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We use the semirelativistic constituent quark model in conjunction with the resonating
group method to obtain a nonlocal Schrodinger equation for the two-nucleon system. As the
quark-quark color exchange potential we use the lattice gauge theory result: the sum of the
Breit potential and a linearly rising confining potential. Both the Breit potential and the quark
kinetic energies are treated consistently to order (v/c) in the quark speeds; however, we ignore
relativistic corrections to the confining potential and to the kinetic energy of relative motion of
the nucleons. We distinguish carefully between the exact formulation and the approximations
we use to make the calculations tractable. We present the resulting nonlocal nucleon-nucleon
Schrodinger equation explicitly and analytically.

I. INTRODUCTION

The purpose of this paper is to present a nucleon-
nucleon interaction derived from the quark substructure
of hadrons. Our approach is based on the results of lat-
tice gauge theory. Qf particular importance in the cal-
culation is the (i) consistent and systematic inclusion of
relativistic corrections up to order (v/c)2 and (ii) com-

plete and correct incorporation of the Pauli principle. As
will be demonstrated, the direct nucleon-nucleon poten-
tial vanishes due to the color algebra and only the ex-

change interaction survives. Since this is proportional to
the overlap of the two nucleons, the resulting di-nucleon
potential is of short range. Furthermore, the various ten-
sorial terms present in the quark-quark potential (scalar,
spin-spin, spin-orbit, tensor, etc.) will be shown to give
rise to corresponding terms in the nucleon-nucleon po-
tential.

The nucleon-nucleon interaction results from the ex-
change of quarks in the overlap region and we shall
present guidance to our full mathematical derivation.
There have been several investigations and we shall
elucidate the relationship of our work to at least some
of these later in the paper. Our calculations result in a
nonlocal Schrodinger equation for the two-nucleon prob-
lem:

p2
d r' b (r —r')+ Un(r, r')+ U, (r, r')

+U(r, r') —EK(r, r') 4'(r') = 0 (1)

where r is the internucleon separation. Uo(r, r') arises
from the quark kinetic energy, U, (r, r') comes from the
quark confining potential contribution, and U(r, r ) is
derived from the short-range Breit potential contribu-
tion. This equation is solved numerically in a following
paper for the positive parity isospin singlet and triplet
cases. Our purpose here is to present the derivation of
the equation and the computation of the integrands.

It has been obvious since the discovery of quarks that
nucleon constituents will play a key role in the nucleon-
nucleon interaction. Libermanii and Barryi2 advocated
a nonrelativistic quark model treatment. However, since
constituent quarks are expected to have a mass of about
one-third the nucleon mass, their confinement to a sphere
having the proton's radius would lead to (v/c) of the or-
der of 0.3 to 0.4. Hence relativistic corrections, at least
to first order, are required both to the kinetic and poten-
tial energy terms (the Breit potential). Indeed, we find
that keeping only the quark @CD 1/r term, leads to a
poor estimate of the nuclear scalar interaction and ob-
viously fails to produce the important nuclear spin-spin,
spin-orbit and tensor interactions.

Since the late 1970's, the real question has been on
how to correctly implement the Pauli principle. This has
been attempted by using the resonating group method or
a method essentially equivalent. Unfortunately several of
the references previously mentioned make a subtle error
in the implementation of the Pauli principle. Basically
all have assumed either ab initio or as an approximation
that the effective two-body nuclear interaction is given
by

42 269S



42 CONSTITUENT QUARK MODEL OF THE NUCLEON-NUCLEON. . . 2699

TNN = (vpAvBlTR+lv'Av 8) ~ (3)

This also has a non-Hermitian term since again 'P does
not commute with the TR operator. If VA, VB were ex-
act eigenstates of the clusters A and B, then the non-
Hermitian parts of TNN and VNN would cancel. Because
of the complexityis of the exact &p, one would not choose
it; indeed, that would make an already difficult compu-
tational problem even more formidable. We correct for
this situation in an average way, however, by defining

3 6

V~~ —— y~ygy l Vj —V~+Vjy ll'P yApg
)i=1 j=4

(4)
and

&» = (v Av Bl(T (TA+ TB))u—lv Av'B)

This makes both VNN, TNN separately Hermitian regard-
less of whether the V A, V B are exact or not; if they are, it
presents no correction. Furthermore this approach elimi-
nates the spurious long-range behavior which arises from
allowing errors in estimating the energy of the three-
quark single nucleon system to propagate into the di-
nucleon Schrodinger equation. The use of Eqs. (4) and

(5) makes our work quite different from those referenced.
There are still other difFerences. First of all we apply

Eqs. (4) and (5) to the first-order relativistic correc-
tions, for the reasons given earlier. Secondly, we keep all
the terms of the Breit potential. Thirdly, while we do
not explicitly employ the "hidden color" method used by
Harvey, all the hidden color phenomena are fully and
correctly incorporated.

In Sec. II we discuss the general N-quark Hamiltonian
while in Sec. III we focus on the three-quark problem
briefly to introduce some ideas that will be used in Sec.

3 6

VNN = vAvB ) ) Vij Pv'APB
i=1 j=4

in which Vz is the potential between quarks i and j.
yg and y~ are wave functions describing nucleons A, B
where A is comprised of quarks 1-3 and B is comprised
of quarks 4-6. 'P is the operator which antisymmetrizes
yA&pB with respect to all six quarks. Since 'P does not
commute with the summed potential terms, the VNN pro-
duced this way is not IIermiIian.

If VA, VB are not exact eigenstates of the separate
three quark Hamiltonians, VNN will remain nonzero in
the limit of infinite internucleon separation. This will

lead to a nucleon-nucleon interaction which will not bind
the deuteron.

