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Pole expansions of the Green function {Berggren and Mittag-LefBer) are used to calculate single-

particle and particle-hole response functions for a square well plus Coulomb potential and the re-

sults are compared with the corresponding exact ones. The approximate and exact response func-

tions agree well with each other in the resonant energy region. The Mittag-LefBer expansion is

shown to be valid even for the long-range Coulomb potential. The computation time needed for the
calculation of the particle-hole response function can be reduced considerably by using the pole ex-

pansions.

I. INTRODUCTION

Currently, a considerable amount of attention is being
devoted to the study of the particle decay of giant reso-
nances. ' Both the theoretical and the experimental
analyses of the problem present formidable difficulties. '

From the theoretical point of view, the main complica-
tion is to include the contribution of the continuum in
the building up of the giant resonances. To overcome
this difficulty an approximate method called the resonant
random-phase approximation (RRPA) was recently
developed. ' In the RRPA the single-particle Green
function is expanded in a basis composed of bound
single-particle states and single-particle-resonant
(Gamow) states. The use of Gamow states automatically
takes care of the possibility of particle emission from the
unbound particle states. The advantage of the RRPA is
that it deals only with discrete eigenstates, therefore
methods well known from nuclear structure calculations
can still be used. The price one pays for this convenience
is that the RRPA is an approximate method. Yet, the
calculated quantities agree well with available experimen-
tal data. As a test of the RRPA, we reproduced cases
where the effect of the continuum was taken into account
exactly. ' That comparison only tested the method in a
qualitative way either because of uncertainties related to
the extraction of parameters or because the parameters
included in the calculations were not always fully
specified.

In order to perform a quantitative test of the approxi-
mations leading to the RRPA without the influence of
the disturbing aforementioned factors we will perform in
this paper calculations of single-particle and particle-hole
response functions both in exact and approximate ways.
Moreover, we will also examine response functions mak-
ing use of the Mittag-LeNer expansion' '" which has the
advantage that the continuum can be discretized in a nat-
ural way. Although the validity of the Mittag-LefHer ex-
pansion could only be proved for potentials of finite

range, thus excluding the important Coulomb interac-
tion, we will apply it even to proton excitations. We will
thus assess numerically the usefulness of this expansion
to treat nuclear problems.

To avoid uncertainties resulting from the numerical in-
tegration of the Schrodinger equation we will use a model
potential for which the solutions can be given in closed
analytic form. The convergence properties of the
different pole expansions will first be studied in the
single-particle case. Neutrons and protons will be treated
separately and for different partial waves. With the ex-
perience gained in those cases we will calculate particle-
hole response functions, where the contribution of all
partial waves (for neutrons as well as for protons) may be
relevant.

The formalism is presented in Sec. II and the applica-
tions for the case of the square well and the square well

plus Coulomb potential are presented in Sec. III. A sum-

mary and conclusions are given in Sec. IV.

II. FORMALISM

S(E)= g (O~f~n ) 5(E E„)=——ImR (E—),1

n)0
(2.2)

where
~
n ) and E„are the eigenfunctions and energy ei-

genvalues of the system. The response function R (E) is
real below threshold. It has poles on the real energy axis
for the bound states and shows a resonant behavior above

If a nucleus is exposed to an external field f, the
response function

R (E)=f dr dr'f (r)*G(r, r', E)f(r") (2. l)

measures the change of the nuclear density due to its
influence. In Eq. (2.1), G is the Green function which de-
scribes the propagation of the nuclear system. The
strength of the nuclear excitation can be measured by the
strength function
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threshold whenever the Green function has a complex
pole close enough to the real energy axis. Therefore, the
influence of the continuum is controlled by the Green
function. In the case of particle-hole excitations, the
Green function is well described within the RPA, i.e.,

G z(r, r';E)=G'z'(r, r', E)+f dr, dr2G'I, '(r, r2,'E)

X Vpp, (r, r2) G~q (r2, r', E),
(2.3)

where V I, is the residual (particle-hole) interaction. G'»'
is the bare particle-hole Green function corresponding to
the Hartree-Fock Hamiltonian Ho with occupied states
Pl, and corresponding eigenenergies el„ i.e.,

g(r, r', k)= —u (r & )U(r& )/8', (2.8)

where u (r) and U(r) are the regular and the irregular
solutions of the single-particle Hamiltonian Ho, and 8'
denotes their Wronskian. The smaller and the larger be-
tween r and r' are denoted by r & and r &, respectively.
The boundary conditions for the regular and the irregular
solutions are

u(r =0)=0 (2.9a)

and

A. Representations of the
single-particle Green function

For a spherically symmetric potential the exact form of
the single-particle Green function (2.5) is

G~z'(r, r';E) lim v ( r ) = e
'"' .

f'~ oc
(2.9b)

1 1hr r
H — —E H — +E r hr

(2.4)

r' =G(r, r';e )

g Y (r )Y (r)Y
Pf 1jm

X (r')g,,(r, r', k), (2.5)

where p is the reduced mass of the particle. The Yl are
the vector spherical harmonics. From now on we will
drop the I,j indices of the partial Green function g.

