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Neutron scattering from elemental indium: Optical model and bound-state potential
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Neutron elastic-scattering cross sections of indium are measured from 4.5 to 10 MeV at intervals
of =500 keV. Seventy or more differential values are obtained at each incident energy, distributed
between = 18 and 160'. These are combined with lower-energy data previously obtained at this lab-

oratory, and with 11- and 14-MeV results from the literature, to form a comprehensive elastic-
scattering database extending from = 1.5 to 14 MeV. These data are interpreted in terms of a con-
ventional spherical optical model. The resulting potential is extrapolated to the bound-state regime.
It is shown that in the middle of the 50-82 neutron shell, the potential derived from the scattering
results adequately describes the binding energies of particle states, but does not do well for hole
states. The latter shortcoming is attributed to hole states having occupational probabilities
sufficiently different from unity so that the exclusion principle becomes a factor, to rearrangement
of the neutron core, and to the fact that the shell-model potential was assumed to have an energy-
independent geometry. The systematic behavior of the real optical potential is discussed, and it is
shown that the isovector strength deduced from neutron scattering is consistent with the nucleon-

nucleon scattering data when a mass dependence of the radius is used.

I. INTRODUCTION

Over the past few years, we have extensively studied
neutron scattering and total cross sections of a number of
nuclei over the energy range of =1.5 —10 MeV. ' This
energy range is rewarding since it is broad enough to
reasonably define the average energy-dependent trends of
the optical model (OM) in a region where there are ex-
pected to be changes, it adjoins the bound-state regime,
and it is sensitive to nuclear-structure effects that largely
average out at higher energies where many more reaction
channels are open. Up until now emphasis has been
given to nuclei near shell closures (i.e., A approximately
equal to 90 and 208), and to nuclei in the A =50—60 re-
gion, where the nucleon configuration outside shell clo-
sures is relatively simple. This work has shown that, in
these cases, it is possible to obtain a reasonable degree of
unification of potentials applicable to bound and unbound
energy regimes by means of the fundamental dispersion
relationship. The results also suggest that the real por-
tion of the optical potential behaves in a rather smooth
manner with target mass, but that the imaginary portion
of the interaction is quite specific to the particular target,
being sensitive to structure properties such as the number
of particles (or holes) beyond a shell closure, and to col-
lective motions. The present investigation extends this
work to a region well away from a shell closure where the
particle (hole) configurations are no longer simple. Previ-
ous knowledge of fast-neutron interactions with indium is
sparse and largely confined to the lower-energy results
obtained at this laboratory. ' The present work builds
upon and extends the prior results in order to provide an
energy scope that permits an assessment of the optical
potential and its relationship to the bound-state regime
away from the shell closures.

In the present work, the neutron elastic-scattering

cross sections of indium were measured, in detail, from
=4.5 to 10 MeV using the methods outlined in Sec. II.
The results of these measurements are given, and com-
pared with previously reported values, in Sec. III. A
spherical optical model (SOM) interpretation of these
data, and the resulting model parameters, are given in
Sec. IV. The extrapolation of this SOM to the bound-
state regime is discussed in Sec. V. Systematic mass
trends of the real potential (particularly the radius) and
the correlation of nucleon-nucleon scattering data with
the real strength of the SOM derived in the present and
related' work are discussed in Sec. VI.

II. EXPERIMKNTAI. METHODS

All of the present measurements were made using the
Argonne ten-angle fast-neutron time-of-Bight apparatus.
Since the method, the apparatus, and the data acquisition
and reduction have been described in detail else-
where, "only an outline is given here.

The neutron source was the D(d, n) He reaction, with
the deuterium target gas contained in a cell 3 crn long. '

The gas pressure within the ce11 was adjusted to give
incident-neutron energy spreads at the sample, including
effects due to kinematics, of 100-200 keV. The mean en-
ergy of the incident neutrons was determined to within
25 —50 keV by control of the incident deuteron beam.
The neutron source was pulsed at a repetition rate of 2
MHz, with a burst duration of =1 ns. The scattering
sample was a solid cylinder of elemental indium, 2 cm
long and 2 crn in diameter. Ten hydrogenous scintilla-
tion detectors were placed at scattered-neutron fiight
paths of =5 m. The relative scattering angles were deter-
mined to (0.1', and the absolute scale was calibrated to
+0. 1 by observing neutrons scattered from the sample
both left and right of the apparent geometric center line,
at angles where the elastic-scattering cross section is rap-
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idly changing. The relative detector energy-dependent
sensitivities were determined using the Cf fission-

neutron spectrum, as described in Ref. 13. These relative
sensitivities were then normalized to the well-known

