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Application of the constituent quark nucleon-nucleon interaction to the deuteron
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The nonlocal Schrodinger equation for the two-nucleon potential derived from the interaction
between constituent quarks is applied to calculating the ground state properties of the deuteron,
using quark parameters consistent with single baryon data. We conclude that the two-nucleon
nonlocal equation affords a very decent description of the deuteron.

I. INTRODUCTION (Ref. 1)

In the preceding paper2 hereafter referred to as I, we

presented our development of the nucleon-nucleon in-
teraction derived as the residue of the color interaction
between quarks. Whereas the scale of the unscreened
color force seen within a hadron is m (quark mass)

AqcD 200 MeV, we found that the surviving col-
orless interaction between two nucleons goes as over-

lap integrals x m, which makes the scale of the order
of MeV. As demonstrated in I, there is an effective ex-
change of quarks which occurs in the full application of
the Pauli principle to the six-quark problem and only
the exchange terms among the quarks contribute to the
nucleon-nucleon interaction. The quark-quark potential
energy used in I was the short range one-gluon exchange
and the long-range linear confinement. We refer here to
the derived nucleon nucleon pot-ential as UoGF, with the
subscripts meaning that the full one-gluon plus confine-
ment terms were used. It is the purpose of this paper to
report the application of UOGE to the calculation of the
energy, quadrupole moment, rms radius, and magnetic
dipole moment of the deuteron.

We noted in I that to reduce the computational details
we replaced the exact nucleon three-quark state functions
(which is very complicated) by a simple Gaussian approx-
imation with spin and isospin decoupled from the orbital
angular momentum. There are in UQGE four parame-
ters: a„ the strength of the short-range gluon exchange
interaction; m, the corriinon up-quark, down-quark mass;
(9, the intrinsic length of the internal nucleon function;
and k, the strength of the long-range linear confinement.
Had we derived the nucleon-nucleon interaction using the
exact internal nucleon wave function, these would all be
fixed by the baryon properties as is done in the work of
Kiefer. 3 Since we have not used the exact internal nu-
cleon wave function, we fit P to the size of the nucleon

consistent with the approximate starting Gaussian. Fur-
thermore, also consistent with that function, m is fixed
by the nucleon magnetic moment. We choose k to be a
value consistent with the single baryon work s the nuclear
potential and the deuteron properties are quite insensi-
tive to k. Finally we determined n, from the two-nucleon
data subject to its value not being vastly different from
that appropriate to the exact nucleon wave function.

In Sec. II we shall discuss the diagonalization proce-
dure necessitated by the fact that UpGE is nonlocal; some
details of the necessary generalized Brody-Moshinsky
brackets are relegated to the Appendix. In Sec. III we

shall detail the modifications necessary in the deuteron
magnetic dipole and electric quadrupole operators to ac-
count for the internal structure of the nucleons. In Sec.
IV we present our results.

II. DIAGONALIZATION

The general form of the nonlocal nucleon-nucleon equa-
tion is given as Eq. (1) in I. It has the form

d r' s(r, r')g~(r') = E~ /d r'l&(r, r')4z(r'),

where

(2)

In Eq. (2) P is the momentum conjugate with internu-
cleon distance r, M is the nucleon mass and U(r, r')
is the nonlocal potential which we said we will call
UQQE. The two-nucleon function, @i(r), appears in
the 6-quark wave function2 and depends on the 6-quark
(total spin, total isospin} = (S,T}= (j}quantum num-
bers. The normalization kernel, E(r, r ), is given in the
Appendix and the normalization condition on 1b(r) is
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If one expands the gz(r) in terms of a complete set of
functions g' (r)), then

4~(r) =).A ~C (r)

and with this Eq. (1) becomes

) Hp A~) ——E) ) Icp A (~,

where

Hp —— dr r' prHrr' r'

Since Eq. (9) implies KA = (At), we may rewrite Eq.
(8) as

A~HA = E,

where E is the diagonal energy matrix.
Since Eq. (9) does not give the usual normalization for

the two-nucleon problem, we define

Z'~'A = B,
Bt AtK~lz

Equation (11) is valid because, as we show in the Ap-
pendix, K is a positive-definite Hermitian operator.
From Eq. (11)

and similarly for Kp~. The normalization condition Eq.
(3) becomes

) A ~Ap„Kp —b~g.
aP

B~B =1
so that Eq. (10) becomes

B~I& ~ HK ~ B=E

(12)

We may rewrite these equations in matrix form as

HA = KAE, (8)

(9)

Since H is Hermitian, IC ~~zHI4 I is also Hermitian.
It is this matrix which we diagonalize.

