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We consider loop expansions for the chirally symmetric linear o. model. The conventional loop
expansion is reviewed, and the tachyon problems due to the large attractive o.m and o.o. couplings
are investigated. We then study a modified loop expansion that sums the repulsive baryon loops to
all orders at each order in meson loops. Renormalizability is explicitly demonstrated to modified
one-loop order, which corresponds to the relativistic random-phase approximation. We show that
tachyons present in the conventional loop expansion are avoided to a large extent, but ghosts arise
due to the unphysical behavior of the vacuum loops in this field theory that is not asymptotically
free. Implications and possible solutions to this problem are discussed.

I. INTRODUCTION

Reliable methods for calculations of nuclear phenome-
na at high energies or densities are necessary but not
available at present. While traditional nonrelativistic nu-
clear physics based on nucleon and meson degrees of free-
dom is successful at energies small compared to the nu-
cleon mass, the regime of perturbative quantum chromo-
dynamics (QCD) sets in only at energies that are much
larger than the nucleon mass. A large gap remains in be-
tween.

Renormalizable relativistic field theories with hadronic
degrees of freedom can in principle provide a framework
for systematic calculations with a minimal number of pa-
rameters. Quantum hadrodynamics' is a model of this
type. To be realistic, any such model will contain large
couplings, and it is essential to use nonperturbative tech-
niques. The simplest of such techniques are the mean-
field and relativistic Hartree approximations, which have
been quite successful from a phenomenological point of
view. These successes make it even more important to
systematically improve these approximations.

Moreover, to properly connect traditional nuclear
physics to the regime of perturbative QCD, hadronic
models should maintain some symmetries of QCD. In
spite of its phenomenological success, the Walecka mod-
el of quantum hadrodynamics (QHD) lacks chiral sym-

metry, an important feature of both QCD and low-energy
pion physics. In the present work, we consider the
chirally symmetric linear o model and study its behavior
using a loop expansion. Chiral symmetry imposes con-
straints on the form and magnitude of the nonlinear
meson couplings, and pion dynamics is explicitly includ-
ed. The relationship between the 0. model and the
Walecka model has recently been discussed in Ref. 4.
The results indicate that the o. model can also provide a
reasonable starting point for describing nuclear physics.

The relativistic Hartree approximation represents the
first order of the familiar loop expansion. Recently, the
second-order ("two-loop" ) contribution to the energy
density has been calculated in the Walecka model. The
loop expansion, however, appears not to be very useful:

The two-loop results do not indicate any kind of conver-
gence. One of the goals of the present work is to see if
chiral symmetry can improve the situation. This is
relevant since several existing calculations claim a suc-
cessful description of nuclear matter in the cr model when
certain loop contributions are included.

In applying the loop expansion to the linear cr model,
however, one immediately encounters a problem: The
strong attractive on. interaction gives rise to a tachyonic
pion (m „(0)even at very low densities and in the one-
loop approximation. This produces a complex effective
potential. Strictly speaking, the one-loop effective poten-
tial is not defined at all, since the Legendre transforma-
tion from the generating functional to the effective poten-
tial is not possible. Although the loop expansion has
been used previously to calculate the binding energy of
nuclear matter in the linear a model, the tachyon prob-
lem has traditionally been ignored ' by omitting the
pionic contributions completely. A similar problem
occurs also for the 0 meson, but at higher density. In
Refs. 10 and 11 the tachyon problems associated with the
pion and scalar propagators are recognized, but no satis-
factory solution is given. Clearly, approximations that
include o loops but ignore m loops treat the o. and m

asymmetrically and probably violate chiral symmetry.
A modified loop expansion was proposed by Weiss in

Ref. 12. In this approach, the meson loops are included
order-by-order in fi, but baryon loops (which provide
repulsion) are summed to all orders. Weiss developed
this technique for field theories with broken symmetry at
finite temperature, where the effective potential can also
be complex, and he argued that in some cases, the com-
plex effective potential of the conventional loop expan-
sion can be avoided. The modified loop expansion
preserves both renormalizability and chiral symmetry. In
Ref. 13, the o. model was considered in the zero-loop ap-
proximation to the modified loop expansion, which in-
cludes only baryon tadpoles. In this approximation, the
tachyon problem does not occur.

Here we apply the modified loop expansion to the
linear 0. model. To one-loop order, which corresponds to
a relativistic random-phase approximation, we demon-
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strate renormalizability at finite density and show that
this expansion technique indeed moves the pionic
tachyon pole to higher densities. Unfortunately, there is
a price to pay: The summation of the baryon loops to all
orders introduces additional ghost poles.

The ghost poles arise because the underlying hadronic
model is not asymptotically free. ' ' Ghost poles are
also present in quantum electrodynamics, but they occur
at energies above the Planck scale, because the elec-
tromagnetic coupling is small at zero momentum
transfer. In the o. model, they occur at much lower ener-
gies and produce an imaginary part in the effective poten-
tial that is much larger than the real part. Thus, while
the modified loop expansion can, to a certain extent, solve
the tachyon problem, the resulting effective potential is
dominated by its imaginary part, signifying an unstable
ground state. ' The occurrence of unwanted poles in the
random-phase approximation is not unusual; indeed,
similar poles produce an unphysical pion condensate in
nonrelativistic nuclear models. In our case, the ghost
poles come from the unphysical behavior of vacuum
loops at high mornenta.

The paper is organized as follows. In Sec. II we review
the conventional loop expansion to first order for the
chiral model and highlight the resulting problems. In
Sec. III we describe the modified loop expansion and ap-
ply it to the chiral model. The renormalizability of the
modified one-loop energy density is explicitly demonstrat-
ed in Sec. IV. In Sec. V we consider the special case of
the conventional two-loop approximation for the Walec-
ka model. We show how it can be obtained from the
modified loop expansion and demonstrate agreement with
the results obtained in Ref. 6. New results for the chiral
model are presented in Sec. VI, and Sec. VII contains our
conclusions.

II. ONE-LOOP APPROXIMATION

—
—,'A(s +rl —u ) +as . (2.1)

Here 4', s, and 5. are the nucleon, scalar meson, and pion
fields, and g is the mN coupling constant. The parameters

Systematic methods for calculating in strong-coupling
field theories are rare because of the lack of a suitable ex-
pansion parameter. The loop expansion is an expansion
in Planck's constant A' or equivalently in the number of
loops, ' and it is nonperturbative in the mean fields. It
can be obtained by systematic expansion of the exact
path-integral representation of the generating functional.
As applied to the Walecka model of quantum hadro-
dynamics, ' keeping only the first-order terms is
equivalent to the relativistic Hartree approximation. The
two-loop energy density for this model has been evalu-
ated in Ref. 6. The results do not indicate convergence of
any kind for the loop expansion.

We now proceed to discuss the loop expansion for the
linear o. model. The o model is chirally symmetric and
thus shares an important feature of QCD and correctly
describes low-energy pion phenomenology. The La-
grangian is given by

X, ='P[i 8 g(s +iy, Fr r)]4+—,'(B„sh"s +BP d—l'm )

A, and U describe the strength of the meson self-couplings,
and e is a chiral symmetry breaking parameter related to
the pion mass. This Lagrangian exhibits spontaneous
symmetry breaking; the vacuum expectation value ( s ) of
the classical scalar field, defined by minimizing the tree-
level effective potential, is nonzero and provides the nu-
cleon and the scalar meson with their masses. In the
chiral limit (e=O) the pion is the massless Goldstone bo-
son of the spontaneously broken symmetry.