The use of a separable residual interaction, '

where the two terms between bars are the single-particle
Green functions corresponding to the propagation of a
particle with energy e~=E+eh and e~= —E+eh, re-
spectively.

The partial wave expansion for the single-particle
Green function is'

lim w„(r, k„)=0,
r~0

ik r
lim w„(r, k„)=X„e

(2.11a)

(2.11b)

The single-particle Green function can also be written in
a spectral expansion form, i.e., in terms of the eigenvec-
tors of Ho. The spectrum of a potential well with finite
depth contains a finite number of bound states and a con-
tinuum of scattering states. In terms of this representa-
tion Newton' wrote the Green function as

w„(r, k„)m„(r',k„)
g(r, r';k}= g

n n

(+) (+)2 ~d u (r q)u (r q)
7T 0 k +i@—

q

where m„are the wave functions of the bound single-
particle states and u'+'(r, q) are scattering states, i.e.,
they represent the partial wave components of a wave
consisting of an incoming plane wave plus an outgoing
spherical wave as r ~~.

One can generalize the definition of "eigenvectors" of
the single-particle Schrodinger equation by requiring the
boundary conditions' '

Vph(rlr2 } +2.Q2. (rl ) Q2. (r2)

Q,„(r)=f„(r

(2.6a)

(2.6b)
where k„ is the asymptotic momentum of the state with
energy eigenvalue 6 „,i.e.,

where the radial dependence of the multipole operator Q
coincides with that of the external field f, greatly
simplifies the evaluation of the response function (2.1}. In
this case the response function becomes

$2
k

2p

The eigenvalues 6'„can now be complex. Writing

(2.12)

)
R' '(E)

I+~gR' '(E)
{2.7)

where R ' ' is the bare response function, i.e., the one cor-
responding to the Green function Gzh'.

The single-particle Green function can be calculated ei-
ther exactly or approximately by truncating some spec-
tral representation. The aim of this work is to investigate
the practical value of different spectral representations by
comparing to the exact results.

k„=v„—i y„, (2.13)

the eigenvectors belonging to those eigenvalues can be
classified in four classes, namely: (a) bound states, for
which z„=0 and y„(0; (b) antibound states with x'„=0
and y„&0; (c) decay resonant states (Gamow resonances)
with s„&0 and y„&0; (d) capture resonant states with
a„(0 and y„&0. From Eq. (2.11b) one sees that only
the bound wave functions do not diverge.

With the standard definition of scalar product
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(wz~w, ) = t~ ™w~(r, kz)w, (r, k, )dr,
0

(2.14)

u'(r, q)u„(r', q)+ — dg
k +lE—

g
(2.15)

where the sum runs over bound states plus the decaying
resonant states which lie between the right-hand half of
the path L (denoted by L+) and the real axis in Fig. l.
Although there is not any real physical system without
continuum states, the approximation of neglecting the in-
tegral contribution to the Green function (2.10) is
justified only in the analysis of bound and, in some cases,
even quasibound states. Actually, our calculation will
clarify this point, as will be seen in the Sec. II B. Howev-
er, when properties closely linked with the continuum are
to be analyzed (e.g. , escape widths of giant resonances)
the bound representations show their limitations. The
advantage of introducing the L contour is that although
we neglect the integral in Eq. (2.15), and use only the
finite sum of the first term, we still include the most im-

'~ Im(a)

Re(k) t

FIG. 1. Integration path L for the single-particle Green
function (2.15). The crosses indicate k„values [Eq. Q.13)] be-
longing to the outgoing solutions of the Schrodinger equation.
They are also poles of the Green function.

only the bound states can be normalized in an infinite in-
terval. Therefore this definition has to be generalized in
order to be able to use the generalized "eigenvectors. "
This can only be done if one uses a bi-orthogonal basis
and apply some regularization method for calculating the
resulting integrals. Bi-orthogonality means that in bra
position one should use the mirror state w„ instead of w„,
i.e., the solution which corresponds to k„=—k„'. As a
regularization method we use the complex rotation sug-
gested in Ref. 17, which became later known as exterior
complex scaling. ' Within this method one rotates the
radial distance r with a suitable angle only beyond the
distance where the nuclear interactions die out. Details
on the regularization procedure can be found in Ref. 19.

