
PHYSICAL REVIE% C VOLUME 42, NUMBER 6 DECEMBER 1990

Core polarization effects on spin-dipole and first-forbidden
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The effect of two-particle —two-hole ground-state correlations on spin-dipole transitions and
the similar first-forbidden P-decay transitions is studied for nuclei in the lead region with realistic
shell-model interactions. Transitions are considered between states for which one is a particle-
hole excitation of the other. It is found that the tensor component of the residual interaction
is quite important for the 0 and 1 spin-dipole transitions and the analogous P-decay matrix
elements. It is destructive for 0 and constructive for 1 so that the quenching of the two
modes is quite different. The atypical 1gegq ~ Oh9g2 transition is described. The results are
compared to previous determinations.

I. INTRODUCTION II. CALCULATIONS

There is current interest in the excitation of collec-
tive st, ates with J" = 0, 1, and 2 via the transition
operators

These are referred to as spin-dipole transition operators
and, in a compact notation, are also written as [r, o]
where R (= 0, 1, 2) is the rank of the operator. The three
[r, o.]+ operators comprise half of the set responsible for
first-forbidden P decay which proceeds in normal order
through these three operators and, in addition, via the
rank-zero operator p5 and the rank-one operators r and
cx.z Evaluation of the matrix elements of the six P-decay
operators is also of much current interest because of the
strong mesonic enhancement of the matrix element of

That is, appraisal of this enhancement is aided
by an understanding of the whole transition process. It is
well known that first-order contributions from excitations
of the core have a potentially large effect on the matrix
elements of these six operators. The impor-
tant core-excited admixtures in the initial (final) state
are those connected by a one-body operator to the domi-
nant terms in the final- (initial-) state wave function. It is

usually impossible to perform a shell-model diagonaliza-
tion in a large enough Hilbert space to include all these
effects. This is always true for the lead region. Thus it
is customary to include the effects of such terms from
outside the model space via effective operators. Because
the admixtures in question are often a very small part
of the wave function, this is potentially a very accurate
procedure. The purpose of this article is to describe an
evaluation of these effective operators for Z & 82 nuclei
in the lead region using first-order perturbation theory
within the confines of the spherical shell model.

A conventional notation for the matrix elements of
the six beta-decay operators is Mo, u, and z for the
R = 0, 1, 2 components of [r, e]+, and Mz+ and z for the
matrix elements of 7s and r. The matrix element of n can
be related to that of r by the conserved —vector-current
hypothesis or some other less-rigorous meansz and need
not be considered further. The notation Mo and Mo
reminds us that these two matrix elements are of rank
zero and are the space and time components of the axial
current.

We will discuss the specific case of first-forbidden P
decay. The results are equally applicable to the n ~ p
charge exchang-e process and the inverse p ~ n charge-
exchange on the final state so that botli r & and T+g ex-
citations [see Eq. (1)] are considered. The applicability
of the results is limited by the choice of orbits consid-
ered. The orbits nearest the Fermi surface for A 208
nuclei are shown schematically in Fig. 1. With the ac-
tive orbits shown in this figure it is presently possible
to perform sliell-model calculations which involve 1p-1h
excitations relative to Pb and which are otherwise
unrestricted; for instance, Poppelier and Glaudemans'
treated many nuclei in the A 208 region in this man-
ner with a surface-delta interaction (SDI) in this model
space —which we therefore refer to as the PG model
space. Thus, we are mainly concerned here with con-
tributions from outside the PG model space. The spe-
cific example of Tl ~ Pb decay is shown schemat-
ically in Fig. 2. This is our prototype transition. In
Fig. 2, the dominant configurations are sliown at tlie
top and an example of a 1p-1h admixture in the ini-
tial state and a 2p-2h admixture (final-state correlation)
in the final state are shown at the bottom. M,'e will
treat admixtures perturbatively. Other more ambitious
approaches —such as tlie random-phase-approximation
(RPA) and finite-Fermi-systems approaches discussed by
Ejiri and Fujita and by I&rmpotic, Ebert, and AVild
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FIG. 1. The Poppelier-Glaudemans (PG) model space for
the lead region. Single-particle energies (in MeV) are taken
from the experimental spectra of A = 207 and 209 nuclei and
are relative to Pb.