We choose the eigenfunctions of the isotropic harmonic
oscillator as a basis for the diagonalization. These are

C)Nr, M(r, B)= 2N!/Bs I"(N + L+ z) —
~

exp ~—

= 4~1.(&) B)&cM(&)) & = L+ —,', (14)

in which B is the oscillator length parameter and L& is

an associated Laguerre function. To these we couple the
two-nucleon spin functions Xsl~ and append the isospin
function XzM~. Thus our basis functions symbolically
are

INLSTJMT M) = [@mL,(r, B)XsjzMXTM

is therefore very convenient to change to new variables x
and y defined by

a b

az + b~ 2(az + bz)

a
a2 + b2 2(a2 + b2)

Our interest here is only in the positive parity states:
the triplet S = 1, T = 0, J = 1 (hence L = 0, 2) and the
singlet S = 0, T = 1, J = 0 (hence L = 0).

The contributions to U(r, r') from the various Vz
terms of the short-range one-gluon exchange potential
plus the long-range linear confinement can be reduced
to five generic terms (see I). Each of these yields a term
in U(r, r ) which is in general different. Also, each one
does so in such a way that r and r' occur in U(r, r') in
diferent linear combinations. For example, in some of
the terms they occur as r —r' whereas for others they
occur as r+ r'. For yet others they occur as 3r —r'. It

where x = P(ar + br') is the naturally occuring form.
The choice of y is made to ensure that r + r' has the
form

&2 + &l2 A&2 + B~2 (17)

That is, there is no cross term I . y. Finally, y is scaled
so that when a = b = &&, y is the relative coordinate.

In computing the matrix elements of H(r, r ') or
K(r, r'), one encounters forms like
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(N'L'M')H)NLM) = f d r d r'4'rrr I (r, B)H(r, r )'d xrrr(r', B)

The H(r, r') separates naturally into a function of x and y with at most one angular coupling between them. We

therefore need to write the product of the two oscillator functions in terms of oscillator functions in x and y.
The transformation of Eq. (16) is a generalization of that which occurs in the two nucleon problem when one

makes a shell model to relative coordinate transformation. The transformation coefBcients are a generalization of the
Brody-Moshinsky4 brackets and are given in the Appendix. The result is that

4& I, M, (r, B)4'NLM(r', B) = ) ) (NqLqMq, NzLzMzlN'L'M', NLM; a, b)
NI.LI.Mg NgLgMg

x(—1) CN L M, (x, B))4~,I,,M, (y, Bz),

where

By ——BPy az y bz, Bz ——2BPy az + bz

By using Eq. (19) we may write Eq. (18) as

(20)

(N'L'M'~H ~NLM) = ) ) (N&L&M&, NzL&Mzl(N'L'M', NLM; a, b)

NI, LgMg NgLgMg

xd J d r d y4xr, M, (x, B,)H(x, y)4x, r, rr, (y, Br)

( =( '&'( '+ ')'l ') (»)

in which the H(r, r') has been separated into functions
of x and y and J is the transformation Jacobian. The
evaluation of the matrix elements is then straightforward.
One has a similar expression for I&(r, r ').

The sums in Eq. (19) and therefore Eq. (21) are finite,
being restricted by energy and angular momentum con-
servation. Once the matrices of H and Id: are found, the
diagonalization can proceed using standard techniques.
Details of how to handle the Id' ~ operator are given in
the Appendix. We shall discuss the results of this diago-
nalization after we consider the electric quadrupole and
magnetic dipole moments of the deuteron.

III. MOMENTS

The nucleon, and therefore deuteron, moments are ex-
pressible in terms of moments of the individual quarks
which make up the nucleons. For a single nucleon then,
the magnetic dipole operator is given by

3

V = I o ) .(~.& + -.')(I& + 2s~) (22)

in which 7;z + 6 is the charge operator for the jth quark
whose angular momentum is I& and whose spin is s&. The
unit of the moments is set by po —eh/2mc in which rn

is the quark mass. (We consider only equal up and down
quarks. )

VVith our internal nucleon wave function only the spin
parts would contribute to the nucleon dipole moment. In

order to connect the quark mass with the nucleon mass,
we shall proceed with a more general wave function, in
which we explicitly do not use center of momentum co-
ordinates. The form is

4 = P(A, p, r) ~o o, ; 7 7;) ~C),

where e = r = &&,

~o o, ; r7;) = +) ~(~) J~dro, ; (-') J -'7. r, )
J

is the symmetric spin-isospin function, and ~C) is the
antisymmetric color singlet. The function P(A, p, r) con-
tains all the spatial and therefore orbital angular mo-
mentum information; it is symmetric. The internal Ja-
cobi coordinates, p, A and the center-of-mass coordinate
r, are defined in I by

1p= (» -»)
2

1
A = (ry + rz —2rs),

6
r = ~s(rg + rz + rs)

(23)

in which the rz are the quark coordinates. Since the
overall wave function is antisymrnetric we may write p
as
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~ = &so). 'p '~&'(~ p )((-,')' J-,'-,'-,'l(l" +»")I(-,')' J-,'-,'-,')

((-')'~-'-' .I( ~ +-')I(-.')'~ ','--.)0(&,p )

Now we may write

((-,')'~-,",r. I(rs, + ~~) I(~z)'J-,'-,".)

