PHYSICAL REVIEW C

VOLUME 42, NUMBER 6

DECEMBER 1990

Core polarization effects on spin-dipole and first-forbidden
B-decay operators in the lead region

E. K. Warburton
Brookhaven National Laboratory, Upton, New York 11978
(Received 22 June 1990)

The effect of two-particle-two-hole ground-state correlations on spin-dipole transitions and
the similar first-forbidden f-decay transitions is studied for nuclei in the lead region with realistic
shell-model interactions. Transitions are considered between states for which one is a particle-
hole excitation of the other. It is found that the tensor component of the residual interaction
is quite important for the 0~ and 17 spin-dipole transitions and the analogous §-decay matrix
elements. It is destructive for 0~ and constructive for 1~ so that the quenching of the two
modes is quite different. The atypical 1gg/2 — Ohg, transition is described. The results are

compared to previous determinations.

I. INTRODUCTION

There is current interest in the excitation of collec-
tive states with J™ = 07, 17, and 2~ via the transition
operators1

Doy = ZI‘.’[YI=1(f‘i) ® OilauTe1, A=07,17,27.

(1)

These are referred to as spin-dipole transition operators
and, in a compact notation, are also written? as [r,a]R,
where R (= 0, 1, 2) is the rank of the operator. The three
[r,5]® operators comprise half of the set responsible for
first-forbidden § decay which proceeds in normal order
through these three operators and, in addition, via the
rank-zero operator y5 and the rank-one operators r and
a.? Evaluation of the matrix elements of the six 8-decay
operators is also of much current interest because of the
strong mesonic enhancement of the matrix element of
v5.3=6:2 That is, appraisal of this enhancement is aided
by an understanding of the whole transition process. It is
well known that first-order contributions from excitations
of the core have a potentially large effect on the matrix
elements of these six operators.”~19:5.11.12 The impor-
tant core-excited admixtures in the initial (final) state
are those connected by a one-body operator to the domi-
nant terms in the final- (initial-) state wave function. It is
usually impossible to perform a shell-model diagonaliza-
tion in a large enough Hilbert space to include all these
effects. This is always true for the lead region. Thus it
is customary to include the effects of such terms from
outside the model space via effective operators. Because
the admixtures in question are often a very small part
of the wave function, this is potentially a very accurate
procedure. The purpose of this article is to describe an
evaluation of these effective operators for Z < 82 nuclei
in the lead region using first-order perturbation theory
within the confines of the spherical shell model.

II. CALCULATIONS

A conventional notation for the matrix elements of
the six beta-decay operators is My, u, and z for the
R = 0,1,2 components of [r,o]®, and M{ and z for the
matrix elements of 75 and r. The matrix element of a can
be related to that of r by the conserved—-vector-current
hypothesis or some other less-rigorous means? and need
not be considered further. The notation M§ and M{
reminds us that these two matrix elements are of rank
zero and are the space and time components of the axial
current 3,102

We will discuss the specific case of first-forbidden g~
decay. The results are equally applicable to the n — p
charge-exchange process and the inverse p — n charge-
exchange on the final state so that both 7_; and 741 ex-
citations [see Eq. (1)] are considered. The applicability
of the results is limited by the choice of orbits consid-
ered. The orbits nearest the Fermi surface for A ~ 208
nuclei are shown schematically in Fig. 1. With the ac-
tive orbits shown in this figure it is presently possible
to perform shell-model calculations which involve 1p-1h
excitations relative to 2°®Pb and which are otherwise
unrestricted; for instance, Poppelier and Glaudemans!3
treated many nuclei in the A ~ 208 region in this man-
ner with a surface-delta interaction (SDI) in this model
space — which we therefore refer to as the PG model
space. Thus, we are mainly concerned here with con-
tributions from outside the PG model space. The spe-
cific example of 2°6T1 — 206Pb decay is shown schemat-
ically in Fig. 2. This is our prototype transition. In
Fig. 2, the dominant configurations arc shown at the
top and an example of a 1p-1h admixture in the ini-
tial state and a 2p-2h admixture (final-state correlation)
in the final state are shown at the bottom. We will
treat admixtures perturbatively. Other more ambitious
approaches — such as the random-phase-approximation
(RPA) and finite-Fermi-systems approaches discussed by
Ejiri and Fujital! and by Krmpotic, Ebert, and Wild!?
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FIG. 1. The Poppelier-Glaudemans (PG) model space for

the lead region. Single-particle energies (in MeV) are taken
from the experimental spectra of A = 207 and 209 nuclei and
are relative to 2°®Pb.