—add additional admixtures from core excitations that
do not connect in first order to the dominant pieces of
the wave functions and thus contribute in orders higher
than the first. The uncertainties generated by making
these higher-order corrections (presumed small) may well

be larger than the corrections themselves; thus, we di-
rect our attention to first-order corrections only. We fol-
low the approach of Towner et al.s Restrictions on
the matrix elements of r and its derivatives limits first-
forbidden decay to transitions between adjacent major

TABLE I. Neutron single-particle energies used in the
pertubative treatment of core excitation. The results for or-
bits 17—29,31 are from single-neutron transfer reactions as
compiled in Fig. 1 of Zwarts and Glaudemans (Ref. 15). For
orbits 12—16 neutron single-particle energies were obtained by
subtracting 7.058 MeV from the proton single-particle ener-
gies listed in Ref. 15. This is the average difference between
the proton and neutron energies for orbits 17—22. The values
for orbits 11, 30, and 32 are based on the systematics of spin-
orbit energy splittings. The orbits are grouped into major
shells.

Orbit No. Orbit E«bit (MeV)

shells. That is, specifying the major shell by the quan-
tum number Q [Q = 2N + I, where /t/ is the principal
quantum (= 0,1,...) and l is the orbital angular momen-

tum], the transitions are limited by the selection rule

EQ = +1. The orbits which can contribute are listed in
Table I where they are grouped into major shells.

The EQ = +1 selection rule and Pauli blocking due
to the large neutron excess severely restricts the contri-
butions from initial-state admixtures for the lead region.
We shall restrict our discussion to transitions connect-
ing the three neutron orbits below and the two above
the N = 126 shell closure to the four proton orbits be-
low and the one above the Z = 82 shell closure. The
only contributing initial-state admixtures will be those
involving holes in the unique-parity Q = 5 Ohtt/2 pro-
ton orbit and, with the exception of the rank-two vlg7~2~ s0hii/g transition, all are included in the PG model
space and thus need not be added perturbatively. Exam-
ples of the eKect of initial-state admixtures on the leading
term, v2pi/2 ~ s2si/2, in 2gsHg(0+) -+ Tl(0 ) and
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FIG. 2. Diagram indicating some of the relevant config-
urations entering for first-forbidden transitions in the lead
region. The example shown is that of Tl ~ Pb. Arrows
indicate the configurations linked by the beta decay.
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TABLE II. Contributions to the matrix elements M0 and M0 from the possible single-particle
transitions in Hg(0+) ~ Tl(0 ) ~ Pb(0+) decay. The matrix elements are in fm and were
calculated using the 1p-1h SDI interaction of Poppelier and Glaudemans (Ref. 13).

Orbit 206 H 206 Tl 206Tl ~ 206Pb

M0 M0

2P1/2

2P3/2
1fete
0)11/
lg9/

Total

281/2
ld3

ldll/2

0h11/2
Ohg/2

—4.507
—1.603
—0.402
+1.839
—0.085
—4.758

+58.804
+20.913
+5.249

—23.991
+1.105

+62.080

—5.792
—0.661
—0.977
+1.795
—0.049
—5.684

+75.568
+8.624

+12.747
—23.419
+0.639

+74.159

zMTI(0 ) -+ z sPb(0+) P decays are shown in Table II.
These were calculated with the Poppelier-Glaudemans
lp-1h SDI interaction using harmonic-oscillator (HO)
wave functions. It is seen that the effect of the v0iii~z -+
xOhii~z admixed transition is large but need not be con-
sidered perturbatively.

By contrast, there are many possible EQ = +I transi-
tions involving the 2p-2h admixtures in the final state
and from a practical point of view these can only be
added perturbatively. For the A 208 nuclei considered
here these v -+ n transitions are in the sets Q = 4 ~
Q=5, Q=G~Q= 6, and Oiis~z(Q=6) ~Q=5(R2
only), 7.

