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Contribution of meson exchange currents to pion double charge exchange at low energies

M. F. Jiang and Daniel S. Koltun
Department of Physics Ck Astronomy, Uniuersity of Rochester, Rochester, New York 14627-0011

(Received 2 August 1990)

The magnitude of the effect of meson exchange currents on low-energy pion nucleus double

charge exchange is reexamined. In particular, the role of chiral symmetry in limiting the size of the

effect is studied, using the method of effective Lagrangians. The equivalence of two commonly used

versions of the theory is shown, which resolves some of the disagreements in the literature. The
effect is calculated for the case of Ca, and found to be smaller than that of ordinary multiple

scattering.

I. INTRODUCTION

The subject of this paper is the magnitude of the con-
tribution of meson exchange currents to double charge
exchange (DCX) scattering of pions from nuclei at low
energies. Recent experiments have produced data on a
variety of nuclear targets at pion energies from 20 to 80
MeV. ' It is usually assumed that the reaction is dorn-
inated by multiple scattering involving (at least) two
charge exchange m-nucleon scatterings in the target.
This view is supported by a number of calculations which
give cross sections of the right order of magnitude for the
transition to the double isobaric analog state (DIAS). '

The idea that meson exchange currents could also con-
tribute to the DCX reaction, by ~-m scattering of the pro-
jectile on a virtual pion exchanged between two target
nucleons, was introduced by Germond and Wilkin. Al-
though Robilotta and Wilkin concluded that the meson
exchange current (MEC) effect would be small for analog
DCX, the issue has remained somewhat unsettled in the
recent literature. It is important to know the relative
magnitude of the MEC effects to the multiple-scattering
contribution, particularly since most attempts to extract
nuclear-structure information from DCX rely on the
latter interpretation.

Germond and Wilkin first suggested the role of the
MEC contribution to DCX, based on the process illus-
trated in Fig. 1(a), considering the example of the nona-
nalog DCX reaction on He. The point is that the vr-m

scattering in the intermediate state gives DCX in one
step, with an amplitude large compared to nuclear DCX.
(The relevant tr mscattering l-en. gths are of order -0.1

fm, while nuclear DCX amplitudes are -0.01 fm. ) This
must be multiplied by the transition probability of ex-
changing a pion in the target which is &&1, to give the
MEC contribution. Shortly after this work, Robilotta
and Wilkin recognized that chiral symmetry requires the
inclusion of a second process of the same order as the vir-
tual m-m scattering, as shown in Fig. 1(b). The two terms
are conventionally referred to as [Fig. 1(a)] the pole term,
and [Fig. 1(b)] the contact term. To calculate both terms
in a consistent manner, they used an effective Lagrangian

method (which we discuss further below), and found that
the two terms of Fig. 1 tend to cancel, producing a much
reduced final amplitude. Although the calculation of
Ref. 6 was specifically for the m-deuteron scattering
length, the authors noted that the same cancellation
would also reduce the MEC contribution to DCX. As we
show later, we agree with this conclusion.

The issue has been revived in recent years, starting
with work by Oset and collaborators, who were interest-
ed in the MEC contribution to DCX in the 5-resonance
region. They have pointed out that with a particular
choice of effective Lagrangian, the contact term does not
contribute, and have therefore dropped it from their cal-
culations. There have been some disagreements with this
argument and some discussions of this issue in the recent
literature. ' More recently, Auerbach et al. calculat-
ed the contribution of the pole term to DCX on Ca at
low energies, using the theoretical approach of Ref. 7.
They found this part of the MEC amplitude to be compa-
rable to the multiple-scattering contribution and to the
experimental DCX amplitude, with considerable sensi-
tivity to the assumed m-nucleon form factor. Following
Oset's arguments, they neglect the contact term. Their
results, if correct, would throw considerable doubt on the
possibility of analyzing the DCX cross sections in terms
of nuclear-structure effects through multiple-scattering
theory.

We find that this method of calculating the MEC con-
tribution is not consistent with the requirements of chiral
symmetry. This is an approximate symmetry which con-
strains the form of low-energy pion scattering processes,
e.g., mN and mm, through so called "soft-pion theorems. "
Although originating from current algebra theory and
PCAC (partially conserved axial current) in the 1960s,
the results, somewhat modified, have been rederived
within the context of QCD in the form of chiral perturba
tion theory. '

In this paper we clarify the role of chiral symmetry for
the MEC contribution to DCX, and calculate the effect at
low energies, for the specific case of Ca. We use an
effective Lagrangian theory which maintains the approxi-
mate chiral symmetry, as is relevant at low energies.
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FIG. 1. Diagrams contributing to the (m+, m ) reaction in

the meson-exchange current model: (a) is the pion-pole diagram
and (b) is the pion-contact diagram. Note that the exchanged
pions are always charged.