Furthermore

1 1

= ~,i-ii'( ' ' ' )+-'
22

A+r,

= 2i .&6 2i
Is ————(Axq)+i (AxP)+ (rxq)+sL,

6

r3 =—

where L = —i(r x P) is the nucleon orbital angular mo-
mentum. In our basis the spin state couples to 2, hence
the internal state P(A, p) must couple to 0 (1 being not
allowed by parity). So long as the internal states involve

only S states in A and p the first term vanishes. The
second and third vanish by symmetry, and upon forming
the sum over J, the appropriate single nucleon operator
is found by inspection of the matrix element to be

p = —[(r, + zi)L + (10r, + 1)S].

in which Izi zi) is a single nucleon spin state and S, is the
z component of the single nucleon spin operator.

Then, with ps the momentum conjugate to rs
1

2 1
p3 —— q+ 3P

6

in which q is the momentum conjugate with A and P is
conjugate with r. Also

Equation (25) is the correct magnetic moment operator
for a nucleon made up of three quarks. The spin part is
that usually quoted in the literature.

When Eq. (25) is set equal to the usual expression for
the proton (r, = + ~) or neutron (r, = —z), one obtains
three relationships between the quark mass rn and the nu-
cleon mass M. From the neutron spin term m = 0.348M,
while from the proton spin terms, m = 0.358M. From
the orbital term for a proton, m = 0.333M.

Ideally, these should all be the same, but there are
corrections which we have omitted. We have ignored
a small mass difference between up and down quarks,
which must be responsible for the difference between the
quark masses derived from the neutron and proton spin
terms. For the orbital term there will be a mass correc-
tion reflecting the fact that M g 3m. This requires a
discussion similar to that given for the Hamiltonian in I,
but a complete treatment needs a three-particle Foldy-
Wouthousen transformation. We have not attempted a
detailed resolution of this formidable problem. Thirdly,
if the internal nucleon wave function includes other than
8-quark states (see Kiefer ) then there will be an orbital
correction term. For example, if A and p involve I = 2

coupled to zero, there will be a correction. If one includes
the state where p has 1 = 2, A has 0 and vice versa, then
S =

z must be coupled for overall nucleon spin &. This
will alter the spin term as well. Here, and in the deuteron
calculation, we content ourselves to using the average of
these values, m = 0.346M = 325 MeV.

To determine a consistent expression for the deuteron
magnetic dipole moment, we shall use the kernel nor-
malized wave function of Eq. (4). The magnetic dipole
moment is

6

Po .&z&+ 6 l,~ +2S,j
j=1 J=M=1

Since the deuteron ground state has T = 0, the r, z term
will not contribute. Hence in vector form we have

6

~ p~~ p~~ &~~ A~~ ~ ' r ' STC lj+2sj 1 —936 r T
j=1

(26)

in which Q(r) is the spatial deuteron ground state wave function, r is the inter-nucleon separation vector, and p&, p~,
etc. are the Jacobi coordinates for nucleons A and B The function f is giv. en by the product of two harmonic oscillator
functions

f = &(&~ pA)&(&~ pa)
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where

4(x, y) = exp
~

— (z +y ) ~.

Since the wave functions have been constructed to be antisyrnmetric under any pair of quark exchanges we may

replace Eq. (26) by

g = po d p~d p~d A~ A~d ~ '
x

' T l~+2» —3 2I&+13+4s&+2s3 36 ~ T (27)

To process this equation, we express each of these oper-
ators in terms of Jacobi coordinates for nucleons A and
B, their conjugate momenta, and L = r x P in which P
is the momentum conjugate to r. We also use Eq. (24) as
well as the fact that the deuteron ground state has S = 1
and T = 0. Finally, one must use the result derivable
from I that

26~3(2
f'(STC~(36)~STC)f = [b (r —r') —K(r, r')I

in which r' = (36)r. It is then not difficult to show that

(I =(7 + )T(r )'T(r )=3~
and the deuteron quadrupole moment operator is then

The tensorial character of the 7;z terms will lead to a
Clebsch-Gordan C(TlT;TOT) in the expectation value
of this operator and since T = 0 for the deuteron ground
state, these terms vanish. Thus the effective operator is
just

p = prr f d rd r'9 M &'(rr)1&(r, r')

x(~ +2S )~m ='a=i(r ) (28)

in which p~ is the nuclear magneton, M is the nucleon
mass and m is the quark mass with L' = (36)L = r ' x P'.
Here &PM'& is the deuteron wave function including spin

and isotopic spin, 3]fM'z
—Q(r) ~SLJM) (Td(), TgyT).