A given transition matrix element is formulated as
a sum of one-body-transition densities (OBTD) times
single-particle matrix elements. The OBTD contain the
information on the nuclear structure of the initial and
final states as determined by the model space and inter-
action used. It is then natural and customary to incor-
porate effects from outside the model space into effective
single-particle matrix elements. We define the effective
matrix element for a transition between a neutron in or-
bit m and a proton in orbit i for a first-forbidden operator
S&a of rank J by

(Jill' liam)etr = gaUm 2i)(gillSg liam)sheit modet~

(2)
where, in an obvious notation, n = S, u, z, T, z. In first-

order, the final-state "correlations" of Fig. 2 will give
rise to a quenching factor of

g (j j)=1—).u&,

where the 2p-2h admixt, ures in the final state have parti-
cles in the en and vm orbits and holes in the xi and vj
orbits relative to the vacuum defined as the leading term

of the final state. Then, generalizing the results of Ref.
10,

«IlsXIIj; 'j- ») ' (4)

where (OIIS& IIj; j;JT), the dominant term, is the ma-

trix element of S& between a final state, defined as the
closed shell (vacuum) and an initial j 'j, particle-hole
excitation of the final state coupled to J with T = 1.
The phase factor (—)& originates in the definition of the
Hermitian conjugation for the operator S&, with our def-

inition of the operators, z it is odd for MoT and the rank-
one operator z and even otherwise.

The energy denominator AE„& ~,. is defined such as to
be negative and is approximated by

AE„~, ; = e&
—e +e; —e„, (5)

where the et are the single-particles energies (SPE) of
the orbits involved. The single-particle energies used are
listed in Table I. In Eq. (4), B„z„„is precisely the B ma-

trix of standard RPA theory as defined, e.g. , by Towner

(Eq. 4.54 of Ref. 14) and, in present notation is

(6)

where j = (2j+ 1) i z, the W are Racah coefficients, and
the last term is an antisymmetrized 2h~ two-particle ma-
trix element. A similar first-order perturbation expres-
sion for the eR'ect of admixtures in the initial state is
given explicitly by Towner and Hardy.

T»e g (j ~ j;) of Eq. (3) were evaluated for

all possible transitions (see Fig. 1) between the neu-

tron orbits m = 2pi~2, 1f5~2, 2ps~z, Iggg2, 0iii~z and the
proton orbits i = 2sq/&, 1d3/2, 1d5/&, 1h&z/& and for the
v 1ggtt2 ~ xohg~~ transition. The evaluation was made
for five different residual interactions, two purely central
interactions and three derived from nucleon-nucleon po-
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tentials. The central interactions are the 1p-1h + 2p-2h
(POP) SDI interaction of Poppelier and Glaudemansis
already referred to, and the interaction of Gillet, Green,
and Sandersonis (CAL). The interactions derived from
G-matrix descriptions of nucleon-nucleon potentials are
those of Hosaka, Kubo, and Tokii (H7B), which is based
on the Paris nucleon-nucleon potential. The earlier po-
tentials of Anantaraman, Toki, and Bertschz (P4Y) and
Bertsch et al.zz z (M3Y) are based on the Paris and
on the Hamada-Johnstonz4 and Reidzs nucleon-nucleon

potentials, respectively. zs The evaluations of these poten-
tials were made using harmonic-oscillator wave functions,
while the calculation of the single-particle matrix ele-
ments in Eq. (4) was made for both harmonic-oscillator
and Woods-Saxon (WS) wave functions. For the latter
we use the Woods-Saxon parameters of Streets, Brown,
and Hodgson which reproduce the experimental rms
charge radius of z~Pb of 5.503(2) fm and gives a neu-
tron rms radius 0.2 fm larger. With normal shell occu-
pancies, these radii correspond to hu = 6.701 and 7.183

MeV for protons and neutrons, respectively. The average
of these values of ~ is 6.943 MeV. Thus this value (or
one close to it) was used in all the calculations with HO
vrave functions.

III. RESULTS

As a first orientation to the results, we show in Ta-
ble III values of P„y„z~,. for the transitions rn =
2 pi~a, i = 2sq~z in rank-zero and rank-one decay and
rri = 2pi~z, i = lds~z in rank-two decay. These are the
dominant transitions for zosTl decay and many other de-
cays for A = 205—209 nuclei. The number of terms con-
tributing to the sum in Eq. (3) is 12(R = 0), 33(R = 1),
and 41(R = 2). We first note that the 2p-2h admix-
tures which contribute to the processes in first order are
predicted to be very small. Thus a perturbative ap-
proach is well justified even though the effect of the ad-
mixtures can be very large. In principle, a correction
should be made for the partial occupancy of orbits in

TABLE III. The first-order perturbative quenching factor Q y„~,~, calculated with HO
ll

radial matrix elements and five different residual interactions for the rank-zero and rank-one

v2pgig ~ r2sg]g transitions and the rank-two v2pg]g ~ rld3]g transition. The origin of the
five interactions is discussed in the text.