H(n, n) scattering standard' by observing neutrons scat-
tered from polyethylene (CHz) samples. The measured

cross sections were corrected for multiple-event,
incident-beam-attenuation and angular-resolution pertur-
bations using Monte Carlo techniques. ' These calcula-
tions were carried through three iterations so as to pro-
vide an accuracy of 1 —2% at most angles. However, at
the very minima of the distributions (in the range
35'—45', a very deep and narrow minimum occurs at
some energies), the uncertainties in the correction factors
may be 30% or more. The detector calibrations were
reproducible to 3% up to =8.5 MeV. Since the inten-
sity of the Cf fission spectrum falls rapidly as the
emitted-neutron energy increases above =3 MeV, this
reproducibility deteriorated to about 5% at higher in-
cident energies. Counting statistics varied a great deal,
depending on the magnitude of the cross section. At for-
ward angles where the intensities are high, the statistical
uncertainties are (1%, whereas at the very minima of
the higher-energy distributions, where the counting rate
was approximately three orders of magnitude smaller, the
statistical uncertainties increased to 10% or more. The
various uncertainty estimates were combined in quadra-
ture to obtain the total uncertainty.

ed from this laboratory, and, except at large scattering
angles, to the 11.1-MeV results of Ferrer et al. ' There
are very few directly comparable previously reported
elastic-scattering results. However, Holmqvist and Wie-
dling' have measured elastic-scattering cross sections at
4.56, 7.05, and 8.05 MeV. Their results are qualitatively
consistent with those of the present work, as illustrated in
Fig. 2.

IV. MODEL INTERPRETATION

The database considered in the model interpretation
consisted of the following: (i) the s- and p-wave strength
functions (ii) the neutron total cross section from a few
keV to 20 MeV (iii} the elastic scattering of Ref. 8 from
1.5 to 3.8 MeV; (iv) the present elastic-scattering work
extending from 4.5 to 10 MeV; (v) the 11.1-MeV elastic
scattering of Ref. 17; and (vi) the 14.6-MeV elastic
scattering of Ref. 20. The lower-energy data of Ref. 8
were averaged over 200-keV incident-energy increments
in order to smooth any fluctuations, and to reduce the
number of data points to manageable proportions for the
fitting procedures. The total cross sections are shown in
Fig. 3, and the composite elastic-scattering data used in

III. EXPERIMENTAL RESULTS

The differential neutron elastic-scattering cross sec-
tions of elemental indium (95.7% " In, 4.3% " In} were
measured at =0.5 MeV incident-neutron-energy inter-
vals from 4.5 to 10 MeV. Seventy or more differential
values, distributed between =18' and 160', were obtained
at each incident energy. For each distribution the mea-
surements were made at several different times, using in-

dependent calibrations, with good reproducibility of the
results. At all scattering angles and incident energies, the
scattered-neutron experimental resolution was not
sufficient to resolve neutrons due to inelastic excitation of
the 336.3-keV ( —,

'
) metastable level in " In (and the

analogous level in " In). Therefore, the experimental
resolution was intentionally kept to =500 keV, and thus
inelastic scattering involving the first —, levels was in-

cluded with the elastic contribution in all of the experi-
mental observations. This inelastic-neutron component is
not generally a concern in the present considerations,
since, even at 3 MeV, the cross section for the excitation
of the 336.3-keV level in " In is only =10 mb and is fal-
ling with energy. ' Consequently, its contribution to the
present measurements is probably less than a mb/sr,
which is smaller than the experimental uncertainty asso-
ciated with the observations. Thus, in the present work,
the observed cross sections are considered to be entirely
due to elastic scattering.

The differential elastic-scattering cross sections result-
ing from the present measurements are shown in Fig. 1

(the 4.5 —10-MeV energy range). These results reasonably
extrapolate to the lower-energy values previously report-
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FIG. 1. Differential elastic-scattering cross sections of indi-
um. Measured values are indicated by open circles. The
present experimental results extend from 4.5 to 10 MeV, the
1.5 —3.8-MeV results are from Ref. 8, the 11.1-MeV results from
Ref. 17, and the 14.6-MeV results from Ref. 20. Curves indicate
the results of model calculations as discussed in the text. The
data are in the laboratory coordinate system.
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the fitting are given in Fig. 1.
Since elemental indium is 95.7% " In, it was assumed

that the target was monoisotopic " In. With this pro-
viso, the data were analyzed using a conventional SOM
having a real potential of the %oods-Saxon type, a
Woods-Saxon-derivative imaginary interaction, and a
spin-orbit (SO) term of the Thomas form. ' A prelimi-
nary study indicated that the interpretation was not par-
ticularly sensitive to the spin-orbit parameters. Values of
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these parameters similar to those used in fitting the
1.5 —3.8-MeV data, and which give a reasonable descrip-
tion of the unpublished 4-MeV polarization results of
Gorlov et al. , were used:

r„=(1.2 85—0.003E) fm, (2)

where the energy E is in MeV. The slope is very small
and its relative uncertainty fairly large, so that the E vari-
ation is probably not significant. However, in the subse-
quent discussion, r„, as given by Eq. (2), is used.
(Throughout this paper, parameters are cited to a pre-
cision which makes accurate reproduction of the calcu-
lated results possible. We by no means imply that, for ex-
ample, the nuclear radius has been determined accurately
to three decimal places. )