In terms of the shifted scalar field

y=—(s) —s (2.2)

and the nucleon mass M, scalar meson mass m„and pion
mass m defined by

m, —m
M=g(s), e= m', )(,= ' g',

g 2M'
(2.3)

the Lagrangian reads

2&= ql[i rl (M——gP) —igysS 7]%+—,'(B„QB"P—m, P )

+ ,'(B+B—"F m~—) —V(P, 5),
where

(2.4)

V(P, F)= g, P(P—+F )+gz(P +~ )

with the abbreviations

(2.&)

m, —m m —m
2

8M~
(2.6)

'f nen~upB~exp -' fd'x[&~+—JO]

(2 7)

with the normalization constant

JV= f2)%2WXlp2)nexp —f .d x X&
zero density

(2.&)

The Lagrangian L& [Eq. (2.4)] has to be supplemented by
counterterms that are not written explicitly here and will
be discussed later. Equation (2.7) is to be interpreted in
the canonical ensemble at finite density p, which is
achieved by imposing the appropriate boundary condi-
tions on the baryon propagator used to evaluate the path
integral. We will assume that all observable fields are

Since the nucleon mass, pion mass, and ~N coupling are
assumed known, the linear cr model has only one free pa-
rameter, the mass of the scalar meson. The coefficients of
the nonlinear meson couplings are all related to each oth-
er and prescribed by chiral symmetry. It is possible to
add a neutral, massive vector meson (co) without destroy-
ing either the chiral symmetry or the renormalizability.

The generating functional Z with a source j for the
scalar field is given by

r

Z[j]=exp —W[j]
fi
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uniform and that the ground state has well-defined parity,
so that the expectation value (vr ) of the pion field is zero
to all orders in the coupling. The observed ground-state
expectation value of the scalar field is given by

V(((t) —= V($, 5 =0}=—
g&p +g2$

= —3gik +4g24

(2.11)

(2.12)

(y) = Iim
58'

j~O 5J
(2.9)

The loop expansion now proceeds by expanding the
scalar field around its classical value,

The classical field equation for the scalar field in a uni-
form system (go=const) reads

P(x) =go+A' o(x),
and by rescaling the fluctuating pion field:

(2.13)

m, go+ V~(go) =j, (2.10) m(x)~A'i %(x) . (2.14)

with Insertion into the generating functional Z produces

Z[j ]=JV 'exP —S[Po]+f d x jPo

X f2)%'ZW2)o 2)rrexp i f d x{,'o[ —— —m, —V&&(go)]o'+0[iI (M——gPo)]+

+ —,'5[ Cl m—„——V„„(go}]a+A'i g 4%o ifi' g—+y5r+5.
+A' (g, 4g2—go)o(o +5 )

—fig2(o +F ) } (2.15)

which is still exact. Here we have defined the derivatives of the potential as

=6( g i0+2g—20'»dV( )
(2.16)

2g i0—+4g24' (2.17)

and S [Po] is the classical action

S [Po]=f d x [—
—,'m, Po

—V(go)]

that gives rise to the classical or tree-level effective potential U' '(Po). For exact chiral symmetry,

(2.18)

U(o)(~ )
ms (M —M* )

Sg M

where the effective nucleon mass is defined by

M'=M —
gPo .

(2.19)

(2.20)

The physical minimum of U' '(Po) occurs at go=0.
The remaining terms in Eq. (2.15) describe the inverse scalar meson propagator as modified by the scalar meson self-

interactions, the inverse baryon propagator in the presence of the classical scalar Geld, the modified inverse pion propa-
gator, the interactions of the baryons with the fluctuating fields, and the boson field self-interactions. The last two
groups of terms involve additional powers of A and therefore do not contribute to one-loop order. Thus, in the one-loop
approximation, the path integrals can be evaluated separately for the scalar meson, baryon, and pion:

JV 2)cr exp i f d x Po[ —U —m, —V&&(go)]o}=exp —
—,
' f. d4x f ln 1——

], Vpp(go)

(2m) k m, +iq—
JV&

' f2)42Wexp i fd x {V[i8 (M —gPo}—]+} =exp f d x f trln 1+d k g4o

(2~) k' —M

d k V„( o)
JV ' fXlrrexp i f d xPrr[ — m —V (Po)]sr}—=exp ,' fd x f ——ln 1—

(2') k — + '

(2.21)

(2.22)

(2.23)
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Here JV, JVs, and Ã are appropriate normalization
constants determined from the noninteracting propaga-
tors. The boundary conditions on the fermion propaga-
tor are left unspecified and wi11 be imposed later to gen-
erate the analytic structure appropriate for finite densi-

l

The one-loop effective action I'"[P] is obtained from
the connected generating function 8""[j] by a Legendre
transformation from the sources to the fields:

2ba+

a =2M a+ 6b

(2.29)

(2.30)

(2.31)

I'"[0]=~"[j] f—d' JO. (2.24)
a,4= 24b, (2.32)

I'"[P]=—fd x U"'(P) (2.25)

and in the linear a model, apart from counterterms, is
given by

On the right-hand side, the source j drops out because
the classical action is stationary about tI)0, which satisfies
Eq. (2.10). The one-loop effective potential U"'(P) is ob-
tained from

Pi=2M a +

P4= 8b,

g =(,=2c .

(2.33)

(2.34)

(2.35)

(2.36)

U"'(y) =-,'m, 'y'+ V(y)

ifif d k
2 (2m)

&gg(p)

k' —m,'+ iri

ih dk (p)—3 ln 1—
(2m) k —m„+iq

d4k
+iNfi f tr ln 1+

(2m)4 k' —M
(2.26)

+c (a„sa~s +a„~a~~)], (2.27)

where a, b, and c are constants to be determined by re-
normalization conditions. After shifting the scalar field

by its vacuum expectation value, 6X, becomes

p~ p3 p4+ ~ '+ Prr'+ P'rr '
2! 2t 2!2!

rr —,g,QClg—1 1
(2.28)

where the constants a;, P, , and g are related to a, b, and c
via'

Here N denotes the baryon isospin degeneracy, and tr
denotes a trace with respect to Dirac indices only.

The remaining integrals can be evaluated after dimen-
sional regularization, and counterterms are introduced.
As discussed in Ref. 13, the structure of the counterterms
is restricted by chiral symmetry. We renormalize in the
limit of exact chiral symmetry, thus minimizing the num-
ber of renormalization conditions. To order fi, the re-
quired counterterms in the original Lagrangian (in terms
of the unshifted scalar field s) are

5X,=5[aM (s +5)+b(s +.Fr )

The finite parts of the counterterms are determined by
renormalization conditions. We choose the first two con-
ditions so that the pole of the pion propagator 6 (q)
occurs at q =0 with unit residue in the vacuum. This
determines the coefficients pz and g and automatically
guarantees that the s-wave, isospin-averaged mN scatter-
ing length vanishes at threshold. We also observe that p&,
the coefficient of the pion mass counterterm, is propor-
tional to a, , the coefficient of the term linear in the scalar
field P. Thus proper renormalization of the pion mass
automatically ensures, via chiral symmetry, that the
minimum of the one-loop effective potential at zero densi-
ty is still at /=0. The third renormalization condition is
imposed on the scalar propagator b,, (q). For simplicity
and since the scalar meson mass is not a physical observ-
able, we require that

b, , '(q =0)= —m, . (2.37)

This condition guarantees an unchanged quadratic term
—,'m, P in the eff'ective potential (and energy density) and

determines the coefficient o.z. Note that chiral symmetry
does not allow us to independently impose unit residue at
the pole; in fact, it is well known that in the linear o
model, the residue at the pole of the scalar meson propa-
gator is different from unity.

To one-loop order in uniform systems, only the polyno-
mial terms in P [the coefficients a, to a4 in Eq. (2.28)]
enter explicitly, since all the other terms involve an addi-
tional power of A' from either ~~A'~ m or P=Po+iii' cr

with go=const. Equations (2.29)—(2.32) imply that the
a; depend only on a and b, not on c. Therefore the
meson mass renormalization conditions alone determine
the renormalized one-loop effective potential. This is a
nontrivial result, since the first four powers of P generally
have divergent coefficients.

