. It reminds us of the situation existing in the
A(e, e'p)B and A(p, pa)B reactions where the distor-
tions are comparatively weak in the e —B and p —B
channels, respectively. In the ideal situation where the
interaction V,s(r, ii ) is not present at all, the solution for
the final state Hamiltonian Hf in the form of Eq. (3) will
be exact, while in the form of Eq. (2) it will have the ap-
proximation associated with the replacement of the cou-
pling term —(A' /ms)V, & Vbs by its asymptotic value.
We thus arrive at a test case where one can estimate the
amount of error involved in making the kinematic cou-
pling approximation in a situation where one of the opti-
cal potentials [say V,s(r,s)] is absent in the final state.
Using these final state solutions in the evaluation of the
transition amplitudes and overlap functions, DWIA cal-
culations have been performed for some representative
knockout reactions, and these results are discussed in the
following section.

III. RESULTS AND DISCUSSION

Calculations have been performed for the kinematics of
the 90 MeV ' O(a, 2a)' C, reaction' and the 101.5
MeV ' O(p, pcr)' C reaction. One of the optical poten-
tials, a, —' C for the (cr, 2cr) reaction and p —' C for the

(p,pa) reaction, has been equated to be zero in the final
state three-body Schrodinger equation. In order to study
the region of localization for the influence of the coupling
term, all the imaginary components of the optical poten-
tials are also neglected. For the case of (a, 2a) kinemat-
ics the results of the overlap function GF(R) [where
GF(R) is the product of the bound intercluster wave
function, u(R) and the three distorted waves integrated
over all the coordinates except the intercluster separation
—R] are presented in Fig. 2 for the zero recoil momen-
tum condition. It is observed in this figure that both the
real and imaginary parts of the GF(R) diff'er widely for
the KCA and the exact three-body treatment of the final
state. It is particularly interesting to note that the contri-
butions to GF(R) from the surface region (R =2—3 fm)

0.
I I I I l I

1.0 2.0 3 o 4.0 5.0 6.0 7.0 8.0
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FIG. 2. Overlap function GF(R) vs intercluster (a-' C) sepa-
ration; R for 90 MeV kinematics of ' O(a, 2a)' C~, reaction for
zero recoil momentum position, E =41.423 MeV using a-'2C

optical potential only in the final state and no imaginary parts of
the optical potentials. ( ) exact three-body calculations
and ( ———

) kinematic coupling approximation calculations.
(a) Real part and (b) imaginary part.

are invariably suppressed [both real and imaginary parts
of GF(R)]. Similar suppression of the surface contribu-
tions is witnessed in the GF(R) at other recoil momen-
tum points; Fig. 3 shows this behavior for recoil momen-
tum, p&=95 MeV/c corresponding to E =51.5 MeV.

1

The components comprising the GF(R), i.e., the bound
wave function u (R) and the product of the three distort-
ed waves, y(R ), shown in Fig. 4, corroborate this
suppression of the surface contributions due to the
neglect of the three-body contributions.

Energy sharing distributions for the 90 MeV
' O(a, 2a)' Cs, reaction kinematics for the exact and
KCA treatment of the three-body final state are present-
ed in Fig. S. The main impact of the correct treatment of
the three-body coupling term as seen in Fig. 5 is to
enhance the cross section by about one order of rnagni-
tude near the zero recoil momentum position,
E =41.423 MeV, Besides this a comparison of the ex-

1

act and KCA results in this figure indicates that the cou-
pling increases the cross section faster with the increase
of E (where E is the energy of the particle wave

1 1

which is not distorted by the optical potential in the final
state). It is interesting to note that a similar behavior is
required to improve the DWIA fits to the (p,pa) reaction
data. Energy sharing distributions have also been calcu-
lated for the 101.5 MeV ' O(p, p a )

' C, kinematics us-
ing the KCA and the exact three-body treatment of the
final state and are presented in Fig. 6. All the imaginary
components of the optical potentials have been neglected
for these calculations also. As the optical potential for
the p —' C channel is weakly distorting, a comparison be-
tween our model calculations and experimental data
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FIG. 3. (a) and (b) Same as Fig. 2 but for E =51.5 MeV
1

corresponding to 95 MeV/c recoil momentum.
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FIG. 5. Calculated energy sharing distributions for 90 MeV
' O(a, 2a) reaction kinematics for the test case when the V