The paper is organized as follows. In Sec. II, we intro-
duce the effective Lagrangian method, and discuss some
essential points. We stress the equivalence of two ap-
parently different sets of Lagrangians. In Sec. III, we cal-
culate the transitions amplitudes for DCX at the two-
nucleon level, reduced to a nonrelativistic form appropri-
ate to low-energy scattering. In Sec. IV, these amplitudes
are then integrated over target states to give the analog

DCX scattering amplitude for Ca(n+, m ) Ti. Results
are shown, and sensitivity to parameters are exhibited.
Discussion and conclusions follow in Sec. V.

, (yr~rsrq) [(a„4)4'],
2m~ 4f' (2)

—
—,'( —', g

—2g —1)m„g ],
where P and P are, respectively, the nucleon and pion
fields, g is the n.N coupling constant, and f is the pion
decay constant. (In this work, we use g =13.5 and

f =87 MeV. ) The two parameters g and r), can be
chosen to reproduce the earlier specific choices. For ex-
ample, Weinberg's Lagrangian' can be obtained by set-
ting (= 1, r)= —

—,
' in X „„„ofEq. (1) while his n.-n.

scattering amplitude derived from current algebra
(without Lagrangians) corresponds to the choice of /=0
and g=O. ' There are also two versions of Schwinger's
choice; one can be obtained from /= 1, ri=O (Ref. 16)
and the second from g= —2, rl=O. '

Another form of the effective Lagrangians which has
frequently been referred to in the literature ' has the
form

II. EFFECTIVE LAGRANGIAN FORMALISM
[P (a„P) —

—,'(1 —
—,'g)m P ] .

The effective Lagrangian formalism for low-energy
pion scattering provides a method of calculation which
includes the requirements of approximate chiral invari-
ance, and thus will give the appropriate "soft-pion" limits
for a variety of related processes. The effective Lagrang-
ian contains the degrees of freedom being considered: In
this case, pions and nucleons only. (We do not consider
the explicit contribution of heavier mesons in this paper. )

The form is constrained by the requirements of current
algebra and PCAC. The calculation of physical ampli-
tudes is to be performed to lowest significant order, at the
"tree" level (no closed-diagram loops). These
specifications do not lead to a unique form for the La-
grangians, although equivalent Lagrangians of different
form will lead to the same physical amplitudes, as we dis-
cuss below.

In order to calculate the processes of Fig. 1, we need a
Lagrangian with three terms: Xlv~, for m Ncoupling;-

„, which gives m~2m on a nucleon; and X
which give n.-n. scattering. Lagrangians of this type have
been introduced by Weinberg' and Schwinger. ' ' For
our purposes we consider two forms used in the literature
for parametrization of the mX~m. m.N reaction at low en-
ergy. One was first introduced by Olsson and Turner, '

which we write in the following form:

g'„1 (o
&

q)(o2-q) (1+—', g)m
4m~ f„(q2+m )

(3)

for either Lagrangian, with /=/+4'. This result was
originally obtained by Robilotta ad Wilkin, using Eq.

At first glance, these two sets of Lagrangians appear to
be quite different, but they can be shown to be entirely
equivalent, in the sense that they produce the same physi-
cal (on-shell) amplitudes. It is easy to see that for /=1,
7) =—,'(g —1), Eq. (1) becomes identical to Eq. (2). Howev-

er, Olsson and Turner have also shown' that only one
linear combination of the two parameters appears in the
physical amplitudes for m. +~~~+m and
m+N~n+n. +N, namely, g+4ri Therefore, .with the
relation g=g+4ri, we have the equivalence of the two
Lagrangian forms, Eqs. (1) and (2), for these reactions.

In fact, one can easily prove the equivalence of the two
Lagrangians for the DCX reaction, by calculating the
amplitudes for Fig. 1, in the nonrelativistic limit. This is
seen most directly for the forward amplitude, which is
given in the next section in Eq. (10). (The equivalence is
also true for all angles for J=O targets, as we show in Ap-
pendix B.) Similarly, for the ndelastic forwa. -rd ampli-
tude, we find the result
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(1), with g=0 (and therefore g=g). It must be em-

phasized that the equivalence of Eqs. (1) and (2) will lead
to the same physical amplitudes for DCX only if the con-
tributions of both diagrams of Fig. 1 are included; the
values of the separate terms do depend on the choice of
Lagrangian.