The representation Eq. (2.10) of the single-particle
Green function can be generalized by changing the path
of integration, as shown in Fig. 1. The resulting expres-
sion, of Berggren, is

w„"(r,k„)w„(r',k„)
g (rr', k) =g

k2 —k2

portant (from a physical point of view) process occurring
in the continuum, i.e., the resonant part. The numerical
evaluation of that integral would imply the discretization
of the wave number k along the contour L + and the solu-
tion of the radial equation for each of these complex k
values. Although we avoid this formidable task we are
able to estimate its effect by taking the difference between
the exact results and those obtained within the truncated
spectral expansion.

In the Berggren expansion of the Green function we
then consider only bound states and Gamow resonances
as a single-particle representation to describe excitations
lying in the continuum. It has been shown that Gamow
resonances have large overlaps with certain wave packets
centered at the resonance energy. " Therefore, the use of
Gamow resonances would correspond to the use of wave
packets, which is a proper procedure to describe process-
es in the continuum.

Another representation of the single-particle Green
function, which has been presented so far as valid only
for central potentials of finite range, is given by the
Mittag-LeNer expansion, ' '" i.e.,

w„(r, k„)w„*(r',k„)
2k„(k —k„)

(2.16)

B. Response functions in dift'erent representations

Using the standard representation of the Green func-
tion given by Eq. (2.8) we will calculate response func-
tions "exactly. " We will compare these calculations with
those using the Berggren and Mittag-LeNer Green func-
tions. In both cases we will take a limited number of
terms in the summations of Eqs. (2.15) and (2.16), respec-
tively. The idea is to probe the convergence as the num-
ber of terms in the sum is increased. In the Berggren case
we neglect the integral of Eq. (2.15) and, therefore, taking
a limited number of terms in the summation may be a
drastic approximation even for a potential of finite range.
That integral in itself may not be negligible. But we hope
that for narrow resonances, i.e., for those lying near the
real axis in Fig. 1, the influence of the continuous back-
ground (represented by the integral) will be small if the
path L+ is far enough from the physical pole. That is,
we assume that the behavior of the response function will
be dominated by narrow poles of the Green function in
Eq. (2.1). In the case of single-particle response func-
tions, those poles are the resonances of the expansions
(2.15) and (2.16). Therefore, in this case, the expansions
are expected to converge rapidly. However, for more
complex excitations (like particle-hole giant resonances)
the individual single-particle resonances might not play a

where the sum now runs over all classes of poles. It only
contains a countably infinite set of discrete states, but for
practical purposes the series must be truncated and in
this way the method becomes an approximate one. If
there were some long-range potential in the problem, the
truncation to a finite number of states would imply the
neglect of the contribution of an integral along a complex
contour.
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dominant role. Later we will analyze the single-particle
and the particle-hole cases separately.

1. Single p-article response function

For this case the expression of the response function
(2.1) is rather straightforward. Labeling by p the set of
j lj J quantum numbers, and for a field carrying a mul-
tipolarity A, , the exact response function is, from Eq. (2.8),

u (r()v (r) )
R (p;A, ;E)=— f r dr r'dr'f&(r) f&(r').

(2.17)

The corresponding expression for the Berggren represen-
tation is, from (2.15),

R&(p;~;E)=
2 g 2 f rdrr'dr'f~(r)w„(r, k„)=2 1

k —k

X w„(r', k„)f~(r'),

(2.18)

where the relation between E and k is as in Eq. (2.12) (but

note that E is the physical energy, i.e., a real quantity in
the response functions) and the sum runs over all bound
states and Gamow resonances that lie between the real
axis and the path L+ in Fig. 1.

In the same fashion for the Mittag-LefHer (ML) expan-
sion, one obtains, from (2.16),

RML(p;A, ;E)
2p, 1

„2k„(k—k„ f rdr r'dr'f z (r)w„

X (r, k„)w„(r',k„)fz(r'),

(2.19)

where the sum runs over all classes of poles of the single-
particle Green function (crosses in Fig. 1).

2. Particle hole-response function

In this case the Green function is given by Eq. (2.3).
Using a particle-hole separable interaction of the form of
Eq. (2.6), the response function becomes as in Eq. (2.7).
Therefore, the important quantity is the bare-response
function R ' '. For a field of multipolarity A, it is

R' '(A,;E)=g ~M(ph;A)~ f dr dr. 'P&(r)ft', (r)[g (rr', E+e&)+g (r'r; E+ e)t]P
—(tr')fz(r'),

ph

(2.20)

where p labels the partial waves, h labels the occupied
(hole) states, and gs is the single-particle Green function.
The quantity M is

For neutrons, the radial part of the corresponding
single-particle wave function is given by

rj&(ttr) for r ~a
j+]/21 —I +M~

. 2
0 1

2 .