1

"C optical potential is taken as zero for the final state and all

imaginary potentials are neglected; ( ) exact three-body
coupling, and ( ———) conventional kinematic coupling ap-
proximation.
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FIG. 4. (a) Intercluster wave function u (R) for a-' C of ' 0
using Saxon-Woods well radius parameter ro=1.09 fm. (b)
Product of three distorted waves, y(R) for the test case of 90
MeV ' O(a, 2a) at E =41.423 MeV real part, ( ) exact

three-body, and ( ———
) KCA. (c) Same as (b) but imaginary
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FIG. 6. Comparison of the 101.5 MeV ' O(p, pa)' C~, reac-
tion results for the test case (final state p-' C optical potential
zero as also all the imaginary potentials are neglected) for the
exact three-body coupling ( ) and conventional kinematic
coupling approximation ( ———), and the experimental data.
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may not be very unrealistic for this case. It is very en-

couraging to see that the exact three-body calculations
without the imaginary components of the optical poten-
tials are in very good agreement with the experimental
data. Even the structures around the zero recoil momen-
tum position (E -=65 MeV) are nicely reproduced by the
exact three-body final state treatment of this reaction.

For the 101.5 MeV ' O(p, pa)' C, reaction the abso-
lute cross section at the zero recoil momentum position
(E —=65 MeV) calculated with the exact final state treat-
ment in the DWIA is 26 pb/sr MeV as compared to the
experimental value of 12 pb/sr MeV. It is, however, to
be noted that all of our calculations used the bound state
Saxon-Woods parameter of 1.09 fm and a diffuseness pa-
rameter of 0.65 fm. A calculation of the cross section for
this reaction as a function of the bound state Saxon-
Woods well radius in Ref. 6 indicates that when ro in-
creases from 1.09 to 1.3 fm the cross section increases by
a factor of -2.5. Taking this factor into account, one
gets a spectroscopic factor in very good agreement with
the shell model estimate of 0.23 for ' O. Thus both shape
as well as magnitude for the 101.5 MeV ' O(p,pa)' C
are in excellent agreement with the exact three-body test
case calculations when there are no imaginary potential
components. When the imaginary parts of the optical
potentials in both the initial and the final state are includ-
ed in the calculations, the structures around the zero
recoil momentum position disappear and the absolute
cross section is also reduced by a factor of 4.

In context with the changes in optical potentials it is
worth noting that in the study of the A dependence of
the A(e, e'p) reaction in the quasifree region' the at-
tenuation length is almost three times longer than expec-
tations based on the free nucleon-nucleon cross section.
From our (p,pa) and (a, 2a) calculations also we tend to
infer that the attenuation length (hence the imaginary
part of the optical potential in the reverse sense) for a

particles in nuclei is significantly longer (hence W is
smaller) than expected from other considerations. The
neglect of the imaginary component of optical potentials
in our calculations for the test case situation also gets in-
direct support from some other considerations such as
anomalous back-angle scattering of a particles and
transfer reactions involving light heavy ions. '

IV. CONCLUSIONS

A test case has been found where the influence of the
three-body final state coupling term present in the con-
ventional DWIA treatment of the knockout reaction can
be estimated. This test case is very asymmetric because
one of the distorting optical potentials in the final state is
completely neglected. The three-body coupling term has
been found to have a large influence in the calculated
DWIA knockout cross sections when the imaginary part
of the optical potential is neglected. The main influence
of the neglect of the dynamic three-body coupling term
has been shown to suppress the surface contributions to
the knockout reaction matrix element. Comparison of
the experimental data for the 101.5 MeV ' O(p, pa) reac-
tion with the calculations favor the inclusion of the
three-body coupling term. Similar to the conclusion
drawn from the (e, e'p) reaction' analyses our calcula-
tions for (a, 2a) and (p,pa) reactions also indicate that
the nuclear attenuation lengths are large not only for pro-
tons but also for the a particles.
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