The on-shell parameter g can be related to the ratio of
T=O and T=2 m.-m. scattering lengths:

oo

(+2
In the original Weinberg theory of m nsc-a. ttering, g was
assumed to be zero, as suggested by the cr model. Experi-
mental data from mN ~mmN favor small values:
—0.5~(~0.3, within errors. ' [Note that because
(g, ri) are used as two parameters in Eq. (1) of this work,
we use g as the chiral symmetry-breaking parameter
which is denoted by g in much of the literature. ]

When the parameter g—=0, the Lagrangian of Eq. (1)
will produce amplitudes which obey the Adler consisten-
cy condition, which is a constraint of the off-shell behav-
ior derived from current algebra. With this assumption,

The Lagrangian of Eq. (2) will give different off-
shell amplitudes, however.

(4)

III. TRANSITION AMPLITUDES

(q —m„+i0+)(q' —m +i0+)

X[(g—1)(s+u)+gt —(3g—4' —2)m ]

for the pion-pole diagram of Fig. 1(a), and

(5)

(c) ~m 2T'"=
z [u(p)y"y u(n)q„] z4m~ f'. " q' m'„+io+—

X[u(p')y"y u(n')]

X [g(kf —k; )„—(g—1}(2q+k; kf )„], (6}—

for the pion-contact diagram of Fig. 1(b). In the above, s,
t, and u are Mandelstam variables as given in Appendix
A.

With a nonrelativistic reduction

and

[u(p')y"y u (p)q„]~—(o q),
1 1

q —m +iO m +q

We calculate the DCX transition amplitudes corre-
sponding to the two diagrams of Fig. 1, by standard
methods described in Appendix A. We use the Lagrang-
ian form of Olsson and Turner, given by Eq. (1). The in-
variant transition amplitudes are given by

2

T't"= [u(p)y"y'u(n)q ][u(p')y"y u(n')q'„]() t~ 2

4m f

s =m„—q
—2q k

u =m —q +2q-kf,

t = —(k —k, )',f

(8)

T(c)

X[4rim +2q q' —g(m +q +q' )],
2

2 1

4m„ f q +m.
X [(o q)+(1 —2$)(o q')]

(9)

where q'=q —(kf —k, ) with q=n —p.
These amplitudes must be integrated over the q distri-

bution of the nuclear target state overlap. However, it
can be seen that there is considerable cancellation be-
tween the two terms of Eq. (9), particularly for the limit
of forward scattering (q=q'), for which

g' m' (o, q)(o, q)Z'(P)+ Z
(c) (g+4 2)

2m f (q+m )
(10)

Notice that the q dependence of the term [ ] in T't" of Eq.
(9), which comes from the n mscatteri-ng interaction in

Eq. (5), is entirely removed from the sum. The total
mesic contribution then exhibits a well-defined soft-pion
limit, i.e., vanishing when m ~0. This behavior is a re-
sult of the current algebra that has been built into the
effective Lagrangian formalism. (This was observed by
Robilotta ad Wilkin in a similar study of the pion-
deuteron scattering length. )

One also sees in Eq. (10) that g=g+4g is the only
relevant parameter. [Equation (10) only shows this prop-
erty for q=q', however, it is also true for any momentum
transfer, providing the target states are isotropic (J=O);
see Appendix B.] From this one can show explicitly the
equivalence of the Lagrangian forms in Eqs. (1) and (2),
for the DCX amplitude, Eq. (10), following the argument
given in Sec. II. As we noted, Eq. (2} is a special case of
Eq. (1) with (= 1, g= —,'(g —1). Since Eq. (10) depends
only on the value of g, the equivalence follows.

The integration of Eq. (10} over momentum q in the
target is quite well behaved, since the integrand goes as
q for large q. By contrast, the separate terms T' ', T"
do not decrease at large q. The integrated sum is there-
fore considerably smaller, and also less sensitive to as-
sumptions about nuclear wave functions, form factors,
etc. , than the individual integrals of T' ' and T", as we
see in the next section. In fact, the size of the two terms
can be changed by di6'erent assumptions about the pa-
rameters g and g. But we have seen that the sum de-
pends only on the combination g=g+4g, which is in
turn related to the m.-~ scattering lengths and m.N —+~mN
amplitudes.