— add additional admixtures from core excitations that
do not connect in first order to the dominant pieces of
the wave functions and thus contribute in orders higher
than the first. The uncertainties generated by making
these higher-order corrections (presumed small) may well
be larger than the corrections themselves; thus, we di-
rect our attention to first-order corrections only. We fol-
low the approach of Towner et al.3~10:14 Restrictions on
the matrix elements of r and its derivatives limits first-
forbidden decay to transitions between adjacent major
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FIG. 2. Diagram indicating some of the relevant config-
urations entering for first-forbidden transitions in the lead
region. The example shown is that of 2°T1 — 2°6Pb. Arrows
indicate the configurations linked by the beta decay.
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shells. That is, specifying the major shell by the quan-
tum number Q [@ = 2N + [, where N is the principal
quantum (= 0,1,...) and [ is the orbital angular momen-
tum], the transitions are limited by the selection rule
AQ = +£1. The orbits which can contribute are listed in
Table I where they are grouped into major shells.

The AQ = =1 selection rule and Pauli blocking due
to the large neutron excess severely restricts the contri-
butions from initial-state admixtures for the lead region.
We shall restrict our discussion to transitions connect-
ing the three neutron orbits below and the two above
the N = 126 shell closure to the four proton orbits be-
low and the one above the Z = 82 shell closure. The
only contributing initial-state admixtures will be those
involving holes in the unique-parity @ = 5 Ohy;/5 pro-
ton orbit and, with the exception of the rank-two v1g7/,
— m0h,yy/, transition, all are included in the PG model
space and thus need not be added perturbatively. Exam-
ples of the effect of initial-state admixtures on the leading
term, v2py/; — w2sy)2, in 2°6Hg(0%) — 296TI(0~) and

TABLE I. Neutron single-particle energies used in the
pertubative treatment of core excitation. The results for or-
bits 17-29,31 are from single-neutron transfer reactions as
compiled in Fig. 1 of Zwarts and Glaudemans (Ref. 15). For
orbits 12-16 neutron single-particle energies were obtained by
subtracting 7.058 MeV from the proton single-particle ener-
gies listed in Ref. 15. This is the average difference between
the proton and neutron energies for orbits 17-22. The values
for orbits 11, 30, and 32 are based on the systematics of spin-
orbit energy splittings. The orbits are grouped into major
shells.

Orbit No. Orbit Eorbic (MeV)

Q=1
11 0g9/2 —21.539
12 Oy7/2 —18.539
14 1d3/2 —15.416
15 23812 —15.065

Q=35
16 Ohii/2 —16.406
17 Ohga —10.781
18 1f1/2 —9.708
lg 1f5/2 —7.937
20 2ps /2 —8.265
21 2p1 /2 —7.368
= 6
22 Oi13/2 —9.001
23 0‘11/7 —-3.157
24 1992 —3.936
26 2ds ), —2.369
27 2d3 2 —1.398
28 3s1/2 —1.904
=7
29 0j15/2 —'2.513
30 051372 +6.000
31 1h11/2 —0634
32 1hg ;s +5.000
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TABLE II.  Contributions to the matrix elements M{ and M{ from the possible single-particle
transitions in *°®Hg(0%) —2°T1(0~) —2°Pb(0%) decay. The matrix elements are in fm and were
calculated using the 1p-1h SDI interaction of Poppelier and Glaudemans (Ref. 13).
Orbit 206 g —, 206 206] — 206pp
v x M§ M M§ ME
2p1/2 28142 —4.507 +58.804 —5.792 +75.568
2p3/2 1d3 /2 —-1.603 +20.913 —0.661 +8.624
1fs/2 1ds 2 —0.402 +5.249 —0.977 +12.747
1gs/2 Oho/2 —0.085 +1.105 —0.049 +0.639
Total —4.758 +62.080 —5.684 +74.159
206 - 206 +\ g- . ‘ '
TI1(0~) — 206Pb(0t) ﬂ decays are §hown in Table 1113 Ga(m — ji) = 1— Zynj’mi’ 3)
These were calculated with the Poppelier-Glaudemans nj

1p-1h SDI interaction using harmonic-oscillator (HO)
wave functions. It is seen that the effect of the v0iy;/; —
70hy,/2 admixed transition is large but need not be con-
sidered perturbatively.