Interaction 2p-2h

(Fo) Total
pity, min, g

Central LS Tensor

POP
CAL
HVB
P4Y
M3Y

0.39
0.17
0.26
0.22
0.26

0.4479
0.2593
0.0764
0.0977
0.1013

[r, rr] (Ms ), 2piI2 ~ 2si/2
0.4479
0.2593
0.3814 0.0000
0.3641 0.0022
0.3900 0.0001

-0.3050
-0.2665
-0.2887

POP
CAL
HVB
P4Y
M3Y

0.74
0.30
0.74
0.67
0.80

0.4648
0.2702
0.5536
0.5181
0.5573

0.0041
0.0065
0.0051

[r, cr]' (u), 2pi(2 2si(2
0.4648
0.2703
0.3929
0.3745
0.4037

0.1566
0.1372
0.1485

POP
CAL
H78
P4Y
M3Y

0.74
0.30
0.74
0.67
0.80

0.6908
0.3466
0.3799
0.3513
0.4178

0.0043
0.0091
0.0084

x ) 2py(2 ~ 2sy/2
0.6908
0.3466
0.3657
0.3337
0.4002

0.0099
0.0084
0.0091

POP
CAL
HVB
P4Y
M3Y

0.39
0.06
0.14
0.13
0.14

0.5964
0.2201
0.2842
0.3011
0.3221

0.0091
0.0059

—0.0002

[r, rr] (z), 2pi/2 1ds(2
0.5964
0.2201
0.3256
0.3113
0.3306

—0.0505
—0.0162
—0.0086
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Transition

2p1/2 ~ 2S1/2
2p3/2 ~ ld3/2
1fslz ~ 1dsgz

~11/2 0 11/2

2p1/2 ~ »1/2
2p3/2 ~ 1d3/2
1fs(z ~ 1ds(z
Oi11/2 ~ 0511/2

2p1/2 ~ 2S1/2
2p1/2 ~ 1d3(
2p3/2 ~ 2S1/
2p3/2 ~ 1d3/2
2p3/2 ~ 1ds(
1fs~z ~ 1ds~z
1fsgz ~ 1dsgz

lga/2 ~ 0511/2
~11/2 0~11/2

2p1/2 ~ 2S1/2

2p1/2 ~ 1d3/2
2p3/2 ~ 2S1/2

2p3/2 ~ 1d3/
2p3(2 ~ 1dg(
1f,~z ~ 1da~z

1fslz ~ 1dsgz

1g9/2 ~ 0~11/2
~11/2 0~11/2

2p1/2 ~ 1d3/2

2p1/2 ~ 1ds(2
2p3(2 2S1/
2p3/2 ~ 1d3

2p3/2 ~ 1dg/

1fs~z ~ 1da~z

1fsgz ~ 1ds(z
1g9(2 ~ 0&11(2
Oi11(2 ~ Oh11/2

HO

Mo (rank-zero)
+0.0764
—0.0143
+0.1310
+0.1552

Ma (rank-zero)
—0.0764
+0.0143
—0.1310
—0.1552

ii(rank-one)
+0.5536
+0.4674
+0.5985
+0.5200
+0.5501
+0.6878
+0.5521
+0.3555
+0.4015

s(rank-one)
+0.3799
+0.3083
+0.3887
+0.2391
+0.3654
+0.4478
+0.4550
+0.2206
+0.4305

z(rank-two)
+0.3158
+0.3672
+0.5679
+0.4702
+0.3920
+0.5802
+0.5841
+0.1718
+0.3685

WS

+0.0771
—0.0155
+0.1289
+0.1574

—0.0814
+0.0077
—0.1376
—0.1520

+0.5297
+0.4562
+0.5836
+0.5247
+0.5182
+0.6600
+0.5244
+0.3364
+0.3999

+0.3614
+0.3004
+0.3789
+0.2480
+0.3457
+0.4290
+0.4210
+0.2126
+0.4058

+0.2889
+0.3411
+0.5509
+0.4842
+0.3737
+0.5475
+0.5580
+0.1572
+0.3737

TABLE IV. The erst-order perturbative quenching factor
. y„~, ; calculated with the H7B residual interaction with

both HO and WS radial matrix elements.

specific cases. However, in practice, it is found that for
the A = 205—209 nuclei under consideration, this correc-
tion is negligible compared to other uncertainties. Thus
it was assumed that all orbits below doubly closed 8Pb
were full and all above were empty (an exception is made
for the vlg9/2 ~ z.0h9/2 transitions as discussed in Sec.
IV B).