The reason for stressing this point is the problem that
can arise by treating the processes in T' ' and T"

one can derive the following nonrelativistic amplitudes
for the process m. +nn ~m pp:

2 (ol'q)(o2'q )T(P)—
4m& f (q +m )(q' +m )
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differently. For exatnple, Auerbach et al. have calculat-
ed the contribution of T' ' to low-energy DCX using a
model of err .-scattering (Veneziano and Lovelace) as

adopted by Oset et a/. Although this is not done in the
effective Lagrangian formalism, it is equivalent for low

momenta to our calculation with the Lagrangian of Eq.
(1), setting g=rt=O (i.e., Adler consistency and the "cr

condition"). The contribution of T'" is not calculated,
for which the argument has been given ' that with the
Lagrangian of Eq. (2), there is no contribution of T'" to
DCX. This is correct, but corresponds to a different
choice of Lagrangian than used (effectively) to calculate
T'~I since (2) corresponds to (1} with g= 1, and

q=4(g —1)=—
—,'. The point is that the Lagrangian in

Eq. (2), with (=0, predicts different off-shell behavior for
m-~ scattering than given by the Veneziano-Lovelace
model, even for very small momenta. Therefore it is in-

consistent to calculate the two terms in this way. The re-

quirement of consistent choice of Lagrangian is

equivalent to the conditions of current algebra in the
low-momentum (soft-pion) limits. (This will be discussed
more fully in a separate paper. ) In fact, as we will see in

the next section, if we use the Lagrangian of Eq. (2), for

which the contribution of the pion-contact term vanishes,
the corresponding pion-pole term is almost one magni-
tude smaller than that given in Ref. 4.

IV. RESULTS

As an example, we calculate the scattering amplitude
for the analog DCX reaction ~++ Ca~m. + Ti at
low pion energies, for which there are calculations of
double scattering and of mesic current contributions, as
well as recent experimental measurements. Since our
main point is to establish the order of magnitude of the
mesic current contribution and compare it to the
multiple-scattering contribution, we neglect distortion of
the pion waves, using plane waves instead. We also
neglect contributions of the Ca core to DCX, treating the
valence particles as a pure (f7/2 ), J=O state, denoted by

$(1,2). Finally, we ignore small differences in the wave

functions for Ca and Ti.
The scattering amplitudes for the two processes of Fig.

1 are then obtained by taking the expectation values of
Eq. (10),

F(P))— g 1 3q 4gm +2q q' — m „+q +q'
2'ir 4mtt f (2n. } (q +m„)(q' +m2)

+ I

X rl r2 J=o 12 v q 0'& q u2 q' v q e J=o 12

and

F ' =
~ t f t drdr2PJ (1o2) (qu)( r,cq)[(o2 q)+(1 —2()(trz q')]1 g~ 1 dq 1

2~ 4m''t f' (2n)' (q +m'„)

I

X u (q')e ' 'P~ o(12) . (12)

TABLE I. Mesic effect amplitudes of the pion DCX reaction on Ca calculated with the chiral-symmetry-breaking parameter
/=0 and cutoff parameter a=3.0 fm . Details are explained in the text. The labels "p term" and "c term" denote the pion-pole and
the pion-contact contributions, respectively.

F(Q) (fm)

Q (fm ')

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

p term

0.9190x 10-'
0.7964 x 10-'
0.4988 x 10-'
0.1805 X 10

—0.3096X 10
—0.1028 X 10
-0.8060 x 10-'
—0.2986 X 10

(/=0, g=0)
c term

—0.1158x 10-'
—0.1025 x 10-'
-0.6891x 10-'
—0.2962 X 10

0.7330x 10-'
0.1491x10-'
0.1474x 10-'
0.7428 x 10-'

p+e
—0.2390X 10
—0.2286X 10 '
-0.1903x 10-'
-0.1157x 10-'
—0.2363 x 10-'

0.4630 x 10-'
0.6680 x 10-'
p ~~~2 x 1p-3

p term

—0.2389x 1p
—0.2102 X 10
-0.1338x 10-'
—0.3986X 10

0.3041x 10-'
0.4947 X 10
0.2420 X 10

—0.1175X 10

((= 1, r)= —0.25)
c term

0.0
—0.1870X 10
-0.5652 x 10-'
-0.7579 x 10-'
—0.5404 x 10-'
—0.3182X 10

0.4265 x 10-'
0.5617X 10

p +c
—0.2389 X 10
—0.2289 X 10
—0.1903X 10
—0.1157X 10
—0.2363 X 10

0.4629 x 10-'
0.6685 x 10-'
0» "2X10
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The single-particle wave functions are taken to be bound
in a harmonic-oscillator potential with Ace=10.5 MeV,
which has been frequently used in studies of nuclear spec-
troscopy for A =42. We also include a m.N vertex func-
tion of the form v (q) =a /(q +a ) with a cutoff parame-
ter a. Various values of this parameter have been used in
the literature, from a=1.5 to 6 fm '. ' ' We test the
sensitivity to the value of cz, although we favor the larger
values, u ~ 3 fm '. The details of the method of calcula-
tion of the nuclear matrix elements are given in Appendix
B.