(2.21)

jt(Ka)
r hi+(kr) for r )a,

h, (ka)

(3.1)

I +l„—A.

where the natural parity state condition (
—1)~ ' =1

was used. The exact form for R' ' is obtained by using,
in Eq. (2.20), the expression of g~ given by Eq. (2.8), as in
the continuum RPA. ' ' The Berggren form is obtained
by using the sum in Eq. (2.15) for g, which is the same
approximation that leads to the RRPA. ' The Mittag-
Lefller form is obtained by using gs as in Eq. (2.16).

III. APPLICATIONS

and k is an in Eq. (2. 12) with the complex energies 6„be-
ing solutions of the transcendental equation

dhi+(kr) ldr

hi+(kr)

dj t(ter) ldr

jt(ter)
(3.2)

where j&(x) and h& (x) are the spherical Bessel and
Hankel functions, respectively,

v =k +2@/A Vo,

A. Square well without and with Coulomb potential

The model we use to test the approximations discussed
earlier for neutrons consists of a square well potential of
radius a and depth —Vo. For protons a Coulomb term
Ze /r is added to the square well potential for r & a. In-
side the potential the widely used parabolic shape of the
Coulomb potential will be replaced by the constant value
Ze /a for the sake of simplicity. The value of this con-
stant is included in the numerical value of Vo for protons.

For protons the form of Eqs. (3.1) and (3.2) are the same
except that for r )a we replace the Hankel functions by
the corresponding Coulomb functions.

As our intention is to simulate excitations correspond-
ing to Pb, we choose for the potential parameters the
values a =7 fm and V0 =45 (55) MeV for neutrons (pro-
tons). With this we calculated the four classes of eigen-
states discussed in Sec. II, with eigenvalues 6 =@,+i @;
such that —Vo & 6„&2000 MeV and —150
MeV&N; &0. In Table I we present the lowest 20 neu-
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TABLE I. The lowest single-particle states (i.e., with lowest

real part of the energy) corresponding to a square well nuclear

potential of radius a =7 fm, depth VO=45 (55) MeV for neu-

trons (protons), and Z =82. The neutron (proton) energies e„
(e~ ) are in MeV. The principal quantum number N correspond-

ing to the harmonic oscillator potential is also given. Note that
all imaginary values are negative, as it should be for decaying
resonant states.

State

0
1

2
2
3
3

4
4
5

4
5

6

0$

Op

Od

1$

Of
lp
Og

ld
Oh

2$

1f
Oi

l

2p

lg
h

Oj
2d
3$

—41.51
—37.88
—33.31
—31.16
—27.87
—24.21
—21.59
—16.41
—14.51
—14.48
—7.90
—6.68

—6. 13—i1.57
—4.99

—0.35 —i4.29
0.99—i0.00
1.49—i8. 16
l.85 —i0.00
3.53 —i l.70
5.64 —i3.37

—51.38
—47.60
—42.83
—40.57
—37.14
—33.25
—30.55
—24.95
—23.09
—22.81
—15.74
—14.79

—12.19

—5.68

—5.67
—0.80

1.09—iO. 00

tron single-particle states, i.e., the 20 bound states and
Gamow resonances with the lowest real part of the ener-

gy. In addition, the corresponding single-particle states
for protons are given. As expected, the Coulomb and
centrifugal barriers significantly affect the width of the
resonances. The larger the barrier, the smaller the width.
In Table I one can associate to each proton state a har-
monic oscillator orbit. That is, inside the nuclear volume
the wave functions corresponding to Table I have, for a
given value of the orbital angular momentum, the same
number of nodes as the corresponding harmonic oscilla-
tor wave function. This is not surprising because the pro-
ton states in Table I are all bound, except the 3s state.
On the contrary, the neutrons, lacking the Coulomb bar-
rier to bound them, may show low-lying Gamow reso-
nances so wide that their wave functions do not resemble
any particular harmonic oscillator wave function. This is
exemplified by the three states that do not have any cor-
responding proton partner in Table I.

1. Single particle re-sponse function

1 for ro —5 (r (rp+5
0 otherwise (3.3)

With the wave functions calculated in this way, one
can now evaluate the single-particle response functions of
Sec. II B 1. We choose for the field fz a square barrier of
the form

which resembles the derivative of a Saxon-Woods poten-
tial. We performed a number of calculations changing ro
within reasonable limits around the radius a, and chang-
ing 6 from 0.1 fm to 1 fm. The calculated response func-
tions do not depend appreciably upon these changes. The
results that we present here correspond to ro=6. 75 fm
and 5=0.75 fm.