The fitting procedure was repeated using a five-
parameter chi-square search, varying real and imaginary
strengths and diffusenesses, and the imaginary radius. Of
the resulting five parameters, the real diffuseness a„ap-
peared the most stable and showed no significant energy
dependence. Therefore, the a, results of the fitting pro-
cedure were averaged to obtain the value

Vso=5. 5 Mev,

rso=1.0 fm,

aso=0. 65 fm,

where Vso, rso, and aso are, respectively, the strength,
radius, and diffuseness of the Thomas term. (The nuclear
radii R; of the various constituents of the SOM potential
are given by R; =r; A '~ . )

With the spin-orbit potential held fixed to the values of
Eq. (1), the remaining SOM parameters were determined
by fitting the elastic-scattering database shown in Fig. 1.
The procedures started with six-parameter chi-square fits
in which the real and imaginary strengths, radii, and
diffusenesses were varied. The levels of " In up to a
1.5-MeV excitation energy were explicitly taken into ac-
count in the calculations using the Hauser-Feshbach
approach, corrected for resonance width fluctuations and
correlations in the manner described by Moldauer.
Higher-energy excitations were incorporated into the cal-
culations using the statistical formalism and parameters
of Gilbert and Cameron. It was further assumed that
above 5 MeV the observed elastic scattering was entirely
shape elastic, with no compound-elastic contributions.
This is a reasonable assumption, in view of the very large
level density at these higher energies.

The most stable parameter resulting from the six-
parameter fitting was the real radius r„which decreased
slightly with increasing energy. Over the 1.5 —14.6-MeV
energy range

1
0

e(deg)

I

180 a„=0.6404 fm . (3)

FIG. 2. Comparison of the present elastic-scattering cross
sections (+) with those given in Ref. 18 (0). Curves are guides
for the eye. Approximate energies are given in MeV. The data
are in the laboratory coordinate system.

This value was accepted for the subsequent SOM fitting
procedures.

Using the parameters of Eqs. (1)—(3), four-parameter
fits were carried out. Although the imaginary diffuseness
a„may increase somewhat with energy, the slope is
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FIQ. 3. Indium total cross sections. The data symbols are energy-averaged experimental values from Ref. 16. The light curve in-

dicates the evaluation of Ref. 16. The heavy curves A and 8 show the results of model calculations as described in the text.

small, and a was taken to be constant with energy, hav-

ing the value

a~=0. 5798 fm . (4)

J =(41.8+2.9E) MeVfm (7)

where J„and J are the volume integrals per nucleon of
the real and imaginary potentials, respectively. The ener-

gy dependence of J„and J is shown in Figs. 4 and 5, re-
spectively. Uncertainties associated with J„and J are
hard to determine, since they are related by complex er-
ror propagation to the difficult-to-determine errors in the
underlying database, particularly in dealing with results
other than the present measurements. The uncertainties
shown in Figs. 4 and 5, 1% for J„and 5% for J, seem
consistent with the scatter of the individual values.

Equations (1)—(7) define a SOM for the interaction of
fast neutrons with indium. The model provides a very
good description of the total cross section from 1.5 to 20
MeV, as illustrated in Fig. 3. The calculated total cross
sections are consistent with the experimentally based
evaluation of Ref. 16 to within 2%%uo, i.e., to within approx-
imately the uncertainty in the evaluation alone. This
SOM also gives a reasonably good description of the
present differential elastic-scattering results, as illustrated
in Fig. 1. The only major differences are in the depth of
the first minimum of the distributions in the energy range
=6—8 MeV. The calculated minimum is very deep and

This value was then used in three-parameter fitting from
which the imaginary radius r was selected to be

r~ =(1.305 —0.003E) fm,

where the small energy dependence was chosen equal to
that of r, .

Finally, two-parameter fitting, with the other parame-
ters taken from Eqs. (1)—(5), resulted in the real and
imaginary potential strengths

J„=(433.4 3.7E) MeV—fm

and
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FIG. 4. The volume integral per nucleon J„ofthe real poten-
tial resulting from the interpretation of the text. Symbols indi-
cate the results of individual fits to the elastic-scattering data,
while the curve indicates the least-square fit given by Eq. (6).

narrow, changing by more than an order of magnitude
over an angular range of 3'-4'. Such a "spikelike" be-
havior is difficult to observe without a specialized experi-
ment. The SOM describes the lower-energy, 1.5-3.8-
MeV, measured elastic scattering of Ref. 8 very well, as
illustrated in Fig. 1. Furthermore, it reproduces the rath-
er featureless 0.3—1.5-MeV elastic-scattering distribu-
tions previously reported from this laboratory.