This spurious behavior occurs because the correspond-
ing kinetic energy is written as T = TA+ TB+TR where

TA, TB are the kinetic energies of the quarks belonging
to one cluster relative to the center of mass of the cluster
and TR is the kinetic energy of the relative motion of the
clusters. The relative kinetic energy in the two-nucleon
problem then is

IV. That section deals with the particular implementa-
tion of the resonating group method particular to the
six-quark problem. In Sec. V we indicate the simplifying
approximations necessary to keep the problem tractable.

n a 8

H(n) = nm+ ) T; + — ) ) %~%~V~,
i=1 i/ j=l a=1

where
2 4

T;=P' - P'
2m 8mscz

(6)

The A; are the SU(3)c color generators of the quarks,
and

V VOGE + VCONF
ij (8)

The quarks are assumed to have the same effective mass
m (isospin symmetry) and units are chosen so that c =
1. The two-quark potential is split into two pieces: a
long-range confining piece and a short range one-gluon
exchange piece. From lattice gauge theory one expectsis

VCONF (1
—Pr)k

P
(9)

where r = lr; —rzl. In Eq. (9), p i is a few fermi; Eq.
(9) comes from explicit lattice gauge theory numerical
results. For pr (& 1, V; is approximately —kr
while for pr » 1, V~OONF is approximately —k/p. The
breakdown of the linear confining potential occurs due
to quark-antiquark pair creation which shields the origi-
nal quarks: when the pair becomes sufFiciently far apart
such that the energy in the string exceeds 2m, the string
breaks, pair creation occurs and nonrelativistic quantum
mechanics no longer applies. The Hamiltonian becomes
a field operator with explicit gluon and antiquark degrees
of freedom. Thus the long-range contribution in Eq. (9)
is not a low energy potential and hence we have excluded
it from Eq. (8). Our general formalism is, however, in-
dependent of the particular choice of V + . Ignoring
this term completely, however, has led to some needless
concern about spurious van der Waals forces between
hadrons. i7 The one-gluon short-range potential (abbre-
viated V ) is

II. THE HAMILTONIAN

The nuclear force is defined to be the interaction
between hadrons. The underlying field theory is the
quark-gluon SU(3)c non-Abelian gauge theory. i4 All
hadrons, including nuclei, must be eigenfunctions of the
many-body n-quark Hamiltonian. From lattice gauge
calculationsis it is now known that for nonrelativistic
velocities, the gluon and antiquark degrees of freedom
freeze out and low energy quantum chromodynamics col-
lapses to a potential theory with massive quarks: the
nonrelativistic quark model. The proceeding statement
has been amply demonstrated for the two quark interac-
tion.

The n-quark Hamiltonian which includes only the two-

quark potential is
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Vz ——n, ( r —2m r [r p, pz + r (r p, )p~] —m orb (r)[1+ ss; s ]

[r x p; (s;+ 2s, ) —r x p, . (s, + 2s, )]+m r [i- s, s, —3(s, r)(s . r)]) (10)

where s; is the spin of the ith quark.
There will be an n-quark wave function

4(ri, si, ti, . . . , r„,s„,t„)with r;, s;, t;, respectively, the
position, spin, and isospin of the ith quark. This wave

function will satisfy the fundamental equation

Our goal is to use Eq. (11) for n = 6 (the two nucleon

system) to derive a Schrodinger equation involving only

the nucleon variables. Since we use (V~) etc. , we need to
look briefiy at the n = 3 problem.

III. THE n=3 HAMILTONIAN

The Hamiltonian of Eq. (6) for n = 3, H(3), can be
expressed in Jacobi coordinates defined by

1
(ri + rz —2rs)

1
I'y —I'g

(12)

1R = -(ri + r2 + rs),
3

(14)

+) PP&Qv(A, p, q, p)—
p4

(15)

where the subscripts i, j are now spatial indices and Q
has the rotational properties of a quadrupole operator.
Each of Hp H, Hi and Q can be written as a sum of
contributions arising from Eqs. (7) and (8), as follows:

Kp ——Tp+Vp, H= T+V,

Hi ——Ti+ Vi, Q;~ = TP + V;~.

(16)

The explicit forms of Tp, Vp, etc. , are easily developed,
but will not be needed for our discussion here.

Several important insights are readily discernable.
First, we note that in a nonrelativistic theory only the
terms of Hp quadratic in momenta or independent of
momenta, and P /6m, would occur in Eq. (15). The
remaining terms arise from the relativistic corrections to

We denote the momenta canonically conjugate to A, p,
and R, by q, p, and P, respectively. The Hamiltonian is
independent of R, so that the state can be a momentum
eigenstate of the center of mass motion. The Hamiltonian
can be expanded in increasing powers of P as

H(3) = Hp(A, p, q, p)+ P H(A, p, q, p)+ P21

+P Hi(A, p, q, p)

Hp(A, p, q, p)yp ——Mpp. (18)

This discussion is of crucial importance in sorting out the
relative motion of the nucleons from their internal struc-
ture. However, we shall discuss the procedure for doing
so only in the context of the simplified theory described
in Sec. V. Before we develop H(6) we would note the
physical significance of H(3).

Kiefer has solved Eq. (11) for n = 3. Using m = 320
MeV as the constituent quark mass, n, /s = 0.67S and
k = 6.8 x 10~ MeVz, Kiefer was able to predict all the
known N, 6 J" states and all the known photon decay
amplitudes for transitions to the nucleon ground state
with a y~ averaged error of 6.4 percent. For all the 38
N, A J states, he found (v/c) & 0.43, which justifies
the semirelativistic approximation to about the 10 per-
cent level. Kiefer employed all the terms in H(3) that
would seem to resolve the problem of the supposed 8 in-

adequacy of H(3) (with the two-quark potential trun-
cated to include only the central and spin-orbit terms)
to describe the baryon spectrum.