The two central interactions are included in Table III in
order to illustrate the disparity that can exist between the
results obtained with such schematic interactions. One
should bear in mind that although the SDI interaction
has been shown to be startlingly successful in describing
nuclei in the lead region's's zs it owes a large part of
its success to the fact that it is a good representation
of the total "bare + renormalization" interaction. Thus
its use is not well justified here where the model space
is, in principle, not truncated. The CAL interaction was
included here because it was recently used in a similar
treatment of quenching in neutrino capture by 5Tl. It
is clear from examination of Table III that the omission of
a tensor component from the POP and CAL interactions
is a serious deficiency for the present application.

The three G-matrix interactions give essentially indis-
tinguishable results. This was expected because, on the
average, the two-particle matrix elements that appear in

Eq. (6) are in fairly good agreement for the three po-
tentials. For cases where a comparison can be made,
they are also in close agreement with the bare G-matrix
results of Kuo and Herling, so which are derived by the
method of Kuo and Brown, which is inherently more
accurate than the potential representations of the inter-
actions we consider. We shall only consider the H78
interaction in the rest of this discussion. It is seen that
the tensor contribution to the quenching of Mos and u

is quite appreciable. This was expected. Recall that
Towner and Khanna, is in their study of the role of 2p-
2h admixtures in N(0 ) ~ i O(0+) P decay, found
that with realistic residual interactions the tensor contri-
bution actually is dominant so that qs(2s, /z ~ 2pi/z)
is larger than unity for this transition. Furthermore,
Sagawa and Browni considered the relative contributions

TABLE V. The first-order perturbative quenching factor P„.y ~, ; calculated for the
vlge(2 ~ xOh9/2 transition with HO and WS radial matrix elements and the H7B residual in-
teraction.

Matrix element HO/WS

HO
WS
HO
WS
HO
WS
HO
WS
HO

Central

+0.2056
+0.2368
—0.2056
—0.1796
+0.2127
+0.2472
+0.0470
+0.0073
+0.2254
+0.2653

+0.0000
+0.0000
+0.0000
+0.0000
+0.0044
+0.0067
+0.0443
+0.0754
+0.0003
+0.0003

Tensor

—0.4226
—0.5224
+0.4226
+0.3479
+0.2246
+0.2777
—0.0543
—0.0724
—0.0762
—0.0783

Total

—0.2170
—0.2856
+0.2170
+0.1683
+0.4398
+0.5317
+0.0370
+0.0101
+0.1586
+0.1874

104„
—0.0522
—0.0723
+0.0522
+0.0399
—0.0298
—0.0420
+0.2776
+0.3911

For occupancy of the vlgs/2 orbit in the initial state by n(lg-) neutrons, Q y„~, is given by

the value listed plus b, ri(lg-).
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to P„.y„i, in a study of the eff'ect of 2p-2h admixtures

on the ~~C(p, n)~~N(0, 1,2 ) reaction. They present
arguments, due to Mottelson, showing that, in general,
the tensor contribution should be in the approximate
ratio —+20, ++15, and —1 for the matrix elements of
[r, a]+ with R = 0, 1, 2, respectively, i.e. , for Mos, u, and
z. This expectation is in quantitative agreement with the
results of Table III. They also found the LS contribution
to be small. This general effect is also encountered in
high-spin magnetic transitions. The large contribution
from the tensor component of the interaction means that
results derived for [r, o] and [r, o]~ without the inclu-
sion of a carefully considered tensor component are of
little value.

The factor Q„.y„~; for Mo+ is not included in Table
III because for HO wave functions it is just the negative
of that for Mes. ~ This is not true for Woods-Saxon wave

functions, but, as we shall see, it is usually closely so.
In Table IV we collect P„y„&~, [—:1 —q (j ~ j,)]

results for all v(Q = 5) ~ n.(Q = 4) transitions which
are possible in the model space of Fig. 1 and some

v(Q = 6) ~ s (Q = 5) transitions. Results are shown for
both HO and WS wave functions. Some additional re-
sults for the vlgg~g ~ ~0hg/g transition are summarized
in Table V.