Turning to the higher-energy data, the present SOM
reproduces the 11.1-MeV results of Ref. 17, except at
large scattering angles. On the other hand, the rather
rapid rise in this 11.1-MeV cross section at back angles,
shown in Fig. 1, seems to be inconsistent with what one
would expect from an extrapolation of the 10-MeV data.
Finally, this SOM quite reasonably describes the 14.6-
MeV data of Ref. 20, as can be seen in Fig. 1. No im-
provement in the description of the higher-energy data
was obtained by the introduction of a volume absorption
term in the SOM potential.

Below 1.5 MeV, the SOM defined by Eqs. (1)—(7) tends
to predict neutron total cross sections that are increasing-
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Soo- p +- Jw(E')
Ji.(E)=JHp(E)+ —J,dE',
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FIG. 5. The volume integral per nucleon J of the imaginary
potential resulting from the interpretation described in the text.
The notation is identical to that of Fig. 4, except that the curve
is obtained from Eq. (7).

V. BOUND-STATE PROPERTIES

There is a well-known dispersion relationship linking
the real and imaginary OM potentials. In this discus-
sion, we shall use the fact that

ly larger than those observed experimentally as the ener-

gy decreases, amounting to approximately a 10% overes-
timate at a few hundred keV. This trend is illustrated by
curve A in Fig. 3. Some of this difference may be experi-
mental, as the measured values were generally not
corrected for self-shielding effects and thus may be
several percent too small. Also, the predicted s- and p-
wave strength functions are both approximately a factor
of 2 larger than those deduced from resonance measure-
ments. ' However, it is commonly observed that the
imaginary diffuseness a decreases to quite small values
as the energy approaches zero, ' rather than remaining
constant as given by Eq. (4). The available experimental
information does not permit a clear definition of this be-
havior in the case of indium. If one approximates the be-
havior by assuming that aii, decreases in a linear manner
from the value of Eq. (4) at 2.0 MeV to 0.25 fm at zero
energy, and Jii, takes the values of Eq. (7), a reasonably
good description of the observed neutron total cross sec-
tions at low energies is obtained, as illustrated by curve 8
in Fig. 3. In addition, s- and p-wave strength functions,
in units of 10, are now predicted to be 0.34 and 6.41,
respectively, compared to the experimentally deduced
values' of 0.26%0.03 and 3.2+0.6. Thus, decreasing a~
brings the s-wave strength function into good agreement
with the experiment, but the calculated value of the more
dificult to measure p-wave strength function is still a fac-
tor of 2 larger than deduced from resonance measure-
ments. Finally, the potential scattering length 8' is pre-
dicted to be 6.03 fm, in quite reasonable agreement with
the experimental value' of (6.55+0. 16) fm. Therefore,
making a~ decrease, as one lowers the energy, substan-
tially improves the agreement between the low-energy
calculation and experiment. Moreover, this brings the
SOM parameters into better agreement with those de-
duced from the lower-energy, 1.5—3.8-MeV data alone.

where Ji (E) and Jii (E) are the volume integrals per nu-
cleon of the total real and imaginary OM interactions,
JH„(E) is the Hartree-Fock component of the real poten-
tial, and P denotes the principal-value integral. Mahaux
and Sartor ' have exploited this relationship, together
with similar expressions relating other radial moments of
these interactions, to investigate the shell-model poten-
tial. The extrapolation to the bound-state regime gives
an additional check on the consistency of the neutron
OM potential, since it provides predictions concerning
the binding energies of the shell-model states which were
not considered in determining the scattering potential.
The procedure is geared to finding the properties of
single-particle states outside a closed shell, or single-hole
states in a core. If the shell is not closed, the Pauli ex-
clusion principle will "get in the way" in the prediction
of, say, the single-particle energy e~ of a j particle moving
outside a partially filled j" core. On the other hand, if
the shell is only slightly occupied in the core, one might
still hope to use the extrapolated potential to predict the
single-particle energy, since the effect of the exclusion
principle would be small. Because the pairing force
favors occupation of the high j orbitals, one might hope
that near the rniddle of the N=50-82 shell, consisting of
the d5/z g7/2 /l ii/i si/i and d3/2 neutron orbitals, the
low-spin states, s, /2 and d3/2 would have little popula-
tion, and that their binding energies might be reasonably
predicted by this extrapolation. In this section, we shall
examine to what extent this is true for neutrons moving
outside the N =66 ("~ln) and N =64 (" Sn) cores.

In order to use Eq. (8), Jii must be known for all ener-
gies. In the following calculations, the following is as-
sumed.

(i) Jii is continuo'us and symmetric about the Fermi en-

ergy Ez.
(ii) For 2E~ ~ E ~ 0, J& is proportional to (E EF ) . —
(iii) For O~E &E, J& is given by Eq. (7). E is the

energy at which this expression for J~ is equal to that ob-
tained using Rapaport's global parameters (for " In,
E =14.42 MeV).

(iv) For E ~E ~30 MeV, Jz has the linear energy
dependence and values obtained using Rapaport's model.