IV. THE m=6 VARIATIONAL SOLUTION

A six-quark system in an overall color singlet must have
a color state belonging to the five dimensional [2,2,2] rep-

both the kinetic energy and the potential energy. They
are therefore of order (v/c), where v is the quark speed.
Now suppose that p(A, p, P) exp(iP R) is an eigenfunc-
tion of H(3) corresponding to an eigenvalue E(P) which
is the lowest eigenvalue compatible with the fixed value
P for the momentum of the nucleon. Clearly p(A, p, 0) =
yp(A, p) is the ground state internal wave function for the
baryon in its rest frame, and E(0) = M the rest energy
of the baryon. The momentum dependence in &p(A, p, P)
arises because the internal coordinates A, p are not in-

variant when the baryon is given a Lorentz boost from
rest to momentum P, in contrast to the case when the
boost is generated by a Galilean transformation. Such a
momentum dependence is expected in order to produce
the Lorentz contraction of the moving nucleon. However,

p(A, p, P) will differ from pp(A, p) only by contributions

of order (v/c)~. If Eq. (15) were exactly correct to order
(v/c)2, then to the same accuracy E(P) would be given

by E(P) = M+(Pz/2M) (P4/SM —), where M = E(0)
is the rest energy of the baryon. It is also legitimate to
use lowest order perturbation theory to obtain, with the
same accuracy,

P4
dsA d p yp (A, p) H(3)yp(A, p) = M+

(17)
where
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liIi) = ((c Ist})1 'sllc) (19)

resentation of the syinmetric group Ss, i.e., the group of
permutations of the quarks, while, in order to satisfy the
Pauli principle, the space-spin-isospin state must belong
to the complementary [3,3] irreducible representation. If
we use a mixed notation of wave functions for coordinate
dependence and ket vectors for the state dependence on
the discrete variables, i.e., spin s, isospin t, and color c,
then the antisymmetry of the six-quark state is expressed
symbolically by

Now let us consider the six quarks to be partitioned into
cluster A containing quarks numbered 1, 2, and 3, with
cluster B containing quarks 4, 5, and 6. The color state
of cluster A can be either a singlet (associated with the

[1,1,1] representation of Ss) or one of two octets (associ-
ated with the two components of the [2,1] representation
of Ss), and similarly for cluster B T. he five color states
of the [2,2,2] representation of Ss, may be labeled by the
color multiplets of the two clusters, and Eq. (19) can be
rewritten as

IC ) = (I'lst})ii llxlg) + (kist))sslSASa) + (4 lst))ss ISIS&}+ (I Ist})s sl8&8a} + (O'Ist))s s IS&8&}, (20)

I@}= —,) .(—1) ~[(c'lst})» IIAIB}],
N

(21)

where the permutation signature, (—1)", is 6 according
to whether the permutation m is even or odd. Now

I I~1~}
is antisymmetric under any odd permutation of the three
quarks 1,2,3 or of the three quarks 4,5,6, and is also anti-
symmetric under the simultaneous interchange of 1 with
4, 2 with 5, and 3 with 6 (i.e. , A::B) The space-.
spin-isospin function (I lst)) ii possesses the complemen-
tary symmetries. When this symmetry is exploited, we
find that the completely antisymmetric 6-quark state Iil'i}

is given by

l~) = »[(~1st})»IIAI~}], (22)

where, for example, IS~8~) is the color state in which
cluster A is in the color octet state 8~, cluster B is like-
wise in color 8~, and the two color octet states are cou-
pled to form an overall color singlet.

Equation (20) displays explicitly the "hidden color"
that has played a major role in some quark model
calculations. This expansion, however, obscures the true
physical situation by giving a preferred role to a partic-
ular partitioning of the six quarks into two clusters of
three quarks each. We note that I@) in Eq. (20) can be
reconstructed by antisyrrunetrization applied to just one
of the terms on the right side. (This is because the direct
product representation [2,2,2][3, 3] of Ss contains the
antisymmetric representation [1,1,1,1,1,1] precisely once. )
Hence, exactly the same physical state as Eq. (20) may
be written (N = normalization constant)

where

P = i'0 [ 1 —(14) —(15) —(16) —(24) —(25)

-(26) —(34) —(35) —(36)] (23)

We note that i' of Eq. (20) or its equivalent form of Eq.
(22) contains equal mixtures of all possible 3-quark color
states. Once the quark coordinates are explicitly inte-
grated out to reveal the nucleon-nucleon interaction, this
color composition is no longer explicit. Nontheless, this
information carries into the nucleon-nucleon interaction
and hence into any two nucleon dynamics. This is con-
sistent with the analysis of Brodsby and Ji who found
this equal distribution of color clusters in the deuteron
wave function.