By contrast, there are many possible AQ = +1 transi-
tions involving the 2p-2h admixtures in the final state
and from a practical point of view these can only be
added perturbatively. For the A ~ 208 nuclei considered
here these v — = transitions are in the sets Q = 4 —
Q=5 Q=5—Q =6, and 0i;3/2(Q = 6) — Q = 5(R2
only), 7.

A given transition matrix element is formulated as
a sum of one-body-transition densities (OBTD) times
single-particle matrix elements. The OBTD contain the
information on the nuclear structure of the initial and
final states as determined by the model space and inter-
action used. It is then natural and customary to incor-
porate effects from outside the model space into effective
single-particle matrix elements. We define the effective
matrix element for a transition between a neutron in or-
bit m and a proton in orbit i for a first-forbidden operator
S§ of rank J by

(ji”Sf;”jm)eﬁ' = Qa(jm - ji)(ji”Sg”jm>shell model,

(2)
where, in an obvious notation, a = S,u, z,T,z. In first-
order, the final-state “correlations” of Fig. 2 will give
rise to a quenching factor of

Bnjmi = [(1+ 8mn)(1 + 6;;)]"/2(=)nt5 4/

where the 2p-2h admixtures in the final state have parti-
cles in the 7n and vm orbits and holes in the 7z and vj
orbits relative to the vacuum defined as the leading term
of the final state. Then, generalizing the results of Ref.
10,

Bnjmi (0“5?”];1]"’ JT)
AEq; mi (OHS.?”ji- 1jm§ JT) ’

= @

Ynj,mi

where (0||S$||57  jm; JT), the dominant term, is the ma-
trix element of S§ between a final state, defined as the
closed shell (vacuum) and an initial j,!j; particle-hole
excitation of the final state coupled to J with T" = 1.
The phase factor (—)P" originates in the definition of the
Hermitian conjugation for the operator S§; with our def-
inition of the operators,? it is odd for M{ and the rank-
one operator £ and even otherwise.

The energy denominator AEy; ;i is defined such as to
be negative and is approximated by

AFEnjmi =€ —em + € — én, (5)

where the e; are the single-particles energies (SPE) of
the orbits involved. The single-particle energies used are
listed in Table I. In Eq. (4), Bpj mi is precisely the B ma-
trix of standard RPA theory as defined, e.g., by Towner
(Eq. 4.54 of Ref. 14) and, in present notation is

x S (=)D TTEW (AL )W (Gimdndidss J1T) Gmins T2V 1idys J1Th), (6)

LT

where j = (2 4+ 1)1/2, the W are Racah coefficients, and
the last term is an antisymmetrized 2hw two-particle ma-
trix element. A similar first-order perturbation expres-
sion for the effect of admixtures in the initial state is
given explicitly by Towner and Hardy.®:16

The go(jm — ji) of Eq. (3) were evaluated for

r

all possible transitions (see Fig. 1) between the neu-
tron orbits m = 2py/2,1f5/2,2p3/2, 199/2, 041172 and the
proton orbits i = 2s;;,,1d3/9,1ds;2,1h11/5 and for the
vlggss — mOhg), transition. The evaluation was made
for five different residual interactions, two purely central
interactions and three derived from nucleon-nucleon po-
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tentials. The central interactions are the 1p-1h + 2p-2h
(POP) SDI interaction of Poppelier and Glaudemans!3
already referred to, and the interaction of Gillet, Green,
and Sanderson!® (CAL). The interactions derived from
G-matrix descriptions of nucleon-nucleon potentials are
those of Hosaka, Kubo, and Toki!® (H7B), which is based
on the Paris?? nucleon-nucleon potential. The earlier po-
tentials of Anantaraman, Toki, and Bertsch?! (P4Y) and
Bertsch et al.22:22 (M3Y) are based on the Paris and
on the Hamada-Johnston?* and Reid?® nucleon-nucleon
potentials, respectively.?6 The evaluations of these poten-
tials were made using harmonic-oscillator wave functions,
while the calculation of the single-particle matrix ele-
ments in Eq. (4) was made for both harmonic-oscillator
and Woods-Saxon (WS) wave functions. For the latter
we use the Woods-Saxon parameters of Streets, Brown,
and Hodgson?” which reproduce the experimental rms
charge radius of 2%8Pb of 5.503(2) fm and gives a neu-
tron rms radius 0.2 fm larger. With normal shell occu-
pancies, these radii correspond to hw = 6.701 and 7.183
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MeV for protons and neutrons, respectively. The average
of these values of hw is 6.943 MeV. Thus this value (or
one close to it) was used in all the calculations with HO
wave functions.