(v) For E ~ 30 MeV, J is taken to be constant at its
30-Me V value.

With these assumptions, the contribution of the
principal-value integral in Eq. (8) was evaluated and a
best fit to the experimental values of Ji,(E), shown in Fig.
4, was made, assuming that

JHF J1 +J2+

where J& and J2 are constants.
The resulting expression for Jz is assumed to hold true

for both positive and negative energies and, consequently,
can be used to predict the real shell-model potential
strength. In carrying out the OM fitting described in Sec.
IV, it was found that the diffuseness of the real well, Eq.
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(3), was energy independent. Furthermore, although a
small energy dependence was found for rr, Eq. (2), it is

probably not significant, as noted above. Therefore, in
discussing bound states, it is assumed that the shell-
model potential has a constant diffuseness given by Eq.
(3), and a constant radius rv=1. 258 fm, the E =0 value

of Eq. (2). The shell-model spin-orbit potential is taken
to be the Thomas form, described by the parameters of
Eq. (1).

The single-particle energies for a neutron moving out-
side the " In core are difficult to determine, since the sys-

tern is the odd-odd nucleus " In. The first and second
excited states ' of " In, which have l values of 5+ and
4+, show up strongly in stripping with an 1 =0 pattern,
and probably are the two possible spin states of a valence

s»z neutron coupling to the —', + ground state of the " In
core. Using the average energy of these two states, in
conjunction with the binding-energy tables, one con-
cludes that the s»z neutron is bound to the core by about
6.6 MeV. The next expected single-particle level would
be the d~i~, which can couple to " In to give spins rang-
ing from 3+ to 6+. States with I values of 3+, 4, 5+,
and 6+ are seen in " In at excitation energies of 508 keV,
426 keV, 313 keV, and 649 keV, respectively. All except
the 4+ state show strong I =2 stripping patterns. Unfor-
tunately, none of the 4+ states observed in the (d,p) reac-
tion ' show an I =2 character, so that clear evidence for
all states of the (g9/p d 3/p ) quartet cannot be found. On
the other hand, a shell-model calculation using the
Schiffer-True interaction indicates that the 4+ member
of the quartet should lie about 120 keV about the 5+ lev-

el, in good agreement with the observed 426-keV 4+
state. Thus, using either the average of the four experi-
mental energies quoted above, or using only the 3+, 5+,
and 6+ states, which exhibit 1=2 stripping patterns, one
concludes that the d3/p single-particle orbit is bound by
about 6.3 MeV to the" In core.

Since the d5iz and g7/p neutron states are the first to
fill in the %=50—82 region and hold 14 particles, one
might expect that the vh»iz state is not strongly popu-
lated in the core and, hence, the extrapolation procedure
might provide a reasonable estimate of its energy. The
( rrg9/p )

' ground state of ' "In can couple with the
vh»iz level to give spins ranging from 1 to 10 . Candi-
dates for all these levels, except the 1, 2, and 10
states, are seen in " In below 750 keV. ' The average of
these observed energies implies that the h»iz orbit is
bound to the " In core by about 6.3 MeV. On the other
hand, if one uses the Schiffer-True interaction to predict
the position of the other (g9/'i, h»/i) states, and corn-
bines them with the observed 3 to 9 levels, one finds
that the binding energy to the core is about 5.9 MeV.

Assuming that the g7/p and d5iz orbits are full, one can
learn about the binding of the hole states from " In. The
ground-state spin of this nucleus is 1+, and is interpret-
ed to arise from the (rrg9/Q vg7/p) configuration. Ac-
cording to the Schiffer-True interaction, ' this state lies
about 1 MeV lower than the 2+ member of the octet of
states arising from this configuration, and more than 2
MeV lower than the other possible octet members,
I =3+ to 8+. If one uses the experimental energy of the

TABLE I. Neutron binding energies (BE's) of the s&/&, d3/p,
and h»/& particle states, and the g7/p and d&/& hole states rela-
tive to the '"In and " Sn cores are tabulated. As discussed in

the text, the position of the d5/z hole state in " In is very tenu-
ous. In columns headed "experiment, " only the observed states
are considered. In the fourth column, the Woods-Saxon well

depths needed to reproduce the BE's are shown when the
diffuseness and radius are 0.6404 fm and 1.258 fm, respectively,
and the spin-orbit potential is of the Thomas form with the pa-
rameters of Eq. (1). In the fifth column, the well depths predict-
ed from the neutron-scattering analysis using Eq. (8) are given.
Under the heading "Schriffer-True, " the experimental data are
augmented, as discussed in the text, to include the shell-model
predictions for states of the various multiplets that have not
been experimentally seen. For binding to the " Sn core only ex-

perimental data are used. All energies are in MeV.

Core State BE
Experiment well depths

Required Predicted

115I $1/2
d 3/2

h
& I /Z

g7/Z

ds/z~

6.6
6.3
6.3
9.0
9.7

45. 1

44.7
47.3
47.0
47.3

45.5
45.6
45.6
44.0
43.6

Core State BE
Schiffer-True well depths

Required Predicted

'"In $1/2
d 3/2

h

S7/z
dg/p?