For an individual quark, the quadrupole operator is

(31)

In computing the expectation value of this operator, we

shall again use the It'-normalized wave function. The
antisymmetrization is as usual affected by P, the projec-
tion operator which is defined in I. Because of the idem-

potent property of 'P together with the (Ss x Ss) x Sz
antisymmetry of the function upon which it acts, we may
write the expectation value of q, fr as

Q = r f d pA d pp d 3& d Ap d r 4'(r)f'(STC][2T(rq) + T(rr)][1 —9(33)[d(r)f]STC)

d p~ p~ A~d A~d~ 'r 'Tr~ x

—3 d p~dp~ A~ A~dr 'r ' T 2Tr& +Tr3 T r (32)

We process Eq. (32) in the manner similar with that discussed for the magnetic dipole moment and find

Q = rr f d r d r'dM r'
&

'(r)[2T(r —r')+T(r+ r')]I&(r r')tj~ ) &
(r') —

r d rd )=& r'r(r)T(r)drr )

where we have used the fact that these operators are spin-
isospin independent to include the full deuteron wave
function [[]2M'&. Once the deuteron wave function (K
normalized) is determined, Eqs. (28) and (33) give the
magnetic dipole and electric quadrupole moments, re-
spectively.

IV. RESULTS

There are four parameters in the calculation: a„ the
strength of the short-range potential; k, the strength of
the long-range potential; m, the common up-down quark
mass; and P, where

&
is the intrinsic length of the inter-
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nal quark wave functions describing the nucleons. The
parameters P and I are fixed: P at 243 MeV from the
proton radius and m at 325 MeV from the nucleon mag-
netic moments. The two remaining parameters could in
principle be varied freely to find the best fit to four pieces
of experimental deuteron data: Ey ——2.2 MeV, the bind-

ing energy of the J = 1 ground state; Q = 0.282e2fm2,
the deuteron quadrupole moment; p = 0.857@~, the
deuteron magnetic dipole moment; and r,m, = 2.1 fm,
the deuteron root-mean-square charge radius. In prac-
tice, we found the results are insensitive to changes in k

so we fixed k at 4 x 104 MeVz. This value is consistent
with the small basis study of the N and 6 baryon spectra
by Kiefer. Therefore, 3 out of the 4 parameters are fixed

by single baryon data [or putting it another way, by the
H(3) Hamiltonianj. In principle, n, should also be de-
termined. However, for semirelativistic quarks, e, varies
considerably with momentum transfer and its value ap-
propriate for H(3) will be different than that for H(6),
simply due to the difference of momenta associated with
the two Hamiltonians. We compensate by permitting a,
to vary somewhat, subject to its being not grossly differ-
ent from the value a, /n = 0.64 suggested by the baryon
work.

One final variable enters the calculation, but it is not a
parameter. This is p = Pb where b is the intrinsic length
of the harmonic oscillator basis used for diagonalization.
Of course, in an infinite basis, results would be indepen-
dent of the choice of p. In any finite basis there will
remain some vestige of p dependence. One attempts to
minimize this nonphysical dependence by choosing p in
a range over which results are essentially p independent.

Our S = 1, T = 0, J = 1 basis states are ordered
according to increasing energy and for degenerate energy,
in decreasing orbital angular momentum. Table I shows
the basis, up to reduced energy 20h~.

The search for the proper range of p is complicated
by the variability of a, . To speed up the search proce-
dure, we first studied the energy of the ground state in
a 15 dimensional basis. In Fig. 1 we show this energy
as a function of p for various n, . There are two criteria
here: The calculated energy should be negative (indicat-
ing binding) and above the target energy of —2.2 MeV.
Increasing basis size is guaranteed to lower the energy
since diagonalization gives an upper bound. Secondly,
there should be a region of p for which the calculated
energy is essentially p independent. From Fig. 1 we con-
cluded that for the one-gluon-exchange short-range plus
long-range confinement (OGE), a value of a, between 1.7
and 1.8 (a, /z' between 0.54 and 0.57) is appropriate and

p should lie between 1.5 and 2. More detailed studies in

as
I.2

l.4

l.7
2
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p: l.0
b(F) 08I

l.5
I.22

2.0
l.62

I I I l

2.5 3.0 3.5 4.0
2.03 2.44 2.84 3.25

FIG. 1. Calculated ground state energies of the deuteron
in an N = 15 basis as a function of the basis parameter p = Pb,
for various values of a, . The other parameters are fixed as
indicated in text.

the vicinity of the fiat (p independent) minima yielded
the final result e, = 1.785.

Our next task was to find a sufficiently large basis such
that the calculated energy will have converged close to
the infinite basis value. In Fig. 2 we show the calculated
energy as a function of basis size for p = 1.5 and p = 2.
We also show the points for p = 1.0 and p = 2.5 for
up to a 15 dimensional basis. We also note that by the
time N = 21, both the p = 2.0 and p = 1.5 curves have

begun to flatten out indicating convergence to a value
near to —2 MeV. We had hoped to continue the graph
fully to convergence, but estimates of computer time and
costs indicated that would not be cost effective; to pro-
ceed even to a 27 dimensional basis would approximately
double the cost. Hence, we have used a difference proce-
dure to estimate the converged values.

Detailed examination of the numerical values indicated
that E(J = 1) changes more smoothly when N is in-

creased by 4 rather than by 2. In Fig. 3 we graph the
difference E(J = 1)~ —E(J = 1)~+4 versus ¹ For

TABLE I. Index assignment for the oscillator basis states ~n, L); (E —3/2hu) is in units of hu.