0010 -I ~ ~ ~

I

t s ' '

I

s s s s

10-1

10 2

CO

-3

I I I I I I

A set of calculated amplitudes is given in Table I for
two choices of (g, ri), and a=3.0 fm '. The amplitudes
are independent of incoming pion energy, and are func-
tions of momentum transfer Q only (Q=kf —k;). The
chosen value of (g, I) ) are (0,0) and (1,——,

' ), both of which

give the chiral-symmetry-breaking parameter value
g=g+4r) =0.

The main result evident in Table I is that the summed
amplitudes are small: ~F~ &2.4X 10 fm (& v 0.06 pb).
For g=r1=0, this comes from considerable cancellation
between the pole and contact terms, as discussed in con-
nection with Eqs. (9) and (10). For (= 1, g= —

—,', the
contributions of the two terms change; in fact, F"=0 for
Q=O in this case. But the summed amplitude is identical
to that for (=r)=0, as expected.

It can also be seen from Table I that the summed am-
plitudes depend on (g, rI) only through their combination
g=g+4rl, for all values of the momentum transfer Q.
This property can easily be shown to come from the in-
tegrations in Eqs. (11) and (12) for isotropic (J=O) nu-

clear wave functions, as shown in Appendix B. Table I
shows explicitly the equivalence of the Lagrangian forms
given in Eqs. (1) and (2), since the results calculated for
g= 1, rl= —

—,
' are identical to the results that would be

calculated for (=0, using Eq. (2).
As remarked earlier, the results for g= 1, g= —

—,
' give

a vanishing contribution for the contact term at Q=O.
This property of the Lagrangian of Eq. (2) was noted in
Refs. 9 and 23, and used to eliminate the contact term al-
together. However, we emphasize that the corresponding
contribution for the pion-pole term is reduced
significantly from that calculated for g=g=O, so that the
summed amplitudes of the two calculations are identical
(and for all values of Q). This is a direct consequence of
the equivalence of the two Lagrangians.

The sensitivity of the calculated amplitudes to the
cutoff parameter a in the vertex function v (q) is shown in
Fig. 2 for )=0. What is plotted is ~F(Q)~ (in pb) as a
function of Q. For Q=O, there is an order-of-magnitude
difference between the "soft" value of a = 1.5 fm ', and
the "hard" limit of a~ ~ (point nucleons). A more real-
istic range is 3.0(a &6.0 fm, for which the variation
in ~F~ is a factor of 2. It should be noted that this range
of variation is considerably smaller for the summed am-
plitude than for F'~' and F" separately, since the q in-
tegrations of the former are more convergent than for the
latter, as can be seen by comparing Eqs. (9) and (10).

The dependence of the calculated amplitudes on the
parameter g is shown in Fig. 3, for the range —1 & g & 1,
here calculated for a=3.0 fm '. Again, the overall vari-

10-4

to-&
0 025

I I I I I I I I I I I I I I I I I I I

0.5 0.75 1 1.25 1.5
Q (fm )

ation of ~F~ is about a factor of 10 at Q=O. Experimen-
tal data favor g-0 (see Refs. 23 and 24).

Last, we show the sensitivity to the harmonic-oscillator
parameter A'co (see Fig. 4) of the nuclear wave function,
which is a measure of the mean-square radius of the
valence nuclear distribution. Although not a negligible
variation, this is the least sensitivity (and best known) pa-
rameter

The main result is that within considerable range of the
parameter (a, g), the amplitudes ~F~ &3X10 3 fm. This
is to be compared to amplitudes for the double scattering

0010 -Ii
I&I

» tsI& I&&I Is III & I& II I

10-'

10 2

10

tp —4 I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 0.25 0.5 0.75 1 1.25 1.5
q (fm '3

FIG. 3. Shown is the g dependence of the meson exchange
current effects of Figs. 1(a) and (b). The curves are calculated at
I)=0 and a=3.0 fm ', with g= —1 (dashed line), )=0 (solid
line), and g = 1 (dash-dotted line).