Explicit evaluation' of the baryon contribution Uz" to
the renormalized one-loop energy density at finite baryon
density p yields
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U"'(y, k )= M'(M' M—") '—(M— M—' )

M 42——'M*ln
2 M2

500

400

300

F+ k dk+M' +k
0

where kz is related to the density by

p= kF,
3~2

(2.38)

(2.39)

200

100

0

U,"'(y)= irim, V ( )

64m m
(2.40)

where

and M" =M —gP. This is the only one-loop contribution
retained in Ref. 13. The contribution U,"' from the sca-
lar meson is (see also Refs. 7 and 9)

—100
0.5

I I I I I I

0.6 0,7

M /M

I I I I I I I I I I

0.8 0,9

FIG. 1. The energy per nucleon E =( U/p) —M as a function
of M*/M for nuclear matter in the conventional one-loop ap-
proximation with baryon and scalar meson loops. The solid line
is obtained at kF =1.3 fm ', the dashed line at kF=2.0 fm
the dotted line at kF=2.37 fm ', and the dot-dashed line at
k =30fm

F(x)—=(1+x) ln(1+x) —x ——', xi, (2.41)

and V&& is defined in Eq. (2.16).
It is clear from this explicit formula that the scalar

contribution becomes complex for V&&(P ) & —m, .
Therefore, in the limit of exact chiral symmetry, the con-
tribution to the energy density from scalar loops is real
only for

M'/M ) 1/&3 . (2.42)

The value of M* at any given density is determined by
minimizing the energy density with respect to M'. For
example, if we keep only the baryonic and scalar contri-
butions U~" and U' '+ U,'", and add a repulsive co meson
with parameters as determined in Ref. 13 for the chiral
model, we find that the energy per nucleon

U(1)E= —M
P

has a minimum in the range of real energy density only
for Fermi momenta below

k'=2. 37 fm (2.44)

This is illustrated in Fig. 1, where the energy per nucleon
of symmetric nuclear matter is given as a function of
M*/M for four different densities. At k~=1.3 fm
there is a well-defined minimum (solid line). This
minimum is already rather broad at k&=2 fm ' (dashed
line}, and for k~ =k~ =2.37 fm ' (dotted line) the
minimum occurs just at the critical value of M*/M,
where the effective potential acquires an imaginary part.
At higher densities (the dot-dashed line is obtained for
k+=3 fm ) the minimum occurs outside of the range of
real effective potential.

The occurrence of a complex contribution to the ener-
gy density from the scalar meson is directly related to a
tachyonic scalar propagator. From Eqs. (2.15) and (2.16),
we see that the scalar meson propagator that enters in the
one-loop approximation is

6, '(k, P)=k —[m, + V~~(P)], (2.45)

V(ko) = ,'m'4'o+ V-(4o) Jko . (2.46)

Solutions po(j) with V&&(po) &0 correspond to unstable
configurations that must be rejected, since the function
j(po) is not defined there and the Legendre transforma-
tion is not possible. The condition V&&(P) &0 for a well-
defined Legendre transformation is exactly the same as
that derived before for a real effective potential.

We now consider the one-loop pionic contribution U" '

to the energy density, as obtained from Eq. (2.23). It can
also be written in terms of the function F defined in Eq.
(2.41):

3irim V~~(P )
U(i)(~) 1T p

64m 3m
(2.47)

Thus, in the limit of small pion mass, the argument of the
logarithm in the function F is negative even for a very
small scalar field. We find, with

2m„ «1 )
m, —m

(2.48)

a real effective potential only for M*/M ) (1 r). A typ-—
ical value for the scalar meson mass' is m, =769 MeV,
which yields r =0.03. As for the scalar meson, this prob-
lem is already apparent in the pion propagator of Eq.
(2.15):

and therefore the squared effective scalar meson mass be-
comes negative, i.e., the scalar meson becomes tachyonic,
if V~~(P}& —m, .

We can view the same problem in yet another way. To
make the Legendre transformation of Eq. (2.24), it is
necessary to invert the function po( j), where po( j) is

determined from the field equation (2.10}or equivalently
from finding the minimum of the function
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b,„'(k,P)=k —m m =m + (M' —M )

500

kF = 1.3 fm

(2.49)
Because m «m, , the pion becomes tachyonic for much
smaller values of the scalar field than does the scalar
meson. ' In the exact chiral limit, the pion becomes
tachyonic for any positive value of the scalar field.

In Fig. 2 we show the real and imaginary contributions
from the scalar meson (solid and dashed lines) and from
the pion (dot-dashed and dotted lines} to the one-loop
effective potential as a function of the ratio M'/M. The
parameters are taken from Ref. 13. As discussed, the
imaginary part from the pion occurs even at very small
values of the scalar field. For both the scalar meson and
the pion, the imaginary parts are of the same order of
magnitude as the real parts and certainly not negligible.

This feature of the one-loop approximation to the
linear o. model raises doubts about its usefulness. The
physical origin of the problem is the strong attractive in-
teraction between the mesons and the classical scalar
field, while the potentially stabilizing repulsive baryon in-
teractions are not included. In general, an imaginary
part of the effective potential may be interpreted either as
an actual dynamical instability of the ground state or as a
shortcoming of the model or approximation used. In the
conventional loop expansion for the linear 0. model, how-
ever, it is quite clear that the imaginary part of the
effective potential indicates an inappropriate approxima-
tion in light of the strong meson self-couplings. For the
scalar meson, there have been attempts to solve the prob-
lem ' by increasing the scalar mass by inclusion of parts
of higher-loop contributions. This procedure, however, is
rather ad hoc and unsatisfactory, since it does not corre-
spond to a well-defined, systematic approximation
scheme. The pion contribution to the one-loop effective
potential is typically ignored completely (both the real
part and the imaginary part). Thus rr and rr are not treat-
ed symmetrically, as they should be in a chirally sym-
metric model.

1000 r

III. MODIFIED LOOP EXPANSION: FORMALISM

In Ref. 12 gneiss proposed a modified loop expansion
that, in n-loop approximation, sums the meson loops to
finite order n but includes iterated baryon loops to all or-
ders. In view of the origin of the tachyon problems dis-
cussed at the end of Sec. II, the modified loop expansion
certainly has the potential to solve these problems (or at
least shift them to larger values of the scalar field, thus al-
lowing for a real energy density at larger densities). We
therefore briefIy review this technique as applied to the
linear cr model at zero temperature.

Our starting point is the exact path-integral represen-
tation of the generating functional Z given in Eq. (2.7}.
For simplicity, we suppress the scalar source, since we
will need only the modified one-loop result, for which the
Legendre transformation is immediate. The baryonic
path integral can be integrated formally to yield

Z[j =0]=JVz ' f2)$2)rrdet(GoG ')exp —S fP, rr]

(3.1)

where

S[$,%)=f d x[ ,'(a„Ja"—p m, p )—

and the normalization is provided by

A'z = f2)$2)S.det(GoG ')

(3.2)

Xexp —S[g,rr] (3.3)
zero density

The inverses of the noninteracting and interacting baryon
propagators are

Go
' (x,y) = ( i8, —M)5' '(x —y),

G '(x,y)=Go '(x,y)

(3.4)

+ [gP(x ) ig y 5r 5(x}—]5' '(x —y), (3.5)

and the compactly written convolution GoG ' is defined
by

0
(D

0

(D

-500

(GoG ')(x,y) = f d z Go(x, z)G '(z, y)

=5' (x —y)+gGo(x, y)P(y)

igGp(x y )&sr I(y }

(3.6)

(3.7}

—1000
0 0.2 0.4

M'/M
0.6 0.8

FIG. 2. Meson contributions to the energy per nucleon as a
function of M*/M at kF=1.3 fm ' in the conventional one-
loop approximation. The solid and dashed lines are the real and
imaginary parts of the scalar meson contribution U,"'(P,kF).
The dot-dashed and dotted lines are the real and imaginary
parts of the pion contribution U' "(P,kr ).

(3.8)

0

Z=JVz' f2)$2)rrexp —S[g,n] (3.9)

with

The determinant of a matrix can be written as the ex-
ponential of the trace (Tr) with respect to space-time,
spin, and isospin indices,

Trf (x,y) = f d x trf (x,x),
of the logarithm of the operator. Thus
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S[$,5]=S[$,5]—if& Tr in[5' '(x —y)+gGo(x, y)P(y) —igGO(x, y)yP Fr(y)] . (3.10)

This modified action S contains all baryon contributions.
In the conventional loop expansion, the zeroth-order effective potential is obtained by minimizing S [PO, Fr=0] with

respect to the background scalar field Po. The modified loop expansion defines a modified background field by minimiz-
ing instead S[go, W =0]. Thus, the modified classical field involves no meson loops, but iterated baryon loops are includ-
ed to all orders. Any model with mesons and N identical species of baryons really contains two expansion parameters:
a mesonic A and a baryonic NA, each counting the number of the corresponding loops. While both are treated on equal
footing in the conventional loop expansion, the modified n-loop approximation exploits the presence of two different ex-
pansion parameters and includes all powers of NA at each order A" of meson loops, while retaining renormalizability
and chiral symmetry.