[nL)
(E —3/2hur)

Index X

io, o)
0
1

(o, 2&

2
2

)1, o&

2
3

4
4

)2, o&

4
5

(9, 2&

20
20

(io, o&

20
21
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N
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FIG. 2. Calculated ground state energy of the deuteron
as a function of basis size, N, for different values of the ba-
sis parameter p. The parameters are indicated for the OGE
potential.

io—
OGE
m=325 MeV
P = 245 MeV
K 4QQQQ MeV2

85

p = 2.0 a rather good straight line can be drawn through
the points N = 5 onward, while for p = 1.5 only the
points from N = 11 onward fit well on a straight line.
From this one can extrapolate to a converged value. If
L~~ is the difference between the last point and the first
extrapolated point on the line, and if f is the rate of fall,

then the remaining drop is b,sq/(I —f). We use this tech-
nique to estimate E(J = 1) = —2.28 MeV for p = 2.0
while for p = 1.5 the estimated converged value is —2.10
MeV. Close analysis of the numerics indicates a slight
downward curvature for the p = 2.0 results while for

p = 1.5 results have a slight upward curvature. Therefore
we conclude that the converged binding energy is brack-
eted by 2.10 MeV & BE & 2.28 MeV for the OGE po-
tential. We remind the reader again that OGE includes
the complete one-gluon exchange and linear confinement.

Just as the energy is not fully converged yet by N = 21,
neither are the other physical quantities of interest: p,
Q, and r,m, . Furthermore, each of these is more sensitive
to changes in basis than is the energy. Figure 4 displays
the magnetic dipole moment p as a function of N. No-

tice that changing the basis by 4 rather than 2 makes a
smoother variation. This is undoubtedly connected with
the fact that the l2, 0) oscillator wave function is more
like the [0, 0) than is the l1, 0). Alternative points for
either p = 2.0 or p = 1.5 display very closely either rising
or falling exponential behavior. From these we estimate
convergence at iu = 0.90+0.01. The quadrupole moment
calculation displayed in Fig. 5 shows even more sensitiv-
ity to adding only 2 states to the basis. Furthermore, the
quadrupole moment, being very sensitive to small contri-
butions from higher states, is less well converged. We
see, however, that for both values of p the AN = 2 ex-
cursions are becoming less and less near N = 21. Here
alternate points fit rather closely on curves of the form

Qa[1 —exp( —(N)j. Using this, we estimate a converged
value of Q = 0.13 + 0.005.

Of all physical quantities, r,~„ the root-mean-square
charge radius is least well converged. The extrapolation
to convergence is made from Fig. 6 data and has the
largest uncertainty. We estimate a converged value of
r, , = 1.8 6 0.2.

I I I I I l I

+
Z',

II

0

LLJ

I

0.1
QJ

0.01

EXT

p= l.5

0.09

~N+4f= 044
~N

Q. I51-f
E(J= l)~ -2.06

p= 2.0

Q.2i

0.53

Q 44
-2.27

I

I3
I

I7
I

2i

0.94—

0.93—

0.92—

0.9l—

E 0.90

E
0.89

I

4J 0.88

0.87

0.86

rt'. p= I 0
~:p=l.5
o: p =2.0
+-' p =2.5

~--~- --o

I I I I I I I I I I I

I 3 5 7 9 I I l3 l5 17 l9 2 I

N

FIG. 3. Extrapolation of energy differences versus basis
size. This graph is used to estimate the ground state energy
in a fully converged calculation (infinite basis).

FIG. 4. Calculated ground state magnetic dipole moment
values of the deuteron as a function of basis size for various
values of the basis parameter p. These curves are used to
estimate the magnetic dipole moment in a fully converged
calculation (infinite basis).
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0.25—

0.20—

&:p= I.O
~ p= 1.5
o: p =2.0
+:p =2.5

I I I

0.15—

0.10—

E
0.05

0—

- 0.05— I

I 3 5
I I I I I

7 9 I I 13 15

N

I l I

17 19 21

To assess the stability of the calculation to the values
of the parameters found, we repeated the N = 21 cal-
culation with each parameter in turn increased and de-
creased by five percent, except for k for which we made
ten percent changes. The results are shown in Table III.
It is not surprising that the binding energy is sensitive
to small changes in the parameters, since the binding
energy arises as a result of cancellations between large
quantities. What is surprising is that the quadrupole and
dipole moments and the charge radius are astonishingly
stable, as Table III shows. It is notorious that variational
calculations frequently give good energies but poor wave
functions. The present calculation appears to reverse this
conventional wisdom since the quantities dependent on
the wave function are well determined. Finally, we note

I I I

2.4—

202

2.0—

a:ps 1.0
~:pal.5
0' p ~2.0
+:p a2.5

1.8—

l.6—

FIG. 5. Calculated ground state quadrupole moment val-

ues of the deuteron as a function of basis size for various values
of the basis parameter p. These curves are used to estimate
the quadrupole moment in a fully converged calculation (in-
finit basis).

that for the final determination of the parameters the
E(J = 0) state is computed to be unbound (diagonaliza-
tion of the Hamiltonian in a finite basis can establish that
a state has positive energy and is therefore unbound, but
the energy so found cannot be given a meaningful phys-
ical interpretation).