Let us further examine the space-spin-isospin state of
the two color singlet clusters, with quarks 1,2,3 occupy-
ing cluster A and quarks 4,5,6 making up cluster B. We
shall adopt coordinates defined by Eqs. (12)—(14) with a
subscript A referring to cluster A and a B (with 1,2,3 re-
placed by 4,5,6) for cluster B. Let ( I4 (A, p) o, r )) be
a complete set of eigenstates of Ho(A, p, q, p) of Eq. (15),
i.e. , a complete set of states for a (color singlet) baryon at
rest. Here o is the total angular momentum or "spin" of
the baryon, and r is its isospin. The dependence on the
coordinates A, P is placed inside the ket symbol in recog-
nition of the need for the coupling of orbital and quark
spin angular momentum to yield the physical baryon spin
o, whose coupling is to be understood. Then (@Ist})ii
of Eqs. (20) and (22) can be expanded as

(@!st))11= ) 0 p (r)lda(AA PA) Wp(AB PB) (o op)S (7 +p)T}
a,P,S,T

(24)

where the center-of-mass motion of the pair of baryons is
omitted since it separates from the balance of the prob-
lem. On the right @sp+(r) is related to the probability
amplitude that cluster A of quarks 1,2,3 will be in state

a, while cluster B is in state P, with the clusters coupled
to have total spin 9 and isospin T. From the antisymme-
try of (kist)) ii under the interchange of all three quarks
between the clusters, it follows that
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EST ( I)1+v +op S-+r~+rp T-EST( ) (25) BA
(28)

We use a variational procedure to establish a set of
coupled equations for the functions gspT in Eq. (24).
The variational quantity is

A = (4~H ~e} + g(1 —(e ( e})
=ir ) 3 f drag p'(r)

aPST a'P'S'T'

x(P'Pp STC~(H —g)Pg, p (r)(P Pp S'T'C) + ri,

(26)

where dV = d AA d pA d AB d p~ d r and is invariant
under arbitrary permutations of the six quarks, and we

have written

~STC} = ((o~op)S', (r rp)T}~IAI~}.

The parameter g is the Lagrange multiplier for the nor-
malization constraint (4(@}= 1. The variational equa-
tions are

which ensures normalization, and

A

l~rSITr r, 'I (29)

which establishes the coupled equations for the s)pspT func-
tions. In Eq. (28), the variations must be consistent with
Eq. (25). In deriving Eq. (26), we have used the sym-
metry of H under quark permutations, and the effective
idempotency of 'P acting on any state in the expansion
of Eq. (24). The same syrrunetry of H, together with the
permutation symmetry built into the states ~P PpSTC},
allows us to replace P in Eq. (23) by the simpler expres-
sion 10[1—9(36)], and similar manipulations permit the
expectation value of H in Eq. (26) to be expressed in
comparatively few terms. This is discussed more fully in
Sec. VI. Equation (28) leads to the normalization condi-
tion

f d r drr'drpr (r)K p'p (rr''), 'g'rlpr, '(r') = i. ,

aPST a'P'S'T'
(30)

where the kernel I& is given by

in which

I I

(Ss sbT T[b Sp p6 (r' —r)+s'6 p S p6 (r+r')]
—9[(aPSTC~6 (r ' —(36)r)(36))a'P'S'T'C}

+ s'(o(pSTC(S (r '+ ( 36)r)( 36)) p' o'S' T' C]})

1
(36)r = -r+ (AA —A~)

&I ( 1)1+a~r+nSr+r~r+rd)r S-T-
and for any 0,

(rrSSTC)O)u S S T C) ='f''d 'Ar rP) p d pp d pp(qi'qip STC)O)d pip S'T'C)

Equation (31) incorporates the symmetry of the |()spT(r) expressed in Eq. (25), and in deriving Eq. (31), use has been
made of the result

c'c(PO(STCAM(36) iP'o('S'T'C} = (~PSTCi(36) I(o('P'S'T'C}, (34)

where c is defined analogously to e', but using the un-
primed quantum numbers.

The 6-quark Hamiltonian, Eq. (6), can be written as

H(6) = HA(3) + H/ (3) + VAN/, (35)

where HA(3), H~(3) are the 3-quark Hamiltonians, Eq.
(15), for quarks 1,2,3 and quarks 4,5,6, respectively, and
VAa = H(6) —HA(3) —Hgy(3). The overall center-of-mass
motion factors from the problem and is therefore ignored
in all that follows, so that the state (4) refers only to

I

the relative motion of the six quarks. Since the kinetic
energy contributions to H(6) are single particle opera-
tors, they do not contribute to V~~. The matrix element
of Vg~ vanishes between states in which the clusters A
and B are color singlets (easily proven by the Wigner-
Eckhart theorem), and therefore VA& contributes only
an exchange term to the expectation value of H(6) in
the state (4'}. The absence of a direct term, due to the
color exchange nature of the quark-quark interaction, is

in contradistinction to the otherwise analogous situation
in molecular physics. It is now easy to show that
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(@)H(d))g) = ) ) f drr drr'd r'(r)H r', &, (r, r')d, r (r'),
~PST ~'P'S'V'

where

(36)

2

H p', p, (r, r') = ( bs st z [(aPSTClb (r —r')(H/+ H~)lo('P'STC)

+ ~'(o(pSTClb (r+ r')(Hdi + H&)lp o( STC)] (37)
—9[(aPSTClb (r ' —(36)r)(H/ + H~ + V//)(36) la'P'S'T'C)

+ e'(o(pSTC lb (r ' + (36)r) (Hdi + Ha + Vdia)(36) lp'o''S'T'C)]).

ST S'T' ST S'T'
We note that both K p', p, and H p', p, satisfy the following syrnrnetry rules, which we write out explicitly only

for K.

K p', p, (r, r )=~I& pp, , (r, r—)ST,S'T' I I ST,S'T'

= eICp ',p, (—r, r )
ST,S'T'

I ST,S'T'
=cEKp p, , (—r —r )

The variational condition Eq. (29) is now easily seen to yield the coupled-channel nonlocal eigenvalue equations

ST S'T' ST S'T') f d r'[H r".,&, (r, r') —&I& r ',r, (r, r')]d. ,&,'(r') = O.
~IPISITI

(38)

(39)

In principle, these must be solved subject to the normal-
ization condition Eq. (30). In practice, it is obvious that
some simplifying approximations are necessary. Before
discussing these, however, it is appropriate to comment
on the general formalism developed so far.