Therefore, apart from counterterms, the modified zero-loop result is given by [compare Eq. (2.26)]

U' '(P, kF)= —,'m, P + V(P)+i (Nfi) f trln 1+d k

(2n ) k —M
(3.11)

Here Pc has been replaced by P through the Legendre transformation, and the trace is now over Dirac indices only.
The density dependence of U ' ' is contained in the as yet unspecified boundary conditions on the baryon propagator.

After imposing the pole structure corresponding to the density p, which is related to kF as in Eq. (2.39},and after re-
normalization, we obtain

U' '(y, kF)= U' '(y)+ Us"(y, kF)

m' M' M"—' M'
M (M —M» }—'(M —M» )

—'M» ln

kF
k dk+M»2+k (3.12)

with U' ' from Eq. (2.19) and U~~" from Eq. (2.38). This is exactly the result obtained in Ref. 13, which has here been
identified with the zeroth-order modified loop approximation. Notice that U ' ' is an even function of I', as required
by chiral symmetry. Thus the asymmetric treatment of baryon and meson loops in the modified expansion does not
violate chiral symmetry. This conclusion is also apparent in the conventional one-loop result, since the baryon, scalar,
and pion vacuum contributions each scale as the fourth power of a different (independent) mass parameter: M, m, , or

4m

To one-loop order, we expand around the modified zeroth-order fields as in Eqs. (2.13) and (2.14) and use this expan-
sion in the modified action. After expansion of the logarithm in Eq. (3.10), we obtain

S'"[P]=—f d x U' '(P, kF)+Pi f d x f d y ,'o(x)[[—Cl„——m, —V&&(P)]5 '(x —y) —II, (x y, P)]—cr(y)

+A fd x f d y 'rr(x)I[ —Cl„——m„—V„(P)]5' '(x —y) —II„(x—y, P))F(y),

with II, and II„the (baryonic) polarization insertions in the presence of the uniform background scalar field P:

II, (x —y, P) = ig (NA)tr[G—&(x —y)G&(y —x)],
II (x y, p) =ig (N—iri)tr[G~(x —y)y~G~(y —x)y, ] .

(3.14)

(3.15)

The baryon propagator' is

G~ '(x,y)=(ir}„—M+gg)5' '(x —y), (3.16)

with boundary conditions appropriate for finite density (see the discussion below). We recognize the modified scalar
and pion propagators as

(x —y) = [ — „—m,' —V«(y)]5"'(x —y) —II,(x —y, y), (3.17)

'(x —y)=[ — —m —V „(P)]5' '(x —y) —II„(x—y, P} . (3.18)

After replacing S with S "' in Eq. (3.9), it is possible to evaluate the remaining path integrals in Eq. (3.9) with respect
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to the scalar and pion fields, yielding an energy density

U "(p,kF ) = U ' '(p, kF )+ U,"'(p, kF )+ U"'(p, kF )

d 4k k m—, V—~~(((})—II,(k, {(})=U' '(Q, kF }— ln
2 (2m. ) k' —m,' —11,(k, o)

(3.19)

3iA d k
ln

2 (2'�)
k —m —V „(P)—II„(k,((})

k —m —II (k, O)
(3.20)

Here the denominators of the logarithms are the vacuum subtractions arising from JVz . Note that II, (k, O} and
II (k, O) are to be evaluated at zero classical field and zero density. The polarization insertions are proportional to NA,
and the energy density therefore explicitly includes all powers of NA. In the Walecka model, the corresponding result
from the first-order modified loop expansion is the ring energy as investigated by Chin in Ref. 14, generalized to include
the vacuum contributions. We have thus identified the first order of the modified loop expansion as the relativistic
random-phase approximation (RPA). The modified scalar and pion propagators differ from those in the conventional
loop expansion, as given in Eqs. (2.45) and (2.49), by the presence of the polarization insertions. We will see in Sec. IV
how this stabilizes the result to a certain extent against the tachyon poles present in the conventional one-loop approxi-
mation.

To evaluate the integrals in Eq. (3.20}, it is useful to perform a Wick rotation to Euclidean space. This is a straight-
forward procedure if all masses are real, but in the present calculation, we will have both tachyon and ghost poles (or
branch points) to consider, even after the rotation. We will include all singularities that occur on the imaginary fre-

quency axis, and we assume that no other singularities arise in the first and the third quadrants of the complex frequen-

cy plane. It is possible that there are additional poles at complex frequencies, but we will leave this as a topic for future
study.

The constraint of finite density is implemented by replacing q0 by q0
—ip in the baryon propagators that appear in

the Euclidean loop integrals for the meson polarizations. The Euclidean baryon propagator in momentum space is thus
given by

i yo(q i p) y—q+—M"
iG&(q, q)=

q +M +(q ip)— (3.21)

This is equivalent to working in the grand canonical ensemble, and now the effective action I is directly proportional to
the grand canonical (thermodynamic) potential.

The modified one-loop result for the grand canonical potential density 0 at fixed chemical potential p in the relativis-
tic RPA becomes

d k k +m, +V ( )+II,(k, )
n "(y ) =-'m'y'+ V(y)+ U"'(y )+ "f-(2') k +m, +II,(k,0)

3irt f d kF kz+m + V„(P)+II (kz, P)
(2n. ) ks +m +II (ks, O)

(3.22)

apart from counterterms, which wi11 be discussed in the following section. The squared Euclidean four-momentum kE
is here defined by

k2 —k2 +$2E 0 (3.23)

and since we will henceforth always work in Euclidean space, we omit the corresponding index on the four-momentum
variables for brevity.

The chemical potential p corresponding to the density p can be evaluated from the thermodynamic relation

(3.24)

and the energy density at fixed density is then obtained by

U(p)=Q(p)+pp . (3.25}

To order A this procedure can be simplified considerably. We expand the thermodynamic potential 0 '" and chemical
potential p"' in powers of A,

0 ' '(p) =0 ' '{p)+fi50 ' "(p),
(1) (0)+gg (1)

(3.26)

(3.27)
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and note that p' ' is implicitly defined in terms of the density by

an"'
ap (o)

The energy density U at fixed density can then be obtained from

an'"
U (1)( )

—II (1)( (1))+ (1) —II (0)(+(0))+gg (1) +gag (1)( (0))+ ( (0)+gg (1))+O(~2)
ap &(o)

=II (0)(p(0)}+650(1)(1 (0))+pp(0)+0(R2),

= U' '(p)+A'5Q"'()((, ( ')+O(A' ) .

(3.28}

(3.29)

(3.30)

Evidently, to order A it is sufficient to evaluate the modified one-loop grand potential 0 "' at the chemical potential p' '

obtained in the modified tree-level calculation. The chemical potential p' ' is simply related to the baryon density via

k3 — [( (0))2 Me2]3i2N N
F (3.31)

Each meson polarization can be decomposed into a density-independent Feynman part II and a density-dependent
part II . The Feynman part is renormalized by imposing the renormalization conditions discussed after Eq. (2.36). For
the pion we obtain

r

NA'
II (k, P)=

4~
M

1 —ln
M 42

k 2 M2 M4 2+M%2]n
M

+ ]—
—,'k g*ln

g* —1
(3.32)

and the corresponding result for the scalar meson reads

IIF(k, y}=

where

Nhg

4m

' 1/2
4M*

k

M
1 —ln

M 42
k 2 M2 5M4 2+ 3M 42]

M
—

—,'k g' ln
+

(3.33)

(3.34)

For the density-dependent contributions, we find

IID(k, p)
NAB "F q dq+ Nhg k "F q dql

o g* 8~ ~k( o
q q

and

4k++ +(k 2q~k~ )

4koE* +(k +2q~ki)
(3.35)

IID(k, y)=, +Nag "F q dq Nag (k +4M" ) "F q dq 4koE'& +(k
ln

E,* 8m ~k) 0 Eq 4k()Eq +(k +2q~k~)
(3.36)

with E~"=+M' +q . Here k"=(k,k) is a Euclidean four-momentum. The remaining integrals can be evaluated
analytically, but the results are rather lengthy.