The calculation of the exact response function (2.17) is,
in this single-particle case, rather straightforward. The
corresponding calculations for the Berggren and Mittag-
LeNer expansions require us to set a limit on the number
of states n in the summations of Eqs. (2.18) and (2.19). In
fact, the objective of this calculation is to find which
terms of the summation are important and which ones
are negligible. In the calculations we use the expression
"all terms" meaning all states calculated in the Sec. III A.
The set of states used in the Berggren expansion (e.g.,
Table I) seems to be a natural extension of the shell model
basis. Due to this similarity we sometimes call "basis ele-
ments" the bound states and resonances used in summa-
tions (2.18) and (2.19). Although the important quantity
from a physical point of view is the imaginary part of the
response function, which is the strength function Eq.
(2.2), in most cases we will present the real part as well.

In all cases calculated by us, the response functions
(2.17)—(2.19) practically coincide with each other in the
resonance region if all terms are included in the Berggren
and Mittag-LeNer basis. As an example we present the
1 =4 neutron case in Fig. 2. Within the precision of the
scale one cannot distinguish among the three results.

A resonant behavior in the response function (which
only depends upon the real energy) implies, from Eq.
(2.1), that its behavior is dominated by a pole of the
Green function corresponding to a narrow Gamow state.
In the case of Fig. 2 that pole is the 1g state of Table I
with 8„=(0.9883—i0.0018) MeV. Including only this
level in the summations of Eqs. (2.18) and (2.19), one is
still not able to distinguish among the results of the exact
and approximate calculations in the neighborhood of the
resonance. This is perhaps not surprising, since this pole
lies very close to the real axis. To test the range of validi-
ty of this drastic approximation of including only one
term in the Berggren and Mittag-LeNer expansions, we
study cases where no single-particle state was dominant.
This occurs if the resonances in the response function are
wide. We present an example of this type in Fig. 3. Here
we neglected all basis elements lying above 80 MeV. The
resulting basis consists only of the negative energy states,
the sharp resonance 1g mentioned above and two broad
resonances with energies (30.20—i 7.93 ) MeV and
(71 97 i 14.92). M—eV. The exact result is approximated
reasonably well even within this small basis, as seen in
Fig. 3.

We found that, in general, it is enough to include only
one single-particle state in the basis to reproduce the ex-
act response function in the resonant region. However,
for energies between resonances one has to include at
least the two basis states lying immediately below and
above the energy considered.

As another instructive illustration we present in Fig. 4
the response function corresponding to I =0 protons in-
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0

Im AfE)

—10

0.97 0.98 0.99 1.00 0.97 0.98 0.99

I

y. 00 EfACe VJ

=4 neutron sin le-particle response function (in arbitrary units) for the square well poten-g y p o — o g-
'd 'th' th i io of th fi(2.19), including all terms in the summations, are d

eluding all terms in the basis. Again one sees that the
agreemenreement between the exact result and the approximate
expressions including all terms is excellent. The examp le
of Fi . 4 is also an interesting case because it shows t ato ig. is a so
the Berggren strength function does not v

threshold. This indicates that either the integral on the

continuous pa th L of Fig. 1 is important in this region, or
that the neglect of the incoming waves produces a wrong
behavior of the response function near threshold.

One observes in Fig. 4 that the Mittag-LefHer expan-
sion is w's working surprisingly well for protons, i.e., for t e

hat thislong-range Coulomb interaction. We found tha

10

exact
—————Berggren
—————4'it teg —Le

falter

30—

—10

10

zo 50 zo 30 40

I

50 El~«l

n 10 and 50 MeV. Only the poles with Re(e„)(80 MeV are included in the expanFIG. 3. As in Fig. 2 in the energy range between 10 an
h Mitta -LefHer result almost coincides with the exact one.sions. For the imaginary part t e i ag-
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10 100—

R R(E)

exact
—————Berggren
———Nittag —LefjKer

I,=O

protons

50—

-10 0

—50—

—100 100 ZOO 300 —100 100 ZOO 300 Ef&eVj
FIG. 4. As in Fig. 2 for I =0 protons(VO=55 MeV; a =7 fm; Z =82).

feature is common to all partial waves that we investigat-
ed. This important result is rather unexpected since no
analytical proof has so far been found for the validity of
the expression (2.16) for a potential of infinite range. The
validity of the Mittag-LeNer expansion even for protons
opens new possibilities for its application to real nuclei.