Of particular interest is the relative contributions of
the various pieces of H to the deuteron binding energy.
To find out, we have computed the N = 21 basis vector
expectation value for each of the terms in the Hamilto-
nian. We shall use the term kinetic energy to refer to
Pz/M; the kinetic energy correction refers to Uu of I.
The remaining terms are detailed in I. Table IV gives the
breakdown.

As expected, the central, tensor, and spin-orbit pieces
provide the binding, while the other terms are antibind-
ing. We note also the nearly negligible contribution from
the quark confinement potential.

Based upon the results of Tables II, III, and IV, we

conclude that the nonlocal nucleon-nucleon Schrodinger
equation derived from the 6-quark Hamiltonian affords
a very decent description of the two-nucleon data. To
achieve this, it is necessary to (i) use the entire one-
gluon-exchange potential to order vz/c~, (ii) carry the
kinetic energy expansion similarly to order v2/c~, (iii)
fully account for the Pauli principle, and (iv) use the
correct treatment for the center of mass motion of the
nucleon. Of the predicted deuteron quantities, only the
quadrupole moment needs improvement. This comes
about by noting that the contributions to the OGE tensor
part of the interaction are very sensitive to higher quark
orbital angular momentum components in the internal
nucleon wave function, and we have ignored these.

Direct comparison between our potential (as derived
in I and used here) and that of others who have con-
sidered the two nucleon problem in a similar manner is
not possible because ours is a nonlocal potential in con-
trast to that of Harvey, s and that of Maltman and Isgur. s

Some comparison is possible in terms of results. As in-
dicated in I, the basic 6-quark function has an equal
mixture of all three-three quark color channels, which
were called hidden by Harvey and which he found nec-
essary. In that respect our results are not different from
his. Reed-Margetan10 has made a local approximation to
the nonlocal potential and finds that the resultant of a se-
ries of very complicated terms leads to rather amazingly

I.O—

TABLE II. Estimated converged (N = oo) results. n, =
1.785, m = 325 MeV, P = 243 MeV, and k = 4 x 10 MeV .

0.8 I I I I I I

I 3 5 7 9 II

N

I I I I I

13 15 17 19 21

FIG. 6. Calculated ground state mean-square charge ra-
dius of the deuteron as a function of basis size for various
values of the basis parameter p. These curves are used to
estimate the mean-square charge radius in a fully converged
calculation (iufinite basis).

Quantity

BE (J = 1) (MeV)
Q (e'fm2)
p (pN)
&rms (fm)
BE(J= 0)

OGE

2.10 & BE & 2.28
0.13 + 0.005
0.90 + 0.01
1.8 + 0.2

not bound

Experimental
value

2.2
0.282
0.857
2.1

not bound
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TABLE III. EfFect of changing the parameters by +5%, except for k, which was changed by
+1070. The results are for an N = 21 basis size. The first line is the final parameter calculation for
the N = 21 basis. The difference between this first line and Table II is the difFerence in number of
basis: N = oo vs N = 21.

341
309

243

255
231

1.785
1.874
1.700

40 000

44 000
36 000

—1.91
—3.43
—0.59
+0.89
—5.14
—4.02
—0.02
—1.88
—1.93

0.12
0.12
0.12
0.12
0.11
0.10
0.14
0.12
0.12

0.90
0.89
0.91
0.90
0.90
0.90
0.90
0.90
0.90

1.59
1.51
1.67
1.69
1.50
1.49
1.70
1.59
1.59

smooth potential forms. In particular, she found a mo-
mentum dependent soft repulsive core in the deuteron
channel, and that is in contrast to Harvey's reported
work.

Maltman and Isgur neglected the momentum and spin-
orbit terms of the one-gluon-exchange potential in their
work. Also, they used a quite different confinement po-
tential. Finally, they added a phenomenological one
pion exchange tail which would give their potential a
much longer range than the local approximation to ours.
The greatest difference between their predications for the
deuteron and ours is that they predict weak binding for
the singlet S state, whereas our calculation predicts that
state as strictly unbound.

The reader should keep in mind the approximations
we have made in this solution to the 6-quark problem.
We have attempted to keep our approximations consis-
tent by using the first order relativistic terms for both
the kinetic energy and in the one-gluon-exchange pot;en-
tial; we have retained only the lowest internal state of the
nucleon, although we corrected the two nucleon kinetic
energy expression for this; and finally, as with all other
authors, we have ignored the contribution of the 3-quark
potential to the two-nucleon interaction. The form of the

latter suggests that its inclusion would increase the two-
nucleon tensor term and the inclusion of higher orbital
angular momentum states in the internal nucleon func-
tion (such as found by Keifers) would certainly increase
the tensor term as well as effectively lengthening the tail
of the two nucleon potential. Both of these might be
expected to improve our predicted quadrupole moment.