Equations (30) and (39) give an exact formulation of
the problem of six quarks in an overall color singlet, ac-
cording to the Zamiltonian in Eq (t)). No n.ew approxi-
mations are introduced beyond those already implicit in
the Hamiltonian.

The formulation of Eqs. (30) and (39) describes the
relative motion of taboo color singlet clusters, without re-

gard to which quarks belong to which cluster.
Although this formalism avoids the explicit use of

"hidden color, " the phenomena normally associated u)ith

hidden color" are fully and correctly incorporated under
the guise of exchange contributions to Id: and H

The interpretation of ((bop+(r), at least when the relative
motion of the clusters is nonrelativistic, is as the proba-
bility amplitude for finding one cluster in internal state
o, , the other in state P, the intrinsic angular momentum
of the two clusters coupled to S, with total isobaric spin
T, and the centers of mass of the clusters separated by r.
However, because of the nondiagonal exchange contribu-

ST S'T'
tion to Id p', p, (r, r'), this interpretation is exact only
in the limit of large r.

The interaction between the two clusters is supplied
ST S'T'

only by the exchange contribution to H p', p, (r, r').
Thus the color algebra gives a null direct force between
colorless clusters and only the exchange term survives.
As mentioned before, this is in contradistinction to the in-

termolecular potential in chemistry where both the direct
and exchange interactions are present. Consequently,
the range of the interaction is controlled by the over-

lap between the states lP (A~, p&), Pp(Aii, p&)STC)
and (36) l(t)~ (Ag, pz), Pp (A~, p&)S'T'C). Since this de-

I

creases exponentially or Gaussian-like with large internu-

cleon separation, the nuclear force is short ranged. The
truncation and other simplifications necessary to make
the calculation practical are given in the next section.

V. SIMPLIFYING APPROXIMATIONS

The first simplification is to restrict the set of inter-
nal states to the nucleon ground state. In view of the
nucleon-delta mass difference, ignoring the coupling of
the delta and nucleon channels is reasonable for low en-

ergy nucleon-nucleon interactions. Our success in the
deuteron calculationio adds support to this view.

In principle, the exact internal ground state [i.e. the

H(3) solution] for the nucleon should be used in Eq. (24).
Perusal of Kiefer's solutioni reveals the nucleon wave

function to be extremely complex. In order to reduce
the computational burden, we felt free to replace the ex-
act internal nucleon state by a simple approximation in

which the spin and orbital angular momentum are de-

coupled. We choose

p3
& (A p)l~ r) =,l, exp[-~&'(~'+ p')]lo r) (40)

d r'[H(r, r') —gK(r, r')]((('d (r') =0, (4S)

The single parameter P may be chosen either by fitting
the proton charge radius or by minimizing the expec-
tation value (n, o, rlHola, o, r) of the energy; we have
chosen the former. When Eq. (39) is restricted to a
single state, it greatly simplifies. After some algebra in
which we exploit the symmetry eg (—r) = (t('d (r), e =
(—I) + and drop irrelevant constant multiplying fac-
tors, we find the simplified problem
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(42)

H(r, r') = (b (r' —r)(HA+ Ha))
-9(b'(r ' —(36)r)(HA + Ha + ~»)(36))

(44)

In these equations we have used the abbreviated nota-
tion

(+) —f d PA ~ PB d ~A ~ ~R 0 (~A PA)(' (~B PB)

x (STC)Q~STC)p(AA, pA)p(AB, pa) (45)

in which P is the Gaussian given in Eq. (40) and the
exchange operator (36), if it occurs in 0 is understood
to operate on everything to its right. We have included

the b function inside the matrix element to indicate that
it will be used to eliminate one of the internal variables
in those terms involving (36).

If the Gaussian described the exact nucleon ground
state, it would make no change (to order v~/cs in the
quark speeds) if we replaced KA + Ha in Eq. (44) by

HA + HB ~ HA + HB (HA + HB) + 2M
p2 p4

4M3 (46)

[See Eq. (17) and the discussion preceding it.] We make
this substitution as a consistent way of compensating for
the poor estimate of the baryon ground state energy pro-
vided by our approximate wave function P. We also write

where

A(r, r') = b (r —r') —9(b' (r' —(36)r)(36)) (43)

and

the nucleon kinetic energy while retaining the corrections
for the motion of the quarks inside each nucleon.

If we fail to make the substitution of Eqs. (46) and

(47) when we use the approximate nucleon ground state
Eq. (40), then the computation would be inconsistent:
the Schrodinger equation that would have followed would
have been distorted due to errors in the description of the
internal nucleon wave function. The distortion would
lead to several unphysical effects, including a nucleon-
nucleon potential which would have been nonzero at large
distances (corresponding to errors in estimating the nu-
cleon rest energy) and a dependence in the kinetic energy
for the relative motion of the nucleons on the parameters
of the quark potential (corresponding to errors in esti-
mating the P2 terms). The use of Eqs. (46) and (47),
which provides the best estimate of the P2 terms and of g
consistent with the approximate internal wave function,
eliminates these errors.