6.6
6.3
5.9

10.3
10.1

45.1

44.7
46.8
48.7
47.9

45.8
46.0
46.2
43.8
43.9

Core State BE
Experiment well depths

Required Predicted

114S $1/2
d 3/p

h

g7/Z
d 5/2

7.3
6.9
6.8

10.4
10.7

46.4
45.8
48.2
49.0
48.9

46.3
46.5
46.6
44.8
44.7

1+ state alone, one concludes that the g7/z hole is bound

by about 9 MeV to the " In core, whereas if one com-
bines the 1+ binding energy with the predicted Schiffer-
True energies for the rest of the states in the multiplet,
one obtains about 10.3 MeV for this binding. Finally,
there is little evidence for the (rrg9/z, vd~zz) sextet. The
Schiffer-True interaction predicts that the lowest state
would be 7+, and there is some evidence for a 7+ level at
642 keV in " In. If this is taken for the d 5/z energy, one
concludes that the d, iz hole is bound by about 9.7 MeV.
If the Schiffer-True potential is used to calculate the ener-
gies of all other spins of this configuration, and they are
normalized to the yrast 7+ level, one concludes that the

ds/z hole-state binding energy is about 10.1 MeV.
The binding energies deduced from the experimental

results alone and from the data, together with the
Schiffer-True interaction, are shown in Table I. The well

depths needed to give these binding energies are also
shown in the table and are compared with the values pre-
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dieted by Eq. (8). In making these predictions, the Fermi
energy EF was taken to be

EF= ,'(e—,+e ) . (10)

e =gS,;E; QS,;,
where S; is the spectroscopic factor for populating the
ith state with spin j and energy E;. Combining these re-
sults with the binding-energy tables leads to the s, /2,
d 3 /2 and h» /2 particle-state energies, relative to " Sn,
shown in Table I. In the same manner, the g7/2 and 15/2
energies are obtained from the data on " Sn.

In order to use the " In scattering results to make pre-
dictions for well depths needed in " Sn, the following
changes were made.

(i) According to Rapaport's global model, the isovec-
tor contribution should change J„ in going from " In to
» Snby

AJ„=(5.25 0.044E) MeV fm— (12)

For the s, /2 d3/2 and h»/2 particle states, the agree-
ment between required and predicted well depths is
reasonably good, the rms error being 1.1 MeV when the
experimental results along are used, and 0.9 MeV when
the data are augmented with the Schiffer-True predic-
tions. This is similar to the rms deviation in 'V, which
was about 1.1 MeV when all the particle and hole states
were included. On the other hand, the required depths
for the hole states are at least 3 MeV deeper than those
predicted by Eq. (8).

To see whether or not the hole-state potential
difference arises merely from the odd-odd nature of " In,
the required well depths needed to explain the data in the
neighboring odd-A tin isotopes were examined. Binding
energies relative to the even-even " Sn nucleus can be ob-
tained from a knowledge of the states in " Sn and " Sn.
In this case, the 14 valence neutrons in the " Sn core are
assumed to occupy the (vd, /z) (vg7/2) configuration
outside the closed N=Z=50 shell. The energies and
spectroscopic factors given in the Nuclear Data Sheets
for " Sn allow one to obtain the single-particle energies
defined by

This contribution should be added to the J, values shown
in Fig. 4, so as to make them appropriate for " Sn.

(ii) Again using the global model, one finds that
hJ =0.26 MeVfm . Thus, for" Sn,

Jiv =(42.06+2.9E) MeV fm (13)

VI. DISCUSSION

Listed in Table II are the values of Jz and the radii rv
of the SOM potential appropriate for the scattering of 8-
MeV neutrons from various nuclei, including the indium
results presented in this paper. From an inspection of the
table, it is clear that r ~ decreases as the mass

Once these changes are made, the procedure is exactly as
already discussed.

The results for the " Sn core are given in Table I. In
the fourth column, the Woods-Saxon well depths re-
quired to give the observed binding energies are quoted.
In the fifth column, the predicted well depths, found by
use of Eq. (8) when the Fermi energy is given by Eq. (10),
are listed. For particle states, the agreement between re-
quired and predicted well depths is quite reasonable, with
the rms deviation between the two being about 1 MeV.
However, once more, the well depths necessary to repro-
duce the hole-state energies are almost 10% greater than
the values predicted by the use of Eq. (8).

Therefore, near the middle of the 50-82 neutron shell
one concludes that when the OM potential found by
fitting the indium scattering data is extrapolated to the
bound-state regime, quite reasonable predictions can be
made for the shell-model potential needed to give the ex-
perimental energies of the h»/Q d3/2 and s&/2 particle
states. On the other hand, this extrapolated potential
cannot be used to predict the energies of the d, /2 and

g7/2 hole states. At least three factors may contribute to
the deficiency of the model for the hole states: First, an
energy-independent geometry for the bound-state poten-
tial may be incorrect; second, the d~/2 and g7/2 levels
may have an occupation probability sufficiently different
from unity that the exclusion principle becomes a factor;
and third, the core may change appreciably when the
hole state is formed.