From the close agreement with the deuteron data, one
expects the nonlocal equation to properly predict the low

energy two-nucleon phase shifts (up to the pion thresh-
old). Espinosa and Schmidti have used the numeri-
cal deuteron wave function without any adjustment of
our parameters to compute the deuteron electromagnetic
form factors. Their predictions are in very good agree-
ment with experiment. The interested reader may also
obtain the N = 21 vector basis wave function from the
authors.

This work was supported in earlier stages by U.S. DOE
Contract W-7405- eng-82. We wish to express our thanks
to Dr. R. S. Hansen, former Director of the Ames Labo-
ratory, for a Directors Development Grant in latter stages
which enabled us to complete this work.

TABLE IV. Expectation values in MeV of the various parts of the Hamiltonian. The ground
state of the deuteron is approximated by the N = 21 basis vector. The two different values of p refer
to the oscillator length parameter as defined in the text. The energy in Table II is the estimated
N = oo converged value.

Hamiltonian term

Kinetic energy (E~)
E~ Correction
Momentum
Tensor
Spin orbit
Central
Spin spin
Confinement
Total N = 21 computed basis energy

@=1.5
22.64

3 ~ 59
8.21

—12.31
—3.06

—36.40
15.16
0.26

—1.91

p =2.0
19.1

3.20
7.28

—10.21
—2.41

—32.17
13.14
0.23

—1.84
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APPENDIX A:
GENERAL TRANSFORMATION BRACKETS

We want to expand the product eigenfunctions
@~LM(r, B)4yv L M (r', B) of

I t', r2) I(„
(A 1)

in terms of the product eigenfunctions of 0 written in
new variables x and y. The variable x has the form

x = P(ar+ br'),

where a and b are fixed by the naturally occuring forms in
the various generic terms, V~~(36). The second variable

y(r, r') may be chosen freely. We choose

y = 2P(br —ar')

so that

p +2p2(a2 + b2) (p~ B4)~

1 /'
2

y2')

SP2(a2 + b2) s B4) (A2)

By ——pB y a2 + b2, B2 ——2pBy a2 + b2.

Hence we may expand

Thus O' N, L,M, (x, By)@N,L,M, (y, B2) are also product
eigenfunctions of H where

4yvLM(r, B)4~ L M (r', B) = ) ) (NyLyMy, N2L2M2~NLM, N'L'M'; a, b)

NgLgMg NgLgMg

&@'N L M (x, By)@'N L M (y, B2). (A3)

The transformation brackets in Eq. (A3) are a generalization of Brody-Moshinsky4 brackets. A closed form expression
for these may be derived in the same manner used by Barker and Coopery2 for the usual brackets. In fact, when
a = b =

z&
these reduce to the usual brackets which serves as a useful check.

Since the O are normalized isotropic harmonic oscillator functions given by Eq. (14), Eq. (A3) implies

(Ny Ly My, N2L2M2~NLM, N'L'M'; a, b)

d zd y 4y'v L M (x, By)4N, L,M, (y, B2)@ELM(r, B)4& L M (r')

r 2 Ng!N2IN!N'! i/2

&B B B I'(Ny + Ly + -)I'(N2 + L2 + -)I'(N + L + -)I'(N' + L' + —,)

exp
I

—B, —B, YL,M, (~)YL,M. (~)YLM(r)YL M (r') (A4)

with

+2 + =~ +2 O~ —~~+2 O2=~2+

and where we have used (r2 + r'2)/282 = z2/2By2 + y2/2B22 in the exponent.
A generalization of the Moshinsky addition theorem" yields

«'+' r, («)=«rr!r(r. +rr+ —,') ) ) [(ar, +&)(2d+r)(vr', +!)]"'~ o' o'o l ~, ~, ~)L'M' L'M'
1 1 2 2

x ) b„+u,+p~YL M (i)YL,M, (6)( 1)—
V1 Vg

in which

+L~ —L
2 P(a2 + b2)

' 2P(a2 + b2)

(O~)L, +2u, (~y)L~+2ug

y' 2' ( y+ y+-')I'(L2+ 2+-') (A5)

We expand the Laguerre functions L&+ (r /B2) and L~,+ (r' /B ) by using
L+1]2 L'+1/2 I2



42 APPLICATION OF THE CONSTITUENT QUARK NUCLEON-. . . 2721

I'(N + 0 + 1)(—I)"t~
"(') = ~ - r(X+ ~+ 1)(N —Z)!~!