In the next section we shall evaluate Eq. (41) in detail
to extract the nucleon-nucleon interaction, but to clearly
display how we use Eqs. (46) and (47) in Eq. (41), it is
convenient to use an even more symbolic notation. We
write Eq. (41) as

((HA + Ha + VAB)'P) —rl('P) = 0

where 'P is the operator 1 —9(36) and () means internal
coordinate integration; the effect of the (36) operator is

to require the b function, bs(r' —(36)r). We can add a
term (VAB) with impunity since the color algebra matrix
elements cause this to vanish. Now we make the substi-
tution of Eqs. (46) and (47) to obtain

p2
(HA + HB + VAB) (HA + HB) + 2M +

g=2M+E, (47)

where E is the relative energy of the nucleon pair. As a
final approximation, we drop the relativistic correction to or equivalently

—2M('P) —E(P) = 0,

p2 p2—9 (36) + 2M(P) —9([HA + Ha —(HA + Ha)](36)) —9(VAa(36)) —2M('P) —E('P) = 0 .

Now we write

(HA + HB) = (HA + HB)0 + (HA + HB)P

where (HA+Ha)0 means P = 0 and (HA+Ha)P involves

only these terms with momentum dependence P2. The
approximation of Eq. (46) is

p2
(H. +Ha)p =

which we use to yield finally

p2

M
—9([HA + HB —(HA + HB)0 + VAB](36))

—E('P) = o (48)

This is the nonlocal nucleon-nucleon Schrodinger equa-
tion, Eq. (1), based on the starting Hamiltonian Eq. (6)
and incorporating the approximation of keeping only the
nucleon ground state as the internal scattering state. In
the last sections we process Eq. (48) to Eq. (1) and see
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how the tensorial properties of the quark-quark potential
give rise to the tensorial properties of the nuclear inter-
action. In the accompanying paper we demonstrate
that its solutions give good results for the di-nucleon
state. Furthermore its inherent nonloc(jlity is the expla-
nation for the experimental result that fitting low en-

ergy nucleon-nucleon interactions by sums of local phe-
nomenological nuclear potentials requires a menagerie of
functions.

—18

123 654

I 23 654

—36

123 65 4

I 23 654

123 654

VI. POTENTIAL ENERGY GENERIC TERMS

([VA + VB](36)) = ([2V12 + 4V23](36)).

Next, consider (VAB(36)). We may write

(52)

For the potential energy contributions, we must calcu-
late

U(r r ) — 9([VA + VB (VA + VB)0 + VAB](36)) ~

(49)

Before we display the details of the integrations, we show
that comparatively few generic terms occur. Consider
first of all

([VA +VB](36)) —([V12+V13+V23+ V45+ V46+ V56](36)) ~

(50)

The wave functions implicit in Eq. (50) are invariant

under [Ss(A) x Ss(B)] x S2 in which A involves 1,2,3,
8 involves 4,5,6 and S2 ——[e, (14)(25)(36)] exchanges A

and B. (The x means semi-direct product). Now, con-
sider Vjs which we may write as (12)V23(12). But (12)
commutes with (36), and hence Vjs is equivalent to V23.

Similarly, V46 is equivalent to V56. Therefore

([VA + VB](36)) = ([V12+ 2V23 + V45 + 2V56](36)).

(51)

But V45 —— (14)(25)(36)Vj2(14)(25)(36), and V56

(14)(25)(36)V23(14)(25)(36), and since (14)(25)(36) com-
mutes with (36) we have

FIG. 1. Graphical illustration of the five generic terms.
The solid lines represent quark trajectories and the wavy line
represents the V~ quark-quark interaction. Each of the five
generic terms has its own weight.

26. Furthermore, because of the S2 invariance, 34 and 35
are equivalent to 26. Thus

(»( )) = ( 14( ))+ ( 26( ))+( 36(36)) (54)

When we use Eqs. (52) and (54), Eq. (49) becomes

U(r, r ') = —9[2(V12(36)) + (V36(36)) + 4(V14(36))

+ 4(V23(36)) + 4(V26(36))]

+9{(VA + VB)0(36)). (55)

VII. THE KERNEL IC(r, r ')

The kernel, I&(r, r'), is given by Eq. (43). We want
to display its explicit form using the wave function Eq.
(40). If we define M(r, r') by

We note that U(r, r ') is manifestly Hermitian since all
the terms save (V23(36)) and (V26(36)) are self-Hermitian
and those two are Hermitian conjugates. These generic
terms are illustrated graphically in Fig. 1.

With these findings in hand, we are ready to present
our results. We display the kernel separately in the next
section and then display the nonlocal potential term in
Sec. VIII.

VAB —V14 + V15 + V16 + V24 + V25

+V26 + V34 + V35 + V36. (53)

I1 (r, r ') = t) (r —r ') + M (r, r ') (STC
~ (36)~ST C),

(56)

By the arguments used earlier, the terms with subscripts
14, 15, 24, and 25 are all equivalent, as are also 16 and

then the integration implicit in Eq. (43) becomes explic-
itly

M(r, r') = —9/ d'prd prd*ar d'Ar p'(A~, pr)p'(Ar, pr)&'(r' —(M)r)(M)p(&~, )p(&Bprpr)

The spin-isospin, color matrix element of the (36) ex-
change operator may be easily evaluated using standard
angular momentum recoupling for the spin-isospin part
and the standard S6 symmetric group matrices for the

color part. The resulting expression looks complicated
when expressed in terms of the recoupling 9-j symbols,
but reduces, after considerable algebra, to the following
simple expression:
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(sTcI(36)IsTc) —= BsT =,'o'sT —2', (s+ T) +,7 . 6 3
M(r, r ) = —

s &
exP[—P (is@ +—sr —-r.r )] .