The case presented in Fig. 4 is interesting also because

in the energy range of Fig. 4 there are several resonances.
One can then analyze the influence of a particular basis
element upon the different resonances. Thus, in Fig. 5 we
included in the expansion only the term corresponding to
the first peak. The agreement of both the Mittag-LefHer
and the Berggren expansions with the exact result is ex-
cellent in the region around that peak. A similar agree-

10—

Im R(E)

L=O

pmtaas
30—

exact————— Be~gee n
—————Nittag-Letter

L=O

ZO—

il

1

10-

0
I

100 ZOO SOO 400 100 800 300 400 EIJce vj
FIG. 5. As in. As in Fig. 4 but including only one element [with energy e„=(29 6 i5 0) MeV. ]—in th. e expansions. For the real art t e

Mittag-LeNer and Berggren expansions coincide.
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10

lm R(E)

80—

z. z(E)
exact————— Berggren

—————kfittag —Lefjtew

ZO—

0

100 ZOO 300 400 100 ZOO 300 400 Ej&eVJ

FIG. 6. As in Fig. 5 but includin onling on y the resonance with ener e = 71.
i tag-LeNer and Berggren expans'

' 'd .10ns colnclde.
gy „—, .2 —i 11.6) MeV in the expansio F hns. or t e real part the

y e erms correspond-ment is found when including onl the t
ing to the other peaks, as seen in Fi . 6 f hig. or t e second

e. n ig. we present the calculated response func-
tion when the basis consists of the two terms correspond-
ing to Fi s. 5 and 6.g . One sees that now the exact result is
reproduced b the ay pproxirnated expansions even in the
energy region between the two resonances. We have also

checked that inclu
'

using the three terms correspondin t
the lowest threehree peaks in Fig. 7, the approximated results
agree well with the exact one in the whole ener
below 120 MeV.

'n e w oe energy region

One may think that the approximations in the
aforementioned examples work so well because I =0 is a
very simple case. This is particularly valid for the

Berggren
—————jIittag —Lefjte~

10

100 ZOO 800 400 100 200 800 40Q EIJcevJ

FIG. 7. A. As in Figs. 5 and 6 but includin theg two resonances of those 6 ure
erggren expansions coincide.

g sin the expansions. For there 1 t h Ma par t e Ittag-LefBer
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The single-particle cases studied above may seem to be
rather simple since the poles of the Green functions are
just the states included in the Berggren and M'tt
LeNer

n i ag-
eNer expansions. Therefore, it is not surprising that the

resonant behavior of the single-particle response function
(which is dominated by those poles) is well approximated
even by including only a few terms in the expansions.
This feature is not evident in the case of particle-hole ex-
citations, where the correlated poles may be well separat-
ed from the corresponding uncorrelated (particle-hole)
ones.

To calculate the correlated particle-hole response func-
tion we use Eq. (2.7) with the uncorrelated response func-
tion as discussed in Sec. II B2. The strength ~z of the se-

parable interaction (2.6} is obtained, as usual, by adjust-
ing its value to fit the energy of the first excited state of
angular momentum A, [and parity ( —I ), since only natu-
ral parity states feel the separable interaction]. That is,
denoting the energy of the yrast state A, by co&, one gets

Ki = —I /R ' '(oi~) (3.4)

Mittag-LeNer approximation and its limitations concern-
ing the long range of the interaction. To elucidate this
point we present in Fig. 8 the case of 1=5 protons in-
cluding the ten lowest basis states. The quality of the
agreement among the three calculations is also excellent.
Even including only states corresponding to a given peak,
one obtains the same quantitative agreements as in the
case l =0 discussed earlier.

2. Particle ho-le response function

Alt~othough we have studied several cases corresponding to
excitations carrying different angular momenta, we will
on y present the quadrupole case here because the results
of the comparisons, which is the objective of this paper,
are the same in all cases.

The single-particle basis consists of the states generated
in Sec. III A. The Fermi level was chosen to be the state
2p (2s) for neutrons (protons) in Table I. Since we are in-
terested in the behavior of the response function in the
region of the giant quadrupole resonance (E (20 MeV),
we found it reasonable to assume an energy of co2=6. 5

MeV for the yrast quadrupole state in this model calcula-
tion. Since R' ' depends upon the approximations done
in the calculations, i.e., the expansion used for the Green
functions, the value of az in (3.4) is expected to depend
upon those approximations also.

Our single-particle basis has been chosen according to
the experience we acquired from the study of the single-
particle response. Therefore, we neglected all basis ele-
ments lying above 50 MeV. The basis is thus reduced to
47 (45} neutron (proton) states. Since the angular mo-
menta of the hole states are I & 7 only particle states with
I &9 enter our quadrupole calculation. With this set of
single-particle states one can form N =219 uncorrelated
particle-hole states, which already represents a drastic
truncation of the basis.