We now use Eq. (A5) and perform the necessary integrations. After some algebra the desired result is found

(N1L1M1 i N2L2M2INLM~ N L ~ i a~ b)

=P —(—1) '+ '+ + [2 ( +b )
+ + + + N, !N2!N!N'!I'(N1+ L1+ -)I'(N2+ I,2+-)I'(N+ L+ -)

4
x r(N'+ L'+ s)(2L+ 1)(2L'+ 1)(2L + 1)(2L2+ 1)]

x ) ) (—1)~*()t.', +1)(2I', +1)(2I'i'+l)()I~'+t)
I o o o II o 0 o I I 0' 0'

0 I( 0I i Li I Ilail

L' L' L '

+') ' M' M' I(. ! ' MZWSs ' '

q
L~+L~'+2(vq+)tg) ( b ~

L~'+L~+2(p, +vt)

(a2 + b2) !
I a2+ b2r

V1VQ P'1 PD

~V1+Vg)N-P ~IJt1+Pg)N'-P

in which

x b„,+„, iv, ~, &„,+„,pr, p, [11!12!)()1!p2!r(1+ L', +-,)r(12+ L2+ —,)
«(~ +L"+-', )r(u +L"+-', )]

'

Ly+L2 —L I Ly +L2 —L Ly+Ly —Ll L2+L2 —L2

2 2 2 2
1— j 2

(A6)

The energy, angular momentum, and parity conditions

2N+ L+ 2N'+ L' = 2'+ Lg+2N2+ I2,
L+L'= Lj+L2,
M+ M' = Mg+ M2)

( 1)L+L' ( l )Lg+Lg

(A7)

are contained in Eq. (A6), implicitly in the 3J symbols and explicitly in the delta functions.
In most cases we require the coupled brackets (N1L1, N2L2!NL, N'L'; J;a, b) that occur in the coupled product

expansion

[4NL(r, B)4~ L (r', B)]qr& = ) ) (N1L1, N2L2!NL, N'L', J;a, b)[4N, L„(»,B1)C~,L, (y, B2)]JQ
NI L1 NgI g

(A8)

and which are independent of the projection I~ These are o.btained from Eq. (A6) by dropping the sum on J and I1
and omitting the factor A where

( L, L, J & ( L L' J ')
=( J+')! Itf'I'Z ' ' MM'Z rr (,

The kernel I&(r, r') is given in I as

APPENDIX B:THE KERNEL IC(r, r')

Is (r, r ') = b (r —r ') + M (r, r ') (STC!(36)!STC),

26 ~3/2

where here we express (STC!(36)!STC)slightly differently from in I as

( —,', S=O, T=O
(STC!(36)!STC)= &

—
s1 S = 1,T = 0 or S = 0, T = 1

, ,",, S =1,T =1.
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Powers of K combine according to with

b2) il2
c= a 2

4
(812)

where K (r, r') = |) (r —r'). Symbolically, we write
K-Kp = I~-'+p.

To form K or K+ ~ it is convenient to use a spectral
representation. The eigenvalue problem for I&(r, r') is
defined by

(
1)i+2+-2 (813)

For our particular case a = 15P2/16, b = 9P2/8, so c =
3P2/4. Also we find then

dsr'K(r, r')g (r') = A g (r).

We can equivalently solve

(83)
The normalized eigenfunctions of M(r, r ') are just
isotropic harmonic oscillator radial functions p„l(r, b)
where the oscillator length parameter is given by

(814)

'with

= 1+ (. (STCAM(36)iSTC).

(84)
Thus we Anally have

&~i = 1+~~i(STC~(36) ~STC)

(») and

The problem posed in Eq. (83) or (84) is then of the
general form

cPr' Ix(r, r')4'„1~(r ', b) = A„i@„i~(r,b) (816)

Since

(86)
For positive parity states S = 1, T = 0 or S = 0, T = 1

which requires I to be even. In that case, from Eq. (82),
(STCi(36) iSTC) = —s', , so

e~x'~ = ) Il(bzy)Yl (z)Yi' (y) (87)

it is clear that g~(x) has the form

)7 (x) =" F i(z)Yi (z), (88)

y dye
' e '" F„i(y) Il(bzy) = E„l F„l(z) (89)

in which the set (ntm) now replaces u. When we substi-
tute Eqs. (87) and (88) into Eq. (86) and perform the
angular integrations, we have the radial equation

' n=0, 1, 2, . . .
1 + (1)l+2n+2 J t 0 2 4

, S= 1,T=0; S=O, T =1.

For negative parity states, I is odd and S = 0, T = 0 or
S = 1, T = 1. In the first case from Eq. (82) it follows

that

' n=0, 1,2. . .
7 (1)l+2a+1

, S=O, T=O,

Now

s/2 y - (~/2) (810)

So, for small z, F„i(z) oc z' whereas for large z, F„l must
fall as exp( —cz2). Hence we write

F„l(z) = z'e-'* a„i(z). (811)

G i(*) =L'+"(2 ')

When Eq. (Bll) is inserted into Eq. (89) and a power
series expansion is made for G„l(z), one readily identifies
G„~ as an associate Laguerre function

while in the latter case

'
n = 0, 1, 2 . . .

31(l)l+»+s ~

, S=1,T=1.

In each case, A„l is clearly positive. Thus I~"I2 is defined
and we may write

I& (r, r') = b (r —r')+) A„l(I)„l (r, b)4„'1 (r', b)

(817)

where

(818)
and

(2a —2c)"
E„,=(2 ) b

The spectral representation of I~ ~ (r, r') given by Eqs.
(816) and (817) is used to form Id' 'I HI1 '~ which we

indicated was the matrix we diagonalize.
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