3 3 P 2 15 2 15 I2 9 I

(60)

Cr = -'(Adi + AB), T = ~3(Ag —&B). (59)

Then (36)dr = o' and (36)T = ~r —3T while (36)r =
sir+ 4ssT. The result is

The integration over the internal coordinates is reason-
ably straightforward and can be made if a change of vari-
ables is done from AA, A~ to a, 7. where

VIII. THE NONLOCAL POTENTIAL TERMS

The various potential terms of Eq. (1) arise from the
first expectation value of Eq. (48). We begin with H~ +
HB. It is convenient to decompose Hdi+ HB into kinetic
and potential energy terms. The kinetic energy terms in

Hdi and HB are those given in Eq. (15) with the P term
ignored. In (H~ + HB)p only Tp occurs. The constant
6m cancels and these kinetic energy contributions to Eq.
(48) yield

Up(r, r') = —9(b (r' —(36)r)(T'(A) + T'(B) —(T'(A) + Td(B))p)(36))

where T' = T —3m. In more detail this is

Uo(r, r') = —9f d psd psoPAsd Asd'(A prs)d"(Asps)d (r' —, (3!!)r)

&& (S&CI[T'(&&o P~) + T'(&B
o PB) —(&o(A) + To(B))ol(36) IS+C)&(~~ o &~ ') &(~B o +B ') (61)

in which pz ——(36)pz, etc. As with the kernel, the integrations are easily done after a change of variables from

Adi, AB to o, T given by Eq. (59). In all the following nonlocal potential terms it is most convenient to use alternative
variables x, y, u, and v defined as follows

x = 4p(r+r'), y = p(r —r'),
(62)

These combinations of r and r' occur naturally in the generic terms. In terms of these variables then

U sT BsT M(r r p) 168 8(2z2 + 9y2) [190 5 (68z2 + 657 y2) 5z4 + i35 z2y2 + is53 y4]
p2 p2

64m m2 3 16 16 256

(63)

where we have explicitly attached the spin, isospin labels
S and T to Up. Similarly the kernel I&(r, r') has S and
T labels and we may rewrite Eq. (56) as

In the other potential energy terms, the integrals often
result in various confluent hypergeometric functions. We
use

Id. = b (r —r')+ B M(r, r'), (64)

and it is sometimes useful to have M(r, r') in terms of x
and y as

Gg, (z) = iFi(i, j —1/2;z)e ' .

The linear confinement has the form

V;~ = —A; A~ kIr; —r~I,

(66)

M(r, r') =—729+3 P z 3y )
64 ~312 T 4 )

(65)

and as indicated earlier we ignore the damping for large
Ir; —r&I over to the exponential term. The resulting
nonlocal potential term is

U, (r, r') = B M(r, r')[—8v2 —3~sy —4G2, 2(z )+4v5G2, 2(u )+4v5Gq, 2(v )]. (67)

The U(r, r ) of Eq. (1) can be decomposed into various tensorial terms which follow directly from the corresponding
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terms in Eq. (10). Thus we have

U = U +U„+U„+U„„+U
Each of these tensorial pieces is made of the weighted sum of generic terms as displayed in Eq. (55). After the change

of variables is performed and the resulting integration done, these terms are complicated hypergeometric functions.
We display a little of the details in the appendix. Enormous simplification can result by judicious use of the recursion

relationships among the hypergeometric functions. The central term is

2 2

U„„(r,r') = z(n—, /~x)PB M(r, r') +2
~

4 —
~

—4 2G12(z ) — exp( —z )m2r I

' m2

32~5(, , 2P+ G12(u )+ G12(v ) — 2[exp( —u ) + exp( —v )] l

5
~

' ' 5m'

8~~ (1
3 (y

(69)

The spin-orbit term is

2

U„(r,r') =(cr, /~x) 2 P M(r, r')[i(r x r') S]

G, (*')+ G'v ' — P' —G'][G ( ')+G ( ')] .8, , 16+5
(70)

The spin-spin term yields

U„(r,r') = 22(cr, /~n)(P /m )PM(r, r') A12 —A14 exp( —z ) —
27m

~
A&s b (y)

ST ST 2 8 3/2 ST 3

+ A2s [exp( —u ) + exp( —v )]
16 ST 2 2

25

The tensor term is

p2
U„„(r,r') = 4ss(a, /~s) 2PM(r, r')

T 5 T -5 192~5 T 2
~14 G1,4(z )SAB(x) s&s ~ss V SAB(y) + &2s[G1,4(u )SAB( ) + G1 4(v )SAB(v)]

25

(72)

in which SAB(x) is the tensor operator given as usual by

SAB(x) = 3(~A ' x)(~B ' x) z (~A ' ~B). (73)

All these terms are obtainable without considerable effort, but the momentum term requires a good deal more work.
The answer is

U~,~(r, r') = (n, /~x) pM(r, r')8 (8 —9y )+ 27y
—sy ~x x y~ + b (y)+ '9 G12(z )

—y [2G2s(z ) —2G1s(z )]+ 5(x y) G24(z )+ W(u, v)+ W(v, u)

where

2 11v
W(u, v) = 2sse

" + s7sG11(v ) —s76G12(v ) ——G12(v )+u v G24(v )

(74)

+u v 72G24(v ) —(ll ~ v) 12G24(v ) (75)
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In the spin-orbit term, there occur the functions F+
and G+. These are given as

F = —s(STII&i(36)IIST)/V'S(S+ 1)(S+2) (76)

and

G' = --.'(STllos(36) IIST)iV'S(S+ 1)(S+2) (77)

in which the double bars denote reduced matrix elements.