FIG. 2. Sensitivity of the meson exchange current effects to
the cutoff parameter a. The results, including both pion-pole
and pion-contact diagrams, are all calculated at (=I)=0, with
a=1.5 fm ' (dotted line), a=3.0 fm ' (dashed line), a=6.0
fm ' (dash-dotted line), and a= ~ (solid line). ~F(QI' are plot-
ted in units of pb.
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0

Last, we note that there are other physical mechanisms
other than multiple scattering and meson exchange
which must be accounted for in a complete theory of
DCX; i.e., the effect of pion absorption.
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contribution to DCX, which is of order ~F —10 fm at
low energies for Ca (see, e.g., Ref. 4).

V. SUMMARY AND CONCLUSIONS

Our main conclusion is that at low energy the MEC
contribution to analog DCX is constrained by chiral sym-
metry to give amplitudes small compared to the
multiple-scattering contribution. We have shown that
the result is not dependent on the form of the effective
Lagrangian, for fixed values of the symmetry-breaking
parameter g (and the cutoff parameter). The relative con-
tribution of the two amplitudes, Eqs. (11) and (12), does
depend on the choice of Lagrangian, as we have seen
(e.g. , in Table I). For the form given in Eq. (1), there is
considerable cancellation between the two terms, while
for that of Eq. (2), the contact term vanishes at Q=O.
The summed results are, of course, the same.

The magnitude of the MEC contribution as calculated
is not very sensitive to nuclear structure, but does show
some sensitivity to the value of the cutoff parameter.
However, the result is we11 behaved, even in the limit of
point nucleons (no cutoff).

The calculation of the MEC effect at low energy in Ref.
4 obtains larger results than ours, and greater sensitivity
to the cutoff parameter. We believe this to be a serious
overestimate of the MEC effect, because their model does
not preserve the soft-pion limits of chiral symmetry, due
to the different treatment of the two amplitudes, as we
discussed in Sec. III. In particular, their model of m.-m

scattering calls for a nonvanishing contact term, which
will reduce their total amplitudes accordingly.

In a subsequent paper we shall give a direct demonstra-
tion of the constraints of chiral symmetry on the MEC
terms in DCX, based on Weinberg's theory of pion
scattering lengths. We are also investigating the exten-
sion of the present approach to include the p meson in m-

~ scattering in a form consistent with chiral symmetry.

The authors wish to thank W. B. Kaufmann for his
very helpful correspondence, and E. Oset for some useful
conversations. This research was supported in part by
the U.S. Department of Energy under Grant No. DE-
FG02-88ER40425 with the University of Rochester.

5 (p+kf —
q

—k, n) —mz

(2m) +Sco~tol, cok QE E„
Nvr~~ Nm.

for the NNmrvr vertex and

5 (q'+kf —k, —q) JN„=i. f d x(X„„„) (A3)
(277) +166)k Nk CO&CO&q q

for the ~m.mm vertex. The results for the charged pions,
which correspond to Figs. 5(a)—(c), are given by

&2y"y'q„,2' ~
(A4)

~Nn. n.-~ Nm.
1

, 2&2y"y
2m~ 4f 2

X [g(kf —k, )„—(g —1)(2q +k; —kf )„],
(A5)

and

JR„„=— [(g—1)(s +u)+(t —(3g —4iI —2)m ],
(A6)

APPENDIX A: AMPLITUDES
FOR THK m+ nn ~m pp REACTION

As usual, to write the amplitudes for a given set of La-
grangians, one has first to construct the Feynman rules,
where an important step is to obtain the relevant vertices.
In the following, we start by deriving the vertices which
are used for the process m+nn ~~ pp. Throughout this
work, we follow the conventions of Bjorken and Drell.

Each vertex is defined in terms of an invariant ampli-
tude Af, whi, ch is in turn given by a normalized plane-
wave matrix element of the interaction Lagrangian, omit-
ting any Dirac spinors. For example, the NNm. vertex

is derived from

5 (pf+q —p;)mz Jkt»„=i f d x(X» ), (Al)
&2m+2co QEfE,

where X» is given in the first line of Eq. (1). Similarly,
vertices corresponding to X» and 2 „can be ob-
tained from
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where we use the Mandelstam variables

s =(q+k;) =(q'+kf)

u =(q' —k;) =(q —kf)

t =(q' —q} =(kf —k;)

(A7)

ykf

(A8)

with S' '=1 and

In the above to~ =Qm +q and E~ =QMN+ p denote
the pion and nucleon energy, respectively. With the ver-
tices defined, the other necessary diagram rules can be
easily found by standard methods of quantum field
theory.