III. RESULTS

As a first orientation to the results, we show in Ta-
ble III values of E",j Ynj,mi for the transitions m =
2p1/2,1 = 2s1/7 in rank-zero and rank-one decay and
m = 2py/3,i = ldz/ in rank-two decay. These are the
dominant transitions for 20Tl decay and many other de-
cays for A = 205-209 nuclei. The number of terms con-
tributing to the sum in Eq. (3) is 12(R =0), 33(R = 1),
and 41(R = 2). We first note that the 2p-2h admix-
tures which contribute to the processes in first order are
predicted to be very small. Thus a perturbative ap-
proach is well justified even though the effect of the ad-
mixtures can be very large. In principle, a correction
should be made for the partial occupancy of orbits in

TABLE III. The first-order perturbative quenching factor E"J Yny,m: calculated with HO
radial matrix elements and five different residual interactions for the rank-zero and rank-one
v2p,)2 — %28y, transitions and the rank-two v2p;;, — %1ds;; transition. The origin of the

five interactions is discussed in the text.

Interaction 2p-2h Z",, Ynj,mi
(%) Total Central LS Tensor

[r,0]° (MS), 2p1/2 — 2312

POP 0.39 0.4479 0.4479

CAL 0.17 0.2593 0.2593

H7B 0.26 0.0764 0.3814 0.0000 —0.3050

P4Y 0.22 0.0977 0.3641 0.0022 —0.2665

M3Y 0.26 0.1013 0.3900 0.0001 —0.2887
[r,0] (u), 2p1/2 = 2812

POP 0.74 0.4648 0.4648

CAL 0.30 0.2702 0.2703

H7B 0.74 0.5536 0.3929 0.0041 0.1566

P4Y 0.67 0.5181 0.3745 0.0065 0.1372

M3Y 0.80 0.5573 0.4037 0.0051 0.1485

z, 2171/2 - 231/2

POP 0.74 0.6908 0.6908

CAL 0.30 0.3466 0.3466

H7B 0.74 0.3799 0.3657 0.0043 0.0099

P4Y 0.67 0.3513 0.3337 0.0091 0.0084

M3Y 0.80 0.4178 0.4002 0.0084 0.0091
[r, 0] (2) , 2p1/2 — 1d3j2

POP 0.39 0.5964 0.5964

CAL 0.06 0.2201 0.2201

H7B 0.14 0.2842 0.3256 0.0091 —0.0505

P4Y 0.13 0.3011 0.3113 0.0059 —0.0162

M3Y 0.14 0.3221 0.3306 —0.0002 —0.0086




TABLE IV. The first-order perturbative quenching factor
Z - Ynj,mi calculated with the H7B residual interaction with
both HO and WS radial matrix elements.