By using the explicit expressions for the 9-j symbols
which occur in the evaluation of the reduced matrix ele-

ments, we are able to simplify these to

F (78)

and

G (79)

The spin-spin term involves other spin-isospin matrix
elements, As&7. The i,j subscripts label the generic term
from which the A arises. In fact,

A;; = ~4(ST([ol o, ( 36)(( ST)g S(S +I). (80)

By using standard recoupling techniques and explicit al-

gebraic expressions for the 9-j symbols involved, these
coeScients become

Ai2 —
s2~ [—260ST+ 150S+ 150T —99], (81)

Ai4 ——a~4[
—24ST+ 72S+ 42T —99], (82)

Ass ——
s24 [—100ST+ 66S + 102T —9], (83)

A2s ——Ass —
s2~ [—20ST + 24S + 24T —45]. (84)

&r4 = si(T+ 2)

ass = s', (50T —23),

4s = &~a = —'(-5T+ 6)

(85)

(86)

(87)

The ki& is not displayed since that term vanishes. This
concludes the essential results presented in this paper.

IX. CONCLUSION

The nonlocal Schrodinger equation for the two-nucleon
system is now of the form

Finally, the last remaining symbols to be defined occur
in the tensor term, the k+. These are reduced matrix ele-
ments of the tensor operator labeled again by the generic
term from which they arise. After considerable algebra
involving the 9-j symbols one arrives at deceptively sim-

ple expressions

f
P2

d r'
~

b (r —r ') + Uo(r, r ') + U, (r, r ') + U(r, r ') —EI4(r, r ')
~ g(r ') = 0, (88)

where P is the momentum conjugate to r; Uo(r, r'),
which arises out of the internal kinetic energy, is given

by Eq. (63); U, (r, r'), which is the confinement contri-
bution, is given by Eq. (67); and U(r, r') is the sum of
all the contributions from OGE. The latter are given by
Eq. (68). The kernel K(r, r') is given by Eqs. (56) and

(60) ~

From the form of the OGE terms, it is clear that
U(r, r') has the usual types of terms found in phe-
nomenological nucleon-nucleon potentials: central, spin-
orbit, spin-spin, and tensor. Because of the nonlocal
nature of U(r, r') one cannot compare it directly with
such phenomenological potentials. Instead, one must
make a local potential approximation to Eq. (1) and
for consistency it must be done through order Ps. Reed-
Margetan~ has developed such a local approximation.
One can, however, irrunediately and directly apply Eq.
(1) to the deuteron. We report the results of the calcu-
lation in the following paper. io Espinosa and Schmidt2
have already used the deuteron numerical solution with
good success in calculating the electron scattering form
factors.

APPENDIX: THE V~ INTEGRALS

As indicated in Sec. VIII, we give a few details of
the Vz integrals. We process the space dependence of

the Hamiltonian terms by making the appropriate change
of variables. First we change from pz, prr, A~, A~ to
p&, p&, o, and r '. The spin-orbit and momentum parts
of V& involve momenta conjugate to the coordinates r;
and rz. The T~ and Trr involve momenta conjugate to
the internal coordinates. To handle these we proceed as
follows: (1) move the (36), where it occurs, to the left of
the momentum term; (2) allow the permuted momenta
to act on g~, P~, g, expressing the results in the form of
the internal variables r, and any form of P (conjugate
with r) acting on g(r); (3) operate with (36) to express
the results. This leaves a general form

pA d'pa d'«'r '
CAN'B&(36)gg Prr 4(r )

in which 3 is a function of internal variables, r, r and

Q(r) is obtained from g(r) by the operation of any P
involved. For the generic terms, T will be a product of
the results of any p operating on the internal functions
(with the results expressed in terms of p&, p&, o, r and
r') and Vz(r;t). To perform the integrations we then
make the further change of variables given in Table I for
each of the generic terms. The guide is to require z = r;z
to be one of the new variables and to choose a second
variable x such that when p& + p& is written in terms of
x and z, no terms linear in x occur. We use
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TABLE I. Defining equations, 3acobian, and change of variables.

Term

I'23 = Z

Fg6 =Z

Defining equation for x

pA = x++2[z —4s(r+ r')]

p = x —~ [z ——', (r + r ')]

p = vox —'~zz+ '~2(3r' —r)

o = x + ~sz —s~s(3r ' —r)
pA

—~3x —2+~z + ~~(3r r I)

~ = x+ ~sz —',~s(3r —r')

Jacobian

g3/2

23/2

g3/2

Variable change

pA p& ~ x)z

pA)O ~X)Z

pA)%~ X)Z

ps t' p'
4A = s~2exp I

——(pA+&A) I

4B = g2 exP
I 2(PB + ~—B)

so that

(Al)

d ss" exp( —as )exp(bt s) Y~„(s).

To evaluate this, we first expand

exp(bt s) = 4x ) II,(bts)YI, )pl(t)YL'M(s)
LM

in which

(A3)

12

QAQB(36)QAQB —
5 exp[—p'(pA + pB + 2(r')]

[ p2(15 2+ 15&2 Sr r )]
(A2)

I (bts) = ' ) (bts/2) +"k!I'(L+k+-s,).r(-,')
(A4)

In all cases we are then led to an integral of the general
orm

We substitute Eq. (A4) into the integral and perform the
angular integrations to find

&, f bt )"m.i'(-,')I'[(A+ p+ —,)] A+ p+ 3 b't')
v~) r(x+ —,') 2

' 2'4a), A+ -'„

When b = 0 this reduces to a standard exponential integral and requires A = td = 0. That is

(A5)

d s s"exp( —as )Yg„(s) =
( )f bppb„p.s „ 2 . ~~ I'[(p + 3)/2]

a(&+3)/2

When b g 0, it is convenient to rewrite the integral into the form

~

~

~

~

r-,')r )„d s " exp[—(s —2s t)]s"Y),„(s) = ' 't"Y),„1F1(n,A+ ;t )—
I'(A + 3/2)

Equation (A7) is the standard form that we used throughout our derivation of H(r, r ').

(A6)

(A7)
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