For the process m+nn ~m pp, which is assumed to be
described by the interacting Lagrangians given in Eq. (1),
the lowest-order scattering amplitude consists of two
parts as shown in Figs. 1(a) and (b). By means of the
Feynman rules, it is straightforward to write the transi-
tion amplitudes for them. However, since it sometimes
causes confusion in the literature we would like to discuss
first the weighting factors attached to these two dia-
grams.

The weighting factor for each diagram can be obtained
from the analysis of S-matrix expansion,

s= y s'"'
n=0

(b)

(c)

FIG. 5. The vertices relevant to this work: NNn [part (a)],
mann [part (b)], and NNmnm [part (c)], representing the expres-
sions given in Eqs. (A4)—(A6).

nS'"'= d4x, f d4x, f d x„'T[X (tx, )X,(x, ) X. t(x„)], (A9}

where 7 is a time-ordering operator and Xt stands for the interaction Lagrangian which is assumed to be in a normal-

product order. In the present work, Xt is simply the sum of three interacting Lagrangians as given in Eq. (1), namely,

Xt =X)vtv„+X +X)vtv„. Noting that Figs. 1(a) and (b), respectively, correspond to the third order and the second
order in S-matrix expansion, therefore we have

and

[Fig. 1(a)]s'"" ""'=—,fd'x( fd'x2 fd'x37T. t( ) } t( 2»t«3)]F)s. i(.)

t3

2

' fd'x—, fd'x, fd'x3%+Nx. (x) )+Q&.(xp»~~..(x3)] (Alo)

1
2

S("'s' " 'l= — d x, f d x2'T[Xt(x))Xt(x~)]„. )(b)

=i f d x, f d x2'7[X~(v~(x) }EN(v~„~(x2)] . (A 1 1)

In the above, a factor of 3 in Eq. (A10) [a factor of 2 in Eq. (All)] is removed since we only pick up one characteristic
diagram in the second equality among those topologically equivalent diagrams from the expansion of [Xt] ([Xt] ).

Both underbrace and overbrace stand for an operation of pion-field contraction in different Lagrangians, which brings
about a free pion propagator. From Eqs. (A10) and (All), it is rather obvious that these two diagrams, Figs. 1(a) and
(b), have different weighting factors. Considering that there is another factor of 2 which comes from the interchange of
a pair of nucleons simultaneously in both initial and final states, as seen from the nucleon fields in Eqs. (A10) and (Al 1),
therefore the final invariant transition amplitudes for both pion-pole and pion-contact contributions, using the Feyn-
man rules mentioned above, can be written as

(p) g~ — p 5 — t v 5 1T'~'= [u(p)y"y'u(n)q„][u(p')y y u(n')q'„]
4m~ f' (q m+i0+ )(q—' —m „+i0+)

X [(g—1)(s +u)+ gt —(3g —4' —2)m „] (A12)

for the pion-pole diagram contribution of Fig. 1(a), and
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2

T"= [u(p)y"y u (n)q„] [u(p')y'y'u (n')][/(kf —k, )„—(g —1)(2q+k, —kf ),]
4m„' f' " q' —m'+io+ (A13)

for the pion-contact diagram contribution of Fig. 1(b). In the above q =n —p and q'=q+(k; —kf). (We define

T =iAf, w, here At is an invariant amplitude obtained by means of the Feynman rules. )

APPENDIX B: MULTIPOLE EXPANSION
OF PHYSICAL AMPLITUDES

F(q)=F(tr) e)((rz ez), (81)

where F is a spin-independent operator on the unit vec-
tors e& and e2. The physical amplitude is obtained by cal-

In this appendix, we present some details about the
multipole expansion of the physical amplitude, which is
frequently used in practical numerical the calculations.
The approach and notation are similar to those of Auer-
bach et (zl. ~

As seen from the main text, both the pion-pole and the
pion-contact amplitudes can be rewritten in a general
form

culating the matrix element between initial and final nu-
clear states. In the present study, we choose Ca as the
target, and restrict ourselves to investigating the double
isobaric-analog transition; thus the physical amplitude is
defined as

Ff; = ((f7/z} J =OlF (f7/2) (82)

Here we neglect any nuclear core excitations.
We can transform rather easily from jj coupling to I.S

coupling using 9-j symbols. Since we study only the
J=0~J=O transition, the transformation is in fact
much simpler, and only the 6-j symbol is needed in the
transformation:

~j,J=0)= g (
—1) &2j+1» . ~(ll)Am), )~( ,' ,')Am&—)—.