Transition HO WS
M§ (rank-zero)
2p172 — 28172 +0.0764 +0.0771
2pss2 — ldajz —0.0143 —0.0155
1fss2 — 1ds;z +0.1310 +0.1289
0i11/2 hand 0’211/2 +01552 +01574
M{ (rank-zero)
2p1/2 — 2312 —0.0764 —0.0814
2p3j2 — 1daj; +0.0143 +0.0077
1fs)2 — 1ds)2 —0.1310 —0.1376
0iy1/2 — Ohyy 2 —0.1552 —0.1520
u(rank-one)
2p1/2 — 2812 +40.5536 +0.5297
2p1/2 — ldap; +0.4674 +0.4562
2p3j2 — 2812 +0.5985 +0.5836
2p3/2 — lda/z +0.5200 +0.5247
2pajz — ldss2 +0.5501 +0.5182
1fs)2 — 1daj; +0.6878 +0.6600
1fs2 — 1ds); +0.5521 +0.5244
1gos2 — Ohyyy2 +40.3555 +0.3364
041372 — Ohyyy2 +0.4015 +0.3999
z(rank-one)
2p1j2 — 2812 +0.3799 +0.3614
2p1/2 — ldg2 +0.3083 +0.3004
2p3y2 — 2812 +0.3887 +0.3789
2paj2 — ldasz +0.2391 +0.2480
2p3j2 — lds)2 +0.3654 +0.3457
1fss2 — 1dajs +0.4478 +0.4290
1fss2 — 1dsys +0.4550 +0.4210
1gos2 — Ohyyy2 +0.2206 +0.2126
0‘11/2 — Uhu/g +0.4305 +40.4058
z(rank-two)
2py1s2 — 1day; +0.3158 +0.2889
2p1/2 — ldss2 +0.3672 +0.3411
2paj2 — 2812 +0.5679 +0.5509
2paj2 — lday 2 +0.4702 +0.4842
2p3j2 — lds2 +0.3920 +0.3737
1fss2 — ldssa +0.5841 +0.5580
1ggj2 — Ohyyp2 +0.1718 +0.1572
083372 — Ohyyy2 +40.3685 +0.3737
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specific cases. However, in practice, it is found that for
the A = 205-209 nuclei under consideration, this correc-
tion is negligible compared to other uncertainties. Thus
it was assumed that all orbits below doubly closed 2°3Pb
were full and all above were empty (an exception is made
for the vlgg/s — m0hg,, transitions as discussed in Sec.
IV B).

The two central interactions are included in Table III in
order to illustrate the disparity that can exist between the
results obtained with such schematic interactions. One
should bear in mind that although the SDI interaction
has been shown to be startlingly successful in describing
nuclei in the lead region!®:1%:28 it owes a large part of
its success to the fact that it is a good representation
of the total “bare + renormalization” interaction. Thus
its use is not well justified here where the model space
is, in principle, not truncated. The CAL interaction was
included here because it was recently used in a similar
treatment of quenching in neutrino capture by 205T1.2° It
is clear from examination of Table III that the omission of
a tensor component from the POP and CAL interactions
is a serious deficiency for the present application.

The three G-matrix interactions give essentially indis-
tinguishable results. This was expected because, on the
average, the two-particle matrix elements that appear in
Eq. (6) are in fairly good agreement for the three po-
tentials. For cases where a comparison can be made,
they are also in close agreement with the bare G-matrix
results of Kuo and Herling,3° which are derived by the
method of Kuo and Brown,3! which is inherently more
accurate than the potential representations of the inter-
actions we consider. We shall only consider the H7B
interaction in the rest of this discussion. It is seen that
the tensor contribution to the quenching of M and u
is quite appreciable. This was expected. Recall that
Towner and Khanna,'? in their study of the role of 2p-
2h admixtures in N(0~) — 0(0%) B~ decay, found
that with realistic residual interactions the tensor contri-
bution actually is dominant so that ¢s(2s1, — 2p1/2)
is larger than unity for this transition. Furthermore,
Sagawa and Brown! considered the relative contributions

TABLE V. The first-order perturbative quenching factor En Yny,mi calculated for the
vlges2 — wOhgy, transition with HO and WS radial matrix e]ements and the H7B residual in-
teraction.

Matrix element HO/WS Central LS Tensor Total 10A,?
Mos HO +0.2056 +0.0000 —0.4226 —-0.2170 —0.0522
WS +0.2368 +0.0000 —0.5224 —0.2856 —0.0723
Mg HO —0.2056 +0.0000 +0.4226 +0.2170 +0.0522
WS —0.1796 +0.0000 +0.3479 +0.1683 +0.0399
u HO +0.2127 +0.0044 +0.2246 +0.4398 —0.0298
WS +0.2472 +0.0067 +0.2777 +0.5317 —0.0420
T HO +0.0470 +0.0443 —0.0543 +0.0370 +0.2776
WS +0.0073 +0.0754 —0.0724 +0.0101 +0.3911
z HO +0.2254 +0.0003 —0.0762 +0.1586
WS +0.2653 +0.0003 —0.0783 +0.1874

*For occupancy of the v1go/2 orbit in the initial state by n(1g2) neutrons, 3
the value listed plus Ann(lg%).