TABLE II. Values of r„J„r,and J obtained by fitting the data for the elastic scattering of 8-
MeV neutrons from the nuclei listed in the first column. A spherical OM was assumed. The last two
"systematics" columns give the values of r„and J„predicted with Eqs. (14), (15), and (17) of the text.

Nucleus
and Ref.

Specific SOM
J b r ' Systematics

J b

"V (5)
Ni (46)

"Co (4)
89' (2)

Zr (47)

115I

209B
'

1.2680
1.2538
1.2624
1.2400
1.2593
1.2500
1.2340
1.2200

440.4
462.9
454.8
424.5
431.9
426.3
400. 1

385.5

1.2997
1.2000
1.2119
1.3296
1.3388
1.3000
1.2810
1.3102

68.9
104.8
85.6
66.5
66.3
75.9
65.0
43.0

1.2667
1.2617
1.2610
1.2465
1.2461
1.2451
1.2384
1.2220

451.3
461.7
448.6
423.9
426.6
423.7
410.1

380.9

'Radii are given in fm.
Volume integrals per nucleon J; are given in MeV fm .
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increases —a result similar to that found by Moldauer
when he attempted to fit very-low-energy neutron data.
A least-squares fit was made to these radii assuming that

r&=rp+rI /A ' (14)

in other words, assuming the nuclear radius R z is pro-
portional to A ' plus a constant. When

rp: 1.1476 fm and f
&

=0.4416 fm (15)

the values listed under "systematics" in Table II are ob-
tained. The fit to the empirically determined SOM radii
is excellent, with an rms deviation between theory and
experiment of approximately 0.5%. Furthermore, the
values of rp and r, are similar to those given by Mol-
dauer, who obtained 1.16 fm and 0.6 fm, respectively,
for these quantities.

In a similar way, Jv decreases as A increases. If one
attempts to fit the empirical values with the relationship

Jv= JD[1—g(X —Z)/A ], (16)

one finds JR=486. 8 MeVfm and )=1.04. These values
are similar to those found by Holmqvist and Wiedling,
who also studied the scattering of 8-MeV neutrons from a
number of nuclei and found Jp =480 MeV fm and
/=0. 98. They are also quite close to the 11.1-MeV re-
sults of Ferrer, Carlson, ad Rapaport' who obtained

JQ =(495+30) MeV fm and )=0.95. On the other hand,
the nucleon-nucleon scattering data indicate that
should be about 0.48, and the (p, n) results are con-
sistent with a value of g =0.4, both about a factor of 2
smaller than obtained from the analysis of the 8- and 11-
MeV neutron-scattering data. However, the neutron-
scattering results can be brought into reasonable agree-
ment with the (p, n) and two-body data if one takes into
account the radius variation proposed in Eq. (14). If one
sets

J&=KD[1 g(E —Z)/A —](r0+r~ /A '~ ), (17)
with r0 and r, having the values given in Eq. (15), one
finds K0=234.2 MeV and /=0. 53. The fit obtained in

this way, and given in Table II, leads to a rms deviation
between calculated and observed values of Jz of 6.3
MeV fm, the same as obtained when the conventional fit,
Eq. (16), is made.

Thus, the real SOM potential obtained from the indi-
um data fits in quite nicely with the values obtained from
the study of other nuclei throughout the Periodic Table.
Furthermore, the indium value of a v =0.6404 fm is simi-
lar to the average value, 0.67 fm, for the other nuclei list-
ed in Table II.

In Table II, r and J„,the radius and volume integral
per nucleon of the imaginary SOM potential at 8 MeV,
are also given. There is no evidence for a smooth varia-
tion of these quantities with mass number A, and this is
consistent with the fact that the imaginary portion of the
SOM is expected to be sensitive to nuclear structure. The
values of J can, however, be divided into three groups:
(i) J &50, (ii) 50&J &80, and (iii) J ) 80 MeVfm .
The only nucleus in this list in category (i) is Bi. It is a
doubly-closed-shell-plus-one nucleus, and the small value

of J is consistent with the fact that the Pb core is a
very stable structure. Indium falls in the second group,
which includes 'V, Y, Zr, and Nb. The first three
members of this group can be adequately described by the
spherical shell model, ' and this implies that the low-
lying states in Nb and " In should a1so be understand-
able in terms of this model. For nuclei in this group, the
cores are more easily excited than those near the doubly
closed Z=82, %=126 shell and, consequently, J is
larger. Finally, the two nuclei with J ) 80 MeVfm
(namely, Ni and Co) not only have anomalously large
values of J, but they also differ from other imaginary
SOM potentials in two significant respects: (i) in the en-

ergy range 0 & E ( 10 MeV, J decreases as the incident
energy increases, and (ii) r & r, Th. ese effects could im-

ply that one is attempting to describe a deformed nucleus
with a SOM. '