IV. RKNORMALIZATION OF THE RELATIVISTIC RPA

While the reordering of the standard loop expansion allows us to treat the baryon contribution to the energy density
exactly for each order of A associated with meson fluctuations, a practical calculation requires that finite results can be
obtained in each order of the modified loop expansion with a renormalization procedure that preserves chiral symme-
try. Here renormalizability will be demonstrated explicitly for the first-order pion fluctuation contribution to the ener-

gy density.
In the spirit of Ref. 12, we isolate divergent terms by first expanding the inverse propagator in powers of 1/k to find

6„'(k,p, kF)=k +m + V„„((t))+II„(k,p)

NA k=Z (k )k +m — (M —M* )
— M +M* ln

g2 4~2 M

2 42NRg 1
M +2M 1

M
8~ k k

k4XRg 1 "Fp dp, 2 ko 2 4k
2 I 2 0 +4 I 2 3I 2

M* +p +0 1

k
(4.1)
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where

Z ( k P } 1 + Nhg NAg
1

k
4~2 8~2 M 2

(4.2)

For the expansion of the pion propagator [Eq. (4.1)], the polarization insertion II is taken from Eqs. (3.32) and (3.35).
Using this expansion, the first-order pion contribution U '„"(P,kF ) is proportional to

d "k d "kf "ln~„'(k-, y, k, )=f " ln[Z(k )k +m ]— (M M—' )+ M +M'ln ",
(2m)" " (2n. )" Z(k }k +m g 4~ M

2
Nft k

(M M'—)+ M +M" ln
2[Z(k )k +m ] g 4m. M

Nag M'
1+2 ln[Z(k'}k'+~ ' ]k'

E

%fig
'

1
2M ln

84r [Z(k }k +m ]k M

k~ 28M«2, P dP +0 1

0 E kP

(4.3)

where all terms written explicitly are divergent as the number of dimensions n ~4. We must now demonstrate that all
divergences in Eq. (4.3) can be removed using counterterms that are consistent with chiral symmetry and that are
defined in terms of vacuum amplitudes.

The first term in the integrand is independent of the scalar field and the density and is removed by a vacuum subtrac-
tion. The next three terms are independent of kF and produce a divergent fourth-order polynomial in the scalar field P.
Due to chiral symmetry, these four divergent terms can be removed by a second-order polynomial in M*,

5U i„=co+c,M' +ciM' (4.4)

The constant term co represents a vacuum subtraction, while c, and ci are chosen to fix the P and P coefficients in the
effective potential.

The fifth term, which is density dependent and which contains divergences (as n ~4) in all powers of P, can be re-
moved by defining a bare mass (Mo) and coupling constant (go) by setting

d "k
1
—3fig f + finite terms (4.5)

Mo M (2n. )" [Z(k')k'+m' ]k'
to 0 (vari). Using the bare parameters to 0 (fi) in the zeroth-order result [Eq. (3.12)] then produces 0 (A') corrections that
precisely cancel the fifth term in Eq. (4.3). We emphasize, however, that in general, the finite contributions arising from
the appropriate renormalization of the baryon mass and vertex make quantitative contributions to the energy density.
The redefinition of go in Eq. (4.5) is precisely what is needed to make the pion-exchange contribution to the baryon sca-
lar vertex function finite to first order in A and to all orders of NA. Chiral symmetry ensures that this redefinition ap-
plied to Mo also renders the baryon self-energy finite to this order. (An independent wave-function counterterm is also
needed. ) Additional finite contributions to these redefinitions are prescribed by fixing the pole position of the baryon
propagator or the strength of the scalar coupling. Therefore, to fully specify go and Mo (and hence the modified one-
loop energy density), one must compute the baryon self-energy and vertex function to the relevant order in A'. In what
follows, we omit the "finite terms" in Eq. (4.5) for the modified one-loop results because it is difficult to determine the
quantitative relationship between bare and physical parameters, and finite corrections will not affect our conclusions.

Finally, a finite expression for the pion contribution to the energy density can be written in terms of the integral of
Eq. (4.3},along with chiral counterterms, as

d4k 6 '(k, , kF) 1 A. NA kU"'(y k )= ln + (M' M*')+ g M—'+M*'ln
(2~)4 Z(k2)k2+~ 2 Z (k2)k2+~ 2 g2 4~ M

Nfi k+ (M —M*')+ M +M* ln
2[Z(k2)k2+~ 2 ]2 g2 4~2 M

NAg M* M NAg 11+2 ln
8~ [Z(k )k +m ]k k 8n. [Z(k )k +m ]k

M*
X 2M* ln

M

kF—8M* +c' +c'M* +c'M*
E» 0 1 2

P

(4.6)
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where A„uses the full polarizations in Eqs. (3.32) and (3.35). Although the integral of Eq. (4.6) is now finite in four di-

mensions, we must still determine the pnite counterterms co, c'„and c2 numerically. Thus the integral of Eq. (4.6) is

evaluated numerically, and the finite counterterms c are chosen to satisfy the three conditions

U '„"(/=0,k~ =0)=0,

Re U („')()I),kF =0) =0, (4.7)

Re U („')(((),k~ =0) =0 .d

Similar considerations allow the renormalization of the scalar meson contribution to first order in the modified loop
expansion. The analogous expression for the scalar contribution is

()) k
fi d k s 4 F4 a-'(k, ~, k )

(2m) Z(k )k +m
NA k(M2 M+2)+ g M2 4M'~2+ 3M+21n

Z(k2)k2+m2 g2 4~2 M

Nfi k2
(M —M' )+ M 4M'—+3M ln

2[Z(k )k +m ] g 4m. M

2

NAg 3M
3 1

M
8n[Z(k. )k +m ]k k

Nhg 3

87/ [Z(k )k +m ]k

+Co'+c &'cN' +C2'M*

V. REPRODUCTION OF THE T%0-LOOP RESULT

M~2 kF 2d
X 2M'41 M 8M, 2 FP d

(4.8)
M2 E*

P

The finite constants co, 2 are determined numerically from the conditions of Eq. (4.7) with the pionic contribution U "'
replaced by the scalar meson contribution U,"'. A comparison of the final term in curly braces in Eqs. (4.6) and (4.8)
reveals that the divergent parts of the subtractions generated by the bare mass and coupling cancel when the pion and
scalar contributions are added. Similarly, due to chiral symmetry, the divergent contributions to the baryon self-energy
from pion and scalar exchange cancel, and only finite renormalizations are actually needed for the full one-loop self-
energy.

Since there are no meson self-couplings in the Walecka model, the term of O(iri) is given entirely by the one-baryon-
loop graphs. The one-loop contribution is then' '

M*
U'"(P, k )= — M* lnW & F

—2M (M* M) 7M (M'——M—) —"M(M* M) ——"(M*——M)—
3 6

Before proceeding, we illustrate the new renormalization technique developed in the preceding section by applying it
to the conventional loop expansion in the Walecka model. We calculate the two-loop contribution to the energy density
for a special case where nuclear matter saturation is obtained without including the co vector meson (parameter set B of
Ref. 6). This demonstrates that our technique, which represents a very different numerical realization of renormaliza-
tion, can reproduce the results obtained in Ref. 6.

The Walecka model result can be obtained from the chiral model by the following modifications: (1}remove the pion
contribution; (2) turn off all scalar meson self-couplings; (3) allow counterterms multiplying the first four powers of (() to
be adjusted independently; and (4) expand the modified one-loop result (which contains all orders in NA') to order A(Nfi}
and set N=2 for symmetric nuclear matter. Thus, the conventional two-loop term can be identified as the part of the
modified one-loop term that is explicitly of order R(NR)

The zeroth-order term follows directly from the classical part of the Lagrangian and is given by

m,U")(y) =-,'m2y2= ', (M' —M)2 . (5.1)
2g

kF
(5.2)

which differs from the result in Eq. (3.12) only in the choice of the finite parts of the counterterms. In Eq. (5.2) all
density-independent terms behaving as a quartic polynomial in P have been removed by renormalization conditions.