is given b
n,g Yny,m: g y
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t0 )", ; Ynj,mi in astudy of the effect of 2p-2h admixtures
on the 12C(p,n)!2N(0~,17,27) reaction. They present
arguments, due to Mottelson,3? showing that, in general,
the tensor contribution should be in the approximate
ratio ~—\/§0, +\/T5, and —1 for the matrix elements of
[r, o] with R = 0, 1,2, respectively, i.e., for M§, u, and
z. This expectation is in quantitative agreement with the
results of Table III. They also found the LS contribution
to be small. This general effect is also encountered in
high-spin magnetic transitions.33 The large contribution
from the tensor component of the interaction means that
results derived for [r,o]° and [r, o] without the inclu-
sion of a carefully considered tensor component are of
little value.

The factor Zn’j Ynj,mi for Mg is not included in Table
I1I because for HO wave functions it is just the negative
of that for Mg .2 This is not true for Woods-Saxon wave
functions, but, as we shall see, it is usually closely so.

In Table IV we collect Y, ; Ynj,mi = 1-ga(im — Ji)]
results for all v(Q = 5) — 7r(Q = 4) transitions which
are possible in the model space of Fig. 1 and some
v(Q = 6) — m(Q = 5) transitions. Results are shown for
both HO and WS wave functions. Some additional re-
sults for the v1gg;9 — 70hg; transition are summarized
in Table V.

IV. SUMMARY AND COMPARISON
TO OTHER RESULTS

A. The results of Table IV

WS vs HO wave functions. The WS and HO results
are in close agreement. This is not necessarily true for
individual transitions but is partially a consequence of
the averaging resulting from the summing of all possible
contributions. The agreement is also a consequence of
choosing the HO value of hw carefully as explained above.

The single-particle dependence of the quenching. There
1s clearly a dependence of ¢, on j,, — j;. Thus, when
possible, a different ¢o(jm — ji) should be used with
each a,jm,ji- As an example of the application of the
4a(jm — ji) of Table IV, we apply it to the M matrix
element of the 205T1(0~) — 205Pb(0%) transition of Ta-
ble IT and find a quenching of 0.95. In some applications
use of an average or effective value of ¢, could be a good
enough approximation such as if one single-particle tran-
sition is strongly dominant. Assuming this to be the case
and taking the values for vp;/3 — 75/, for R=10,1 and
vpij2 — md3 g for R = 2 as the effective ones, we have

Rank 0: ¢s ~0.92, ¢r ~ 1.08,
Rank 1: g, ~0.47, ¢, ~ 0.64,
Rank 2: ¢, ~ 0.71.

The R = 0 matriz elements. We first note that there
does not seem to have been any recognition in publica-
tions dealing with the lead region that

1—-gs~—(1-gqr).
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Secondly, because of the strong cancellation between the
central and tensor components, it is vital to use a re-
alistic interaction in the evaluation of ¢s and ¢r. For
these reasons, the present results for the R = 0 matrix
elements are quite different from previous calculations or
estimates. Comparison to experiment is difficult because
one cannot disentangle quenching due to structure effects
from that due to non-nucleonic effects, nor can one easily
disentangle My from M{ .2

The R = 1 matriz elements. The quenching of u is pre-
dicted to be ~40% greater than that of z. The contribu-
tions from the central part of the interaction are approx-
imately equal but the tensor contribution to the quench-
ing of u is large and the contribution to the quenching of z
is small; hence, the stronger quenching of u. The present
results are in quantitative agreement with semiempirical
results of Damgaard, Broglia, and Riedal®* and in poor
agreement with the calculation of Ogawa and Arita?®
(who used the CAL interaction of Table IIT). We predict
considerably less quenching than the estimates of Ejiri
and Fujita.!! Krmpoti¢, Ebert, and Wild!2 performed a
detailed, erudite, and careful calculation of spin-dipole
and beta-decay observables in the lead region. The re-
sults for 2p-2h quenching are not too different than the
present ones for the R = 1 matrix elements. Unfortu-
nately, the residual interaction they used did not have
an explicit tensor component and so the present results
are to be preferred.