Thus, the imaginary SOM potential for indium has a
J value consistent with other spherical nuclei. Further-
more, the empirical value of r for indium is only slightly
larger than the average value, 1.3157 fm, obtained for
other nuclei in this class. The diffuseness a of the
derivative Woods-Saxon interaction varies significantly
for the six nuclei considered to be spherical, ranging from
0.3933 fm for Y to 0.5798 fm for indium. The imagi-
nary diffuseness obtained for indium is about 0.12 fm
greater than the average for the other spherical nuclei
and, undoubtedly, this rejects differences in the nuclear
structure.

In extrapolating the OM to the bound-state regime,
only the volume integral per nucleon of the imaginary in-
teraction was used, and attention was not given to the de-
tailed form of the potential. For the so-called particle
states, s, /p d3/Q and h»/z, the extrapolated potential
gave Woods-Saxon well depths in satisfactory agreement
with those needed to reproduce the observed binding en-
ergies. As pointed out in Sec. IV, the scattering data
fitted in our interpretations were not particularly sensi-
tive to the spin-orbit interaction. However, with the ex-
ception of the s, /& level, the binding energies are quite
sensitive to this potential. For example, if one merely in-
creases Vso from 5.5 to 6.0 MeV, the required well

depths needed to reproduce the observed binding of the
d 3/p and h» /~ states to the " Sn core become 46.0 MeV
and 47.9 MeV, respectively, and this reduces the rms de-
viation between the required and predicted well depths
from 1.0 to 0.8 MeV. Thus, the bound particle states
seem to indicate a slightly stronger spin-orbit potential
than that deduced from neutron-scattering data.

Turning to the d», and g7/z hole states, the extrapo-
lated OM potential does not explain their observed bind-
ing energies. Because of the lack of scattering data at
higher energies, the global model of Rapaport was used
to evaluate the dispersion contribution to J„Eq. (8), and
it was assumed that the Woods-Saxon well describing the
bound-state potential had energy-independent geometry.
If more data were available one could proceed a Ia
Mahaux and Sartor ' and try to deduce the energy
variation of r, and a, to see if this would explain the
hole-state data. Alternatively, one can examine the
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changes in these parameters needed to explain the bind-
ing energies when J, is held fixed at the value predicted
by use of the scattering data and Rapaport's global model
(J, =414 MeVfm for both the g~&z and dzzz states in" Sn. ) If r„ is held fixed at 1.258 fm, then in order to ob-
tain the observed hole-state binding energies, one must
use a„=0.46 fm and 0.37 fm for g7/2 and d~&z, respec-
tively. At best, this is almost a 30% decrease in a, from
the scattering value and, moreover, Aa„between the two
states, which differ in binding by only 300 keV, is approx-
imately 0.09 fm. Thus, the failure of the model for hole
states is unlikely to be due to an energy dependence of a,
alone. On the other hand, if a, is held fixed at 0.6404 fm
and r„ is allowed to vary, a value of r„=1.17 fm gives the
observed binding of the g7/2 and d5/2 states when
J„=414MeV fm . Consequently, a decrease of about 7%
in r„ for the hole states compared to the particle states
would reconcile the model with experiment. This change
is somewhat greater than seen in either the 'V case or in
the Pb analysis, but is not completely out of the ques-
tion.

There are at least two other possible explanations as to
why the energy-independent-geometry model fails for the
hole states. First, the Pauli exclusion principle "gets in
the way, " and, second, the core configuration is changed

when the hole state is produced. To check this, the " In
OM potential was extrapolated to the ' Sn nucleus by
using Rapaport's global values for the isovector poten-
tial strengths. In addition, since J is, in first order, pro-
portional to A ', Eq. (7) was scaled by the factor
(115/132)' . The energies of the hole states in ' 'Sn have
been deduced by Fogelberg and Blomqvist, and when
these data are combined with the binding-energy tables,
one finds that the required well depths for the d 3/z, h, &/z,

s, zz, d~zz, and g7/2 states are 42.8 MeV, 44.9 MeV, 43.3
MeV, 43.0 MeV, and 44.4 MeV, respectively. These are
to be compared with the values predicted by use of Eq.
(8), when E~= —6. 5 MeV, of 43.5, 43.4, 43.4, 42.9, and
42.6 MeV. Thus, the rms deviation between predicted
and required well depths is about 1.1 MeV, the same as
that found for 'V. Undoubtedly, the correct explana-
tion of the bound-state problem is a combination of the
effects discussed in this and the preceding paragraph.
The fact that the energy-independent-geometry model
works so well for ' 'Sn would seem to indicate that an en-
ergy dependence of r„and/ or a„ is less important than
the exclusion principle and rearrangement of the core.
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