To make contact with the two-loop contribution of Ref. 6, we expand the modified scalar one-loop term in Eq. (3.22)
to order A(NA') and set N=2. This gives
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d "k
U]rt'(», kr}=—J [tt, (k, ttt —tl, tk, o)]+cceeterterme,

(2n. )" k +m,
(5.3)

where the counterterms are of two types. The first type is a fourth-order polynomial in P that is chosen to remove the
first four powers of P from Ua '(P, kF =0). In addition, we must interpret the parameters in Ua"(P, k~) as bare parame-
ters and reexpress them in terms of the physical mass (M) and coupling (g) to first order in fi, which generates addition-
al counterterms of order fi . These terms will be density dependent and contain all powers of the background field t|}.
Both M and g in U]]]'](P,kF ) are to be replaced by Mo and go, where the parameters Mo and go are determined by exam-
ining the baryon propagator G given in Minkowski space by

Z '6 '(P, tl})=P' —Mo+goP X(Ii—,g) . (5.4)

As in Ref. 6, the baryon self-energy X is needed only to first order in A. In Minkowski space, the unrenormalized
self-energy is

d "k
X(gf, ]I]}}= i]]lg 2

(2m)" k m,—+iri P —k' —M*+i ri
(5.5)

The parameters Mo, go, and Z are determined by the three renormalization conditions:

G '(P =M, Q=O) =0, (5.6)

G '(gf /=0) =1,
]]=M

(5.7)

We find

G '(gf =M, t|}) =g
/=0

(5.&)

r

2 ]
Mo=M 1+ I 2 —— da(2 —a)[M a +m (1—a)]'"

16~2 2 o

and

3A 2 d "k 1 3' Ag~M 1+ g da(2 —a}ln
2 (2~)n (k2+m2)k 32m' 16m o

r

go ——g 1+ I 2 —— da(2 a)[M a —+m (1—a))(n~2]—n

16m' 2 o
r

2 n 23 2~ aa 2 —a ~ a +m, 1 —a (n/2) —3

16''

Ma+m (1—a)
m S

(5.9}

Mo ]]lg ] a2(2 —a)~g — 2M da zz zM 16m~ o M a +m, (1—a)
(5.10)

to 0 (1), which yield the same renormalized self-energy as in Ref. 6. Here both the infinite and the finite pieces of the
self-energy can be evaluated explicitly. This is in contrast to Eq. (4.5), where the presence of the baryon polarization in-
sertion H, in the meson propagator makes the evaluation of the finite pieces of the integral much more difficult. As in
Eq. (4.5), the divergent parts of the bare parameters are here expressed as an n-dimensional Euclidean integral that
diverges as n —+4. This is a convenient way to generate additional subtractions in the integrand of Eq. (5.3) that make
the overall integral finite as n ~4. The finite parts of Eqs. (5.9) and (5.10) must be retained, as they produce additional
finite contributions to the two-loop result.

The density-independent contribution to II, that decays at least as fast as k follows from Eq. (3.33) and is given by

2&g f (M» k2) &g
2~2 '

2H
k 1 k~42+ 3~421 + 9~44+ 6M 441

M*
k 3 g*+1 M*

k2

(5.11)

All terms that decay slower than k are removed by either a vacuum subtraction, or by fourth-order polynomial coun-
terterms X, ]C,.t)]]', or by the divergent contributions from the redefinitions of Eqs. (5.9) and (5.10) used in U]]]']. Inser-
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tion of Eq. (5.11) into Eq. (5.3) produces a finite result. However, the conventional renormalization conditions for the
Walecka model must be enforced by removing the first four derivatives of f(M', k ) with respect to M'. The deriva-
tives are

f'(M, k }=6M ln + M +M ln
M2 k2 M2

g+1—gin
g —1

(5.12)

k 2 2 kf"(M,k )=6 ri ln + M +M ln
M k M

—(2g —ri )ln
g+1
g —1

(5.13)

24M 8M k~
+(2 '+ ')» "

k k M rt 1— (5.14)

24 k2f"'(M k') = — 8 —2p —6' —3 In +3' ln ~
k2 M2

(5.15)

The density-dependent part of II, has exactly the same form as in the chiral model and again produces divergences to
»I orders in p. As before, these divergences are removed by subtractions that arise when bare parameters are used in

the density-dependent part of U~'.
Therefore, the complete two-loop contribution to the effective potential at finite density can be written as

d4k 1
4

U' '(p, kF)= f f(M' k )
—g f'~'(M, k )(M' M)J-

4n (2m) k +m, ~=o

Rg dk 1 "Fpdp+ +~ 0
S P

k +4M' (k 2~lt~p) +4k'1+ ln
8~k~p (k +2~k~p) +4k()E'

T

4 k0 4gM* —1 +p 1—
k k 3k

8A g'+ —', +f da(2 —a)ln
(4~)'

16' g q ~d a (2—a}de
(4n} 0 M a +m (1—a)

2$2g2
C~(p, kF) — C, (p, kF) .

(4~)'

M'a'+m'(1 —a} ' 2—
m, M a +m, (1—a)

(5.16)

All integrals are now explicitly finite and can be evaluated numerically. The first term of Eq. (5.16) contributes to the
vacuum energy and is easily evaluated as a one-dimensional integral over k . The second term follows directly from the
density-dependent part of II, in Eq. (5.3) and from the divergent part of the mass and coupling constant redefinition in
U~'. The integration over p is done analytically, leaving a two-dimensional Euclidean integration over k and kp ~ The
third and fourth terms of Eq. (5.16) arise from the finite parts of the mass and coupling redefinitions in Eqs. (5.9) and
(5.10). They contain both vacuum terms and density-dependent parts in the functions C, and Cz defined by

M* kF 2

C (P k )
—M ln 2M (M* M) 7M (M M) M(M M) ~s(M M) 4M (5 17)1 ~ F M 0

M' kF 2

C (P, k )=M' M ln —2M (M' M) 5M—(M'——M) ——"M(M"—M) ——'(M" M) 4M"M— —
2 & F

P

(5.18)

Notice that the density-independent parts of both C& and

Cz start at order (M* —M) .
The final term of Eq. (5.16) arises because in Ref. 6, all

integrals (including the one contained in II, ) are taken to
four dimensions simultaneously, whereas here we insert
the renormalized four-dimensional vacuum polarization
II, into the Euclidean integral (5.3) and take the number
of dimensions to four at the end. Let us illustrate this
subtlety with a simple example. For some function u of

two variables, consider the integral

II(k;r) =fd'q u (k, q)—:a(k)+P(k) 2 —— (5.19)

in r dimensions that is finite and equal to a(k) as r~4.
Then the renormalized n-dimensional integral I(n, r) of
II(k;r), with a weight function f (k), is given by
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I(n, r)= fd"k f (k)II(k;~) —aI 2 ——
2

(5.20)

10

kF —— 1

2 ——I 2 ——b+c+d 2 ——n

2 2 2

where the constants a, b, c, and d are defined by

fd"k f(k)a(k)=aI 2 ——+c,
2

(5.21)

(5.22)

0
(D

U

(D

—10—

fd"k f (k)13(k)=bI 2 ——+d .
2

(5.23)

—15

—20
08

I I I I I I I I f I I t I 1 I I

0BP.5 085 0875 09 0 9P5 0 95

lim lim I(n, r)=c,
n~4 v~4

(5.24)

From Eq. (5.21), it is clear that the finite value I(4,4) de-
pends on how the limits v~4 and n ~4 are taken. For
this example, we obtain FIG. 3. The energy per nucleon at saturation density as a

function of M*/M in the conventional two-loop approximation
to the Walecka model.

lim I(n, n)=c+b .
n~4

(5.25)

Our numerical renorrnalization procedure corresponds to
the first way of taking the limit, while in dimensional reg-
ularization (as used in Ref. 6), one must consider the
second way. '

For the conventional loop expansion discussed in this
section, the additional finite piece b [which is contained
in Eq. (5.16) as the last term] can be evaluated analytical-
ly by expressing H, as an n-dimensional integral and in-

serting this expression into Eq. (5.3). In the relativistic
RPA calculation of Sec. IV, however, this difficult calcu-
lation is omitted, because we have already dropped the
finite tertns in Eq. (4.5). [These would produce finite con-
tributions analogous to the third and fourth terms in Eq.
(5.16).] This omission from the modified one-loop results
will not qualitatively affect our conclusions, as we discuss
in Sec. VI, but all the contributions must be computed
here to compare with the results of Ref. 6.