B. The v1g,,, — wohgy,, transition of Table V

We discuss these results separately from those of Table
IV because they are atypical. A general difference is that
the HO and WS results differ considerably more than for
the results of Table IV. This difference can be traced to
the vlggjs — w0hg/y transitions themselves. As noted
previously,3* the 1gg/, state has one radial node while
the Ohg/; state has none. Therefore there are two con-
tributions of opposite sign to the radial integral and the
value of the matrix element depends strongly on the posi-
tion of the node. Thus, the WS and HO matrix elements
differ considerably. The former are preferred.

A second difference is that the balance between the
central and tensor contributions to the rank-zero ma-
trix elements has changed relative to Table IV and now
Mg is enhanced and M{ is quenched as in the case of
16N(0~) —150(0%) decay.!®

Finally, the magnitude of z for this transition is about
an order of magnitude below the mean value for the
transitions of Table IV. Thus, there is potentially much
more effect from 2p-2h admixtures. The small contri-
bution from the central part of the interaction can be
laid to a very large out-of-phase contribution from the
v0i 3/ — w0j;5/2 transition. In addition, the tensor con-
tribution from this admixed transition is approximately
equal to the total tensor contribution from all admixed
transitions — of which there are 34.
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Contributions to the matrix element Mg from the possible single-particle transi-

tions in 2°6T1(0~) —2°®Pb(0*) B~ decay. The three interactions used are explained in the text.
The matrix elements are in fm and were calculated with HO wave functions.

Orbit Interaction
v T KH Gurs + Gip-1n Gi7B(central) + G1p-1h
2p1/2 2812 —6.546 —6.345 —6.341
2pa)2 1ds/2 —0.581 —0.622 —0.622
1fs/2 1ds > —0.506 —0.544 —0.544
Oi11/2 Ohy1/2 +2.005 +1.944 +1.940
Total —5.628 —5.567 —5.567

C. The tensor contribution to initial-state
admixtures

We have emphasized the strong role of the tensor com-
ponent of the residual interaction in final-state correla-
tions for rank-zero and rank-one decays. The question
arises as to the importance of the tensor component in
initial-state admixtures. We investigated this effect by
calculating the 26T1(0~) — 2%Pb(0*) transition of Ta-
ble II with the following three interactions: (a) The Kuo-
Herling interaction for the orbits below 2°Pb truncated
to the eight orbits below Z = 82, N = 126 shown in Fig.
1. The Kuo-Herling (KH) interaction in approximation
(2) of Ref. 30 — which we used — has a bare G-matrix
part and a 1p-1h renormalization part,

GxH = Gbare + Gip-1h-

(b) The second interaction used replaced Gpare with
Gur7s, which it is equivalent to in principle and closly
equal to in fact. Thus,

G2 = GurB + G1p-1n-

This step was made so as to be able to separate the cen-
tral and tensor components of Gpare. (¢) Thus, the third
interaction used was

G3 = GH7B(central) + Glp-1h~

In all three cases the v1gg/ — m0hg/y transition was ig-
nored and the v0iy;/, — w0h;y/5 transition was added
perturbatively using the H7B interaction with or with-
out the tensor component as appropriate. The results
are shown in Table VI. From comparison of the last two
columns of Table VI we see that the tensor (and also
LS) component of the interaction has negligible effect on
the relative contributions of the different transitions. We
conclude that — in this case at least — initial-state ad-
mixtures are insensitive to the tensor component of the
interaction. This is not surprising since admixtures in

the initial and final states are caused by different sets of
two-body matrix elements.

D. Concluding remarks

The results presented here were motivated by a de-
sire to understand first-forbidden beta decay in the A =
205-209 nuclei. They will be utilized in a study of this
subject which is currently underway.3® As stated above,
the quenching of the rank-zero matrix elements is in-
tricately intertwined with non-nucleonic effects and one
cannot easily make a meaningful comparison of experi-
ment with the present predictions; however, an attempt
will be made.3% The present results for the rank-one op-
erators are quite consistent with a preliminary analysis®®
of the experimental data as well as with the semiempir-
ical estimates of Damgaard, Broglia, and Riedel.3* One
should note that we have only dwelt on one aspect of
the determination of the effective operators. We have
assumed that initial-state admixtures can be handled
within the model space. If not then their effect should
also be included in the ¢q(jm — ji). We have not consid-
ered non-nucleonic effects such as mesonic processes and
relativistic effects. Our point of view is that a careful
appraisal of “final-state correlations” — which as shown
can be quite sizable — will aid in the determination of
these non-nucleonic effects.
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