Within this basis the values of it2 are (in arbitrary units)
n(exact) =0.055, a(Berggren) =0 059 .i 0 00—5, a.nd ti(ML)
=0.051, which are rather similar to each other the con-
trary to aforementioned expectations. Since co2 is below
the energy threshold, the exact and Mittag-LeNer

Im R(E)

RI R(E)

—10

exact
—————Berggren
—————3fittag —Lefifer

pitons

L=5

—30 —30

100 ZOO 300 100 zoo soo Etuevg

FIG. 8. Imaginary and real part of the 1=5 proton single-particle res onse fun
Vo =55 MeV; a =7 fm' Z =82. Thm; = . e exact expression (2.17) and the Ber ren and Mitta-

'ng e-par ic e response function corresponding to the square well t lwe po entia

gg g- p
en owes asis states jwith Re(e„u) ( 500 MeV] have been included.
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response functions in Eq. (3.4) (i.e., a) are real quantities.
In the Berggren expansion ~ may become complex be-
cause one neglects all incoming waves. This feature was
also responsible for the wrong behavior of the Berggren
response function near the energy threshold.

Using the values of ~ given earlier, the exact response
function is very similar to the approximated ones in the
resonant energy regions. Far from the resonances, how-
ever, the Berggren response function differs from the ex-
act one. This is due to spurious contributions given by
the small imaginary part of a.(Berggren). We therefore
neglect that imaginary part and use a(Berggren) =0.059.

In Fig. 9 we present the strength function calculated
within the three expansions. We use a logarithmic scale
for S(E}to show in detail the quality of the approxima-
tions in the whole range of values of S. In a linear scale
the agreement among all curves seems to be artificially
better than the one seen in Fig. 9. There is a remarkable
agreement between the exact and approximated values of
the energy at the center of the resonances. This is an im-
portant result because the positions of the complex poles
are the quantities of physical interest. These poles are
the eigenvalues of the RRPA. Even the shapes of the
three curves in Fig. 9 are similar. Near threshold, how-
ever, the approximated curves do not follow the exact
one. The Berggren strength function even fails to vanish
below the threshold energy, i.e., 13.54 MeV. This, again,
is a result of the approximated treatment of the continu-
um background, especially in the Berggren expansion.

We found that wide basis states do not affect the posi-
tion of the calculated resonances neither in the Berggren
nor in the Mittag-LefBer approximation. This feature
can again be understood from the expression of the
response function (2.1). The poles of the Green function
with large imaginary parts are far from the real energy
axis and their inAuence is therefore negligible in the reso-
nance region. One can then truncate the basis further if
one is only interested in the resonant behavior of the
response function. As an example we show, in Fig. 10,
the strength function calculated within the Berggren ap-
proximation using a basis consisting of the 37 (35} lowest
neutron (proton) single-particle states. This neglects the
highest lying broad resonances in the basis used in Fig. 9.
The dimension of the resulting particle-hole basis is
N =136. The corresponding strength function is labeled
"restricted" in Fig. 10. For comparison, both the exact
and the Berggren calculation of Fig. 9, labeled "full" in
Fig. 10, are also shown in Fig. 10. As expected, Fig. 10
shows that wide basis states considerably inhuence the
background, but they play a minor role in the determina-
tion of the position of the resonances. The corresponding
results for the Mittag-LeNer expansion above threshold
are, using the restricted basis, practically the same as the
ones obtained with the full basis.

One then concludes that the positions of the poles of
the Green function corresponding to narrow resonances
are well determined within a basis consisting of narrow
elements. A similar conclusion was reached in Ref. 6 by
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FIG. 9. Quadrupole particle-hole strength function (in arbitrary units) calculated exactly and within the Berggren and Mittag-
LeNer expansions.
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FIG. 10. Quadrupole strength function (in arbitrary units) calculated exact1y and within the Berggren expansion using the basis of
Fig. 9 ("fu11")and with the truncated basis discussed in the text ("restricted" ).

studying the dependence of the complex resonance ener-
gies upon the truncation of the RRPA basis. This ex-
plains why calculations done within bound (e.g., harmon-
ic oscillator) representations have been so successful in

predicting the position of giant resonances, ' since it is
only narrow resonances which can be detected experi-
mentally (note that "narrow" here means small escape
width).

Finally, it is important to point out that the use of pole
expansions considerably reduces the computational time
needed to find the resonances in the response function.
In the case of the full basis, which is the one that takes
the longest time, the pole expansion calculation was 26
times faster than the continuum RPA in a VAX/8650
computer.

IV. SUMMARY AND CONCLUSIONS

The numerical evaluation of nuclear processes which
take place in the continuum is an old problem which has
not yet been fully solved. To deal with this problem we
have studied, in this paper, different approximations
where the continuum is replaced by a discrete set of
states. The numerical difficulties are thus greatly
simplified and, in addition, one gains some physical in-
sight into the physical process by just using the discrete
expansion.