We can now use Eqs. (5.1), (5.2), and (5.16) to repro-
duce the two-loop result of Ref. 6 by calculating the ener-

gy per nucleon

clidean momentum. The integrand is the logarithm of
the inverse scalar meson propagator at Fermi momentum
k~ and classical scalar field P, normalized by the propa-
gator at zero density and zero scalar field (vacuum sub-
traction). After introducing four-dimensional polar coor-
dinates, the two angular integrals corresponding to the
direction of the three-momentum are trivial and give a
factor of 4'. The remaining two-dimensional integral
with respect to k and the angular variable

ko
X =

&k2
(6.1)

is evaluated numerically and is finite when the counter-
terms are included as discussed in Sec. IV.

At zero density, the integrand does not depend on x,
and its real part is shown in Fig. 4 as a function of
k /M for gP/M=0. 15, m =135 MeV, and m, =550

E =—[UI '(P)+ U~i'i(P, k~)+ U~~'(P, kp)] —M
1

P
(5.26)

with parameter set B of Ref. 6 at saturation density
k+=1.3 fm '. In Fig. 3, we show E as a function of
M'/M. It has a minimum at M'/M=0. 875 with the ex-
pected value of E = —15.75 MeV. Similar agreement is
obtained at other values of k~. %e emphasize that Eq.
(5.26) has been computed here with the techniques
developed for the renormalization of the relativistic
RPA, and it represents a very different numerical realiza-
tion of the two-loop contribution than that used in Ref. 6.

Ia
I

VI. MODIFIED LOOP EXPANSION: RESULTS

In Sec. III we derived expressions for the energy densi-
ty in the first order of the modified loop expansion of the
linear 0. model. The contribution from the scalar meson,
apart from the counterterms discussed in Sec. IV, is given
in Eq. (3.20) as a four-dimensional integral over a Eu-

k /M

FIG. 4. The real part of the integrand for the modified one-
loop contribution from the scalar meson for gt)i/M=0. 15 at
zero density.
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MeV. There is a logarithmic singularity whenever the
numerator or denominator of the argument of the loga-
rithm passes through zero. We will refer to these new
singularities, which arise from poles in the modified one-
loop propagator at Euclidean momenta, as (Landau)
ghost poles, and reserve the name "tachyons" for poles
present already in the tree-level propagator. The denomi-
nator (the vacuum subtraction) vanishes at k /M =Q. 16
and generates the first pole, while the numerator vanishes
at k /M =2.31 and causes the second pole. The pole at
zero density occurs at a rather low value of (k /M ) be-
cause in the chiral model, as already remarked after Eq.
(2.37), the wave function renormalization for the scalar
meson propagator cannot be adjusted independently, but
is prescribed by chiral symmetry. The argument of the
logarithm is negative between these two poles, giving rise
to an imaginary part of the effective potential. The sign
of the imaginary part is chosen to be negative, corre-
sponding to a decaying ground state.

The poles of the real part of the integrand are evalu-
ated by finding the pole positions numerically and sub-
tracting the (integrable) singularity from the integrand.
The singular part of the integrand is then computed
analytically, and the remaining smooth integrand can be
easily evaluated numerically. In the case of a single zero
xo of a function f (x), this procedure yields

f dx lnf(x)= f dx ln
a a x xp

b+ f dx ln(x —xII) . (6.2)
a

Alternatively, the real part of the integral can be obtained
by smoothing the pole with a small parameter e,

Ref dx lnf(x)= lim —,
' f dx ln[f (x)+e ) . (6.3)

a 6~0 a

In our calculations, these two methods agreed to at least
four digits. The imaginary part of the integral is simply
proportional to the difference of the pole positions to the
fourth power.

At finite density, the integrand depends on k and the
angular variable x [see Eq. (6.1)] separately. Its real part
is shown in Fig. 5 for kF=1.3 fm ' and gP/M=0. 15 at
the angular variable x=0. The argument of the loga-
rithm here is negative at k =0 and the denominator is
zero at k /M2=0. 16, thus resulting in the first pole at
the same position as at zero density. (This pole arises
from the vacuum subtraction and is thus independent of
the density and the scalar field. ) The other ghost poles
are caused by zeros of the numerator, and thus their posi-
tions depend on both the density and the scalar field
strength. The imaginary part of the effective potential
here arises from the region between zero and the first
pole, and from the region between the second and third
poles.

A better overview of the situation at finite density can
be obtained from Fig. 6, which shows the pole positions
for the scalar meson integrand as a function of k and x
for different values of the scalar field, at fixed Fermi
momentum k~=1.3 fm '. The pole from the vacuum
subtraction is not shown, as it always occurs at

t

]

' ' »
}

kF = 1.3 fm

0

4
' I

0 2

k /M

FIG. 5. The real part of the integrand for the modified one-

loop contribution from the scalar meson for gP/M=0. 15,
k+=1.3 fm ', andx=O.
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FIG. 6. The pole positions in the integrand for the scalar

meson contribution as a function of k and x at kF=1.3 fm

The solid lines are obtained for gP/M=0. 1, the dashed lines for
gP/M=0. 2, and the dot-dashed line for gP/M=0. 025.

0.0
0

k /M =0.16. The solid and dashed lines correspond to
gP/M=0. 1 and gP/M=0. 2, respectively, and the dot-
dashed line is obtained for gP/M=0. 025. The pole at
small angles disappears as P decreases, and the second
ghost moves to smaller values of k .

In Fig. 7, we show the pole positions as a function of
kF at fixed scalar field gP/M=0. 15. The solid lines are
obtained for k~ =1.3 fm '. The two poles at small angles
correspond to the second two poles in Fig. 5. (The first
pole in Fig. 5 results from the vacuum subtraction and is
not shown in the present Fig. 7.) At kF=0.5 fm
(dashed line), there is only one pole, and its dependence
on x is even weaker than for the corresponding pole at
k~ =1.3 fm '. (As noted before, the position of this pole
at zero density is independent of x. ) As we increase the
Fermi momentum to kF =2.0 fm ' (dot-dashed line), the
angular dependence becomes strong, and no pole is
present below x =0.08, two poles exist for 0.08 &x &0.26,
and one pole exists for x ~ 0.26.
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FIG. 7. The pole positions in the integrand for the scalar
meson contribution as a function of k2 and x at gP/M=0. 15.
The solid lines are obtained for kF =1.3 fm, the dashed line

for kF =0.5 fm ', and the dot-dashed line for kF =2.0 fm

FIG. 8. The pole positions in the integrand for the pion con-
tribution as a function of k and x at kF=1.3 fm '. The solid
line is obtained for gP/M=0. 1, the dashed lines for
gp/M=0. 2, and the dot-dashed line for gI(/M=0. 05.

So far we have discussed the pole positions for the sca-
lar meson contribution. In Fig. 8 we show the pole posi-
tions for the pion contribution to the energy per nucleon,
as a function of the scalar field P for kF=1.3 fm ' and

pion mass m =135 MeV. (This figure corresponds to
Fig. 6 for the scalar meson. ) For gP/M=0. 2 (dashed
lines), there are two poles present for all values of x
(again, we do not show the additional pole from vacuum
subtraction). The first pole corresponds to the tachyon
pole in the conventional first-order loop expansion. It
disappears for gP!M~0.115 (solid line: gP/M=0. 1;
dot-dashed line: gP/M=0. 05). This demonstrates that
the modified loop expansion can improve, to a certain ex-
tent, the tachyon problem that plagues the conventional
loop expansion. (Recall that at conventional one-loop or-
der, the tachyon was present even for very small values of
P. ) At each density, the self-consistent value of the sca-
lar field is determined by minimizing the energy density
with respect to P. At densities for which the self-
consistent value of P is below the critical value of
gP/M=0. 115, the pion is no longer tachyonic. It is in-

teresting to note that for m =0, this critical value is just
the self-consistent value of the scalar field in the modified
zeroth-order loop expansion.