A.m
&

2 2

We use the standard Clebsch-Gordan coupling

~((ll)kmz ) = g (lm„lmz;A. m&)Y( (r, )Y( (rz),
ml, m2

(83)

(84)

and similarly for ~( —,
'

—,()A,mz).
With this transformation and some angular momentum coupling algebra, we can get the following multipole expan-

sion form:

Ff;(q)= g Ft
L

(85)

with

FL, = —QD7L& Dz. L(, fdr, f dqzFp„~~(r(, rz)5 („,)L(r() g(z))L(rz) .
A, A,

'
(86)

DzL& is defined as

D),L(
=&2(2j + 1)(21+1)(l0,10;AO)

I —' j
X&l —,

' j-
1 L

and

(87)
Here p„( (r), rz } is simply an uncorrelated nuclear density
function for a pair of nucleons,

p„( (r), rz)=R ((r) )R ((rz), . (89}

+(&1)LM(~) } r ™z. lm 1 ~M) YA, (~1 ) Yl ( e 1 ) '

m&mi

(88)

with the vector spherical harmonic defined in terms of
the standard spherical harmonic Yl by

where R„I denotes the radial wave function. For simpli-
city, in this work, we use the harmonic-oscillator wave

function for the Of 7/z orbit and R„, is normalized as

Rnl P f' dI =1



2670 M. F. JIANG AND DANIEL S. KOLTUN 42

In the pion plane-wave approximation, the above ex-
pression can be further simplified. Using the notation
given by Auerbach et al. , we arrive at the following FI
for the pion-pole contribution:

F,& =—,,f,H, (q)H, (q')P, (cos8, }(,) 3 f'
~ m 2f (2m)

X[4gm„+2q q' —g(m +q +q' )],
(B10)

with

HL(q) = P Dui, H&(q)&2A, ,+ I (A0, 10;LO) .
q +m„

(Bl 1)

H&(q) is the multipole nuclear form factor given by

given in Eq. (11) includes two different types of spin-
dependent vertices: One is related to (o ) q)(o 2.q') while
the other has the form (o ) q)(cr2 q). The former can be
managed in the same way as used for the pion-pole term;
the latter leads to the second term in the following ex-
pression:

d
~ m 2f (2m}

XPL(cos8, )(m +q' )

3 f 1 d q HLq Lqq' . B13~ m 2f' (2n)'

Here we introduce a new function &L(q, q') which is
defined by

~L, (q, q'}= QD2tfjHg(q')&2~+ lqU(q')

H&(q}=1 r dr j&(qr)R„I(r), (B12)
X(A0, 10;LO)P&(cos8)) . (B14)

where j ),(qr) is the common spherical Bessel function, 8,
is the angle between vectors q and q' with
q'=q+k, . —kI, and PL(t) is Legendre polynomial, with
t =cos8, .

For the pion-contact contribution, the amplitude as

In practice, it is more convenient to introduce the
transformation y=q —Q/2, where Q is the momentum
transfer defined as Q=(k& —k;). Thus the final expres-
sions used in numerical calculations are actually given by

FL '= ' fy dy 4rlm +2(y —
Q /4) —g m„+2y + f '

dx H, (q)H, (q')Pi(cos8) ) (B15)

and

2 —1FL'=, fy'dy f dx HL (q)HL (q')PL (cos8, ) m'+y'+

2

fy'dy f dx HL, (q}~L,(q, q'}, (B16)

with

q =+y +Q /4+ygx

q
' =+y +g /4 —ygx

2 2 4
cos8, = y —

Q 4

Q(y2+ g2/4)2 2g2 2

(B17)

Here, x =cos8 with 8 being an angle between y and Q.
In this work, we carry out these integrations over (r, x,y) numerically, using mesh points N„=24, N„=18, and

N =45 accordingly, where a satisfactory convergency in achieved.
As one sees from Eq. (B16) that HL (q)HL(q )PL (cos8, ) is an even function of variable x while its product with Qx is

an odd function, therefore, the latter vanishes after integrating x. As a result, by adding two amplitudes of Eqs. (B15)
and (B16),one has

FL =F1 '+FL'

3
2 fy dy (/+4')+

L

m~2 3Q'

dx HL(q)HL(q')PL (cos8, )2m

fy'dy f '
dx HL(q)~L, (q, q') .m' 4~ 2f'n' —1

(B18)
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One can see clearly that the summed amplitude depends only on the combination g=(+4', which holds for all possible

Q values. This is a natural consequence of isotropic (J=o) nuclear wave functions, which is also an important condi-
tion for the equivalence of two sets of Lagrangians as mentioned in the text.
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