To avoid uncertainties related to the numerical solu-
tion of the Schrodinger equation, we considered the well-

known case of a square well potential, including the
long-range Coulomb interaction which can be solved
analytically and yet is rather close to the potential felt by
nucleons in a nucleus. Using this as a model we studied
response functions corresponding to single-particle and
particle-hole excitations. The exact evaluation of the
response functions was performed by using the exact
form of the Green function (2.8). We then evaluated the
Green function by using two different pole expansions.
In one of them one writes the Green function as a sum
plus an integral along a complex path, as shown in Fig. 1.
The terms in the sum have singularities which are the
poles of the Green function lying between the integration
path and the real k axis. These poles correspond to the
complex solutions of the Schrodinger equation with regu-
lar boundary conditions at the origin and outgoing waves
at infinity (Gamow states), as seen in Eq. (2.15). In the
applications of this expansion we neglect the integral and
include only a limited number of terms in the summation.
We call this form of the Green function the "Berggren
expansion. " The idea behind the Berggren expansion is
that the physical resonances, i.e., those which can be seen
in the response function, are narrow. Therefore, if one
chooses the integration path far enough from the real
axis, its contribution would only affect the continuum
background. The attractive feature of the Berggren ex-
pansion is that it provides a set of linear equations for the
complex energies of. the particle-hole resonances in a way
similar to the RPA. The resulting formalism was called
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the resonant RPA in Ref. 6. The similarities between the
Berggren formalism and the one corresponding to real
(bound) representations is also reflected in the level
scheme corresponding to the set of single-particle states
used in the Berggren expansion, as seen in Table I. These
suggestive similarities induced us to view the Berggren
set of states as a "representation" which is a generaliza-
tion of the shell model basis. The drawback of the Berg-
gren expansion is that it only includes outgoing waves
and, therefore, has a wrong behavior below threshold.

In the other expansion' '" (Mittag-Lefller) one also
writes the Green function as an infinite sum of terms cor-
responding to all possible solutions of the Schrodinger
equation satisfying the boundary conditions (2.11), as
seen in Eq. (2.16). There is not any integral contribution
to the Mittag-LefBer expansion, which is a great conveni-
ence. But its validity has been proved only for potentials
of a finite range, thus excluding the important Coulomb
potential.

We applied the Berggren and Mittag-LefBer expansions
to calculate single-particle and particle-hole response
functions. For the single-particle case we found that the
results of these two expansions agree very well with the
corresponding exact results if a large number of terms is
used in the expansions. This may not be surprising since
the resonant part of the response function is determined
by its complex poles. Actually, in this rather simple case
of single-particle excitations, one expects that the in-
clusion of only relevant terms, i.e., those with poles close
to the resonances, would be enough to describe the
response function in the neighborhood of the resonances.
We found that even using only one term in the expan-
sions, one obtains excellent agreement with the exact re-
sult in the resonant region. In these calculations we also
found that the Mittag-LeNer expansion reproduces the
exact results for neutrons as well as for protons. This is
numerical proof of the validity of this expansion for the
long-range Coulomb interaction. New possibilities are
thus available for the application of the Mittag-LefHer ex-
pansion to nuclear problems where the continuum plays a

role.
We performed the analysis of particle-hole response

functions by using the continuum RPA. ' In the corre-
sponding Berggren and Mittag-LefBer approximations we
Used the single-particle propagator as in the single-
particle case above. One important objective of our ap-
proximate calculation was to investigate the possibility of
obtaining the energies of the resonances fast and with
reasonable accuracy. Therefore, from the outset we used
a very limited number of terms in the expansions. To de-
cide which should be taken into account, we profited
from the experience gained in the studies of the single-
particle cases. The good agreement between the exact re-
sult and the approximations for those cases indicated
that, for the particle-hole excitations, it would be enough
to consider only terms in the expansions which would be
close (in energy) to the resonant region. This is actually
the shell model procedure to choose the basis. Using
only the lowest 47 (45) single-particle neutron (proton)
states in the expansions, we obtained good agreement be-
tween the approximations and the exact results as seen in
Fig. 9. Even reducing the basis further, the agreement is
good in the resonant region as seen in Fig. 10. As in the
aforementioned single-particle case, the approximations
work very well in the resonant region, however, the back-
ground is not well reproduced. This explains why the ap-
proximated response functions have the same shapes as
the exact one, but the absolute value is different. The
computational time is sharply reduced by using the ap-
proximate methods.

In conclusion, we have shown in this paper that both
the Berggren and Mittag-LefBer expansions are powerful
tools to treat nuclear processes taking place in the contin-
uum. This is especially the case for the Mittag-LeNer ex-
pansion, which we have shown to be valid for the long-
range Coulomb interaction.

Discussions with J. Bang, T. Berggren, E. Maglione,
and N. Van Giai are gratefully acknowledged.
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