Figure 9 shows the pion pole positions at the fixed
value of gP/M=0. 15 for different values of kF. As for
the scalar meson poles, one of the ghost poles depends
weakly on x for small kF (dashed lines: kF=0.5 fm ')
and increasingly stronger for kF=1.3 fm ' (solid lines)
and k~=2.0 fm ' (dot-dashed line). The tachyon pole
disappears with increasing density at fixed gP/M.

Having analyzed the pole structure of the integrand for
the contributions from the scalar rnesons and pions, we
now show results for the real and imaginary parts of the
energy density. They are obtained by numerical evalua-
tion of the integrand as discussed previously, but after re-
normalization. In practice, as discussed in Sec. IV, this
amounts to subtracting from the integrand terms that de-
cay slower than k . Furthermore, we numerically sub-
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FIG. 9. The pole positions in the integrand for the pion con-
tribution as a function of k' and x at gP/M=0. 15. The solid
lines are obtained for k+=1.3 fm ', the dashed lines for
kF =0.5 fm ', and the dot-dashed line for kF =2.0 fm

tract the first two powers of M* from the finite real part,
thus ensuring an unshifted minimum at zero density and
an unmodified coefficient m, of the quadratic term in P.
Since the subtractions generate an additional unphysical
pole at k /M =9 [from a zero of the denominator in Eq.
(4.5)], we invoke this subtraction only for k above some
value A&9M .

Ideally, we would also evaluate the bare parameters
Mo and go to modified one-loop order in terms of the
physical baryon mass M and meson coupling g and thus
determine the precise values of Mo and go to be inserted
in the zeroth-order energy density. In Sec. V we showed
how this identification can be achieved in the second or-
der of the conventional loop expansion, as obtained by
expanding our modified first-order result to O(iri(NII1)).
In the present calculation, we simply drop the finite terms
from Eq. (4.5). The ambiguity of the finite result is
reflected in the arbitrariness in the choice of the subtrac-
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tion point A. We find a smooth dependence of the result-
ing real part on A. We expect that a more elaborate cal-
culation that determines Mo and go completely would
give qualitatively similar results. In particular, the imagi-
nary part of the energy is determined solely from the pole
positions of the integrand and is thus independent of A.
(It does depend, however, on the choice of M and g. )

Figures 10(a) and (b) show the real part of the energy
per nucleon as a function of gP/M at kF =1.3 fm ', for
two values of the scalar meson mass: m, =769 MeV [Fig.
10(a)] and rrt, =900 MeV [Fig. 10(b)]. The subtraction
point is A=20M . The dotted line shows the modified
zeroth-order result (after subtraction of the nucleon
mass), which is on the order of MeV. The dot-dashed
line shows the pion contribution to the energy, which is
approximately a linear function of the scalar field it. In
contrast, the contribution from the o meson (dashed line)
has a minimum. Therefore the sum of all three contribu-
tions (solid line), i.e., the total energy per nucleon in the
renormalized relativistic RPA, has a (local) minimum.

While the exact position and depth of the minimum de-
pend on the scalar meson mass m, and the parameter A,
it is important to note that the minimum typically occurs
at g(ti/M =0.06, well below the onset of the tachyon pole
at giI)/M=0. 11. This result indicates that the modified
loop expansion can indeed solve the tachyon problem.
Note, however, that the magnitude of the first-order
corrections relative to the zeroth-order contribution does
not indicate convergence of the modified loop expansion
for the linear o. model.

In Fig. 11 we show the imaginary part of the energy
per nucleon at kF=1.3 fm ' for m, =769 MeV. The
dot-dashed line is the contribution from the pion, the
dashed line gives the scalar meson contribution, and the
solid line is the sum. At the minimum of the real part of
the binding energy, the imaginary part is approximately—30 GeV/nucleon, which is roughly one order of magni-
tude bigger than the real part. Following the interpreta-
tion of the imaginary part by Weinberg and Wu' as half
the decay rate per volume, this signifies a highly unstable
ground state in the modified loop expansion to first order.

The different orders of magnitude for the real and
imaginary parts of the energy arise because we have en-
forced the renormalization conditions from Eq. (4.7) for
the real part of the effective potential, but not for the
imaginary part. The latter would correspond to inserting
complex counterterms in the Lagrangian defined so that
the meson masses are real in the vacuum. The vacuum is
now stable by construction, although nuclear matter may
still be unstable at finite density. In Fig. 12 we show the
results for the imaginary part of the energy after general-
izing the renormalization subtractions. The contribu-
tions from the pion (dot-dashed line) and the scalar
meson (dashed line) are now of the same order of magni-
tude as the real part, but they have opposite sign and re-
sult in a comparatively small total imaginary part (solid
line). Note that this approximate equality of the real and
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FIG. 10. The real part of the energy per nucleon as a func-
tion of g((i/M at kF =1.3 fm ', for m =135 MeV and m, =769
MeV [part 10(a)] or m, =900 MeV [part 10(b)]. The dotted line
shows the result from the zeroth-order modified loop expansion.
The dot-dashed and dashed lines show the contributions to the
energy from the pion and scalar meson, respectively. The solid
line shows the sum of all three contributions.

gP/M

FIG. 11. The imaginary part of the energy per nucleon as a
function of gi)i/M at kF =1.3 fm ' in the modified one-loop ap-
proximation. The dot-dashed line shows the contribution from
the pion, the dashed line gives the contribution from the scalar
meson, and the solid line shows the sum of these contributions.
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FIG. 12. The same as Fig. 11,but with the subtractions from
the renormalization conditions (4.7) also applied to the imagi-

nary part.

VII. CONCLUSION

We have studied loop expansion techniques for the
linear o model. While the conventional loop expansion
for the Walecka model of quantum hadrodynamics, as
carried out to first and second order, does not show any
signs of convergence, the additional constraints due to
chiral symmetry might change the situation. We have re-
viewed the situation for the linear 0 model: The conven-
tional loop expansion gives rise to a complex effective po-
tential, even to first order in A. Due to the strong attrac-
tive interactions with the classical scalar field, the pion
becomes tachyonic even at very small densities. The re-
sulting imaginary part of the effective potential is of the
same order of magnitude as its real part and cannot sim-

ply be disregarded as negligible or irrelevant. This prob-
lem has traditionally been ignored or at best, mentioned
only in passing.

The modified loop expansion developed by Weiss'

imaginary parts of the energy density is reminiscent of
the conventional one-loop result (Fig. 2).

offers the prospect to solve these problems, since the
repulsive baryon loops are summed to all orders, while
the mesonic loops are truncated at some finite order n.
We have identified the first order of the modified loop ex-
pansion with the renormalized relativistic random-phase
approximation. Our results indicate that at 1east near
saturation density, the tachyon problem does not occur in
the renormalized RPA. Unfortunately, the infinite sum-
mation of baryon loops changes the analytic structure of
the propagator, and we have traded the tachyons for
ghost poles. These new poles of the propagators in Eu-
clidean space are present for any value of the classical
scalar field or density, they occur at rather low values of
the momentum, and they give rise to a very large imagi-
nary part of the effective potential.

Ghost poles can be expected in any model that is not
asymptotically free, and similar poles are also present in
comparable nonrelativistic calculations, producing, for
example, an unphysical pion condensate. An expedient
solution would be simply to disregard the offending vacu-
um loops, but this would violate unitarity, Lorentz co-
variance, and electromagnetic current conservation. In
the framework of relativistic approaches to nuclear phys-
ics, the challenge is to construct nonperturbative, sys-
tematic approximations that avoid these ghost poles or
shift them to momenta in the range of validity of pertur-
bative quantum chromodynamics. Methods must be
found to eliminate the ghost poles by modifying the
high-momentum structure of the vacuum 1oops. This
might be achieved by including short-range correlations
and vertex corrections in the hadronic framework, or
perhaps by matching the behavior of loop integrands to
that predicted by asymptotic QCD.
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