IV. SUMMARY AND COMPARISON
TO OTHER RESULTS

Secondly, because of the strong cancellation between the
central and tensor components, it is vital to use a re-
alistic interaction in the evaluation of q~ and qz. For
these reasons, the present results for the R = 0 matrix
elements are quite different from previous calculations or
estimates. Comparison to experiment is dificult because
one cannot disentangle quenching due to structure effects
from that due to non-nucleonic effects, nor can one easily
disentangle Mo from Mo .

The R = 1 matrix elements. The quenching of u is pre-
dicted to be 40% greater than that of z. The contribu-
tions from the central part of the interaction are approx-
imately equal but the tensor contribution to the quench-
ing of u is large and the contribution to the quenching of z
is small; hence, the stronger quenching of u. The present
results are in quantitative agreement with semiempirical
results of Damgaard, Broglia, and RiedaP4 and in poor
agreement with the calculation of Ogawa and Arita~g

(who used the CAL interaction of Table III). We predict
considerably less quenching than the estimates of Ejiri
and Fujita. Krmpotic, Ebert, and VVild ~ performed a
detailed, erudite, and careful calculation of spin-dipole
and beta-decay observables in the lead region. The re-
sults for 2p-2h quenching are not too different than the
present ones for the R = 1 matrix elements. Unfortu-
nately, the residual interaction they used did not have
an explicit tensor component and so the present results
are to be preferred.

A. The results of Table IV

WS vs IIO urave functions. The WS and HO results
are in close agreement. This is not necessarily true for
individual transitions but is partially a consequence of
the averaging resulting from the summing of all possible
contributions. The agreement is also a consequence of
choosing the HO value of h~ carefully as explained above.

The single-particle dependence of the quenching. There
is clearly a dependence of q on j ~ j;. Thus, when
possible, a different q (j~ ~ j;) should be used with
each n, j,j;. As an example of the application of the
q~(j ~ j;) of Table IV, we apply it to the Mos matrix
element of the 2osTI(0 ) ~ 2osPb(0+) transition of Ta-
ble II and find a quenching of 0.95. In some applications
use of an average or effective value of q~ could be a good
enough approximation such as if one single-particle tran-
sition is strongly dominant. Assuming this to be the case
and taking the values for vga~~ vrsi~~ for R = 0, 1 and

vp~~~ ~ +dan~ for R = 2 as the effective ones, we have

Rank 0: qg 0.92, q~ —1.08,
Rank 1: q„0.47, q 0.64,

Rank 2: q, 0.71.

The R = 0 matrix elements. VVe first note that there
does not seem to have been any recognition in publica-
tions dealing with the lead region that

B. The vx.g9~, -+ moh9~, transition of Table V

We discuss these results separately from those of Table
IV because they are atypical. A general difference is that
the HO and WS results differ considerably more than for
the results of Table IV. This difference can be traced to
the vlgs~2 ~ x0hs~q transitions themselves. As noted
previously, the 1gg~2 state has one radial node while
the Ohs~2 state has none. Therefore there are two con-
tributions of opposite sign to the radial integral and the
value of the matrix element depends strongly on the posi-
tion of the node. Thus, the WS and HO matrix elements
differ considerably. The former are preferred.

A second difference is that the balance between the
central and tensor contributions to the rank-zero ma-
trix elements has changed relative to Table IV and now

Mo is enhanced and Mo is quenched as in the case of
~sN(0-) ~~sO(0+) decay ~o

Finally, the magnitude of z for this transition is about
an order of magnitude below the mean value for the
transitions of Table IV. Thus, there is potentially much
more effect from 2p-2h admixtures. The small contri-
bution from the central part of the interaction can be
laid to a very large out-of-phase contribution from the

v0iq3~~ x0ji5~2 transition. In addition, the tensor con-
tribution from this admixed transition is approximately
equal to the total tensor contribution from all admixed
transitions —of which there are 34.
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TABLE VI. Contributions to the matrix element Mo from the possible single-particle transi-
tions in Tl(0 ) ~ Pb(0+) P decay. The three interactions used are explained in the text.
The matrix elements are in fm and were calculated with HO wave functions.

2Pi/2
2p3/2
1fs(2
Oaves/

Orbit

Total

2sy/2
1d3/2

1d5/2
0I ~i/2

KH

—6.546
—0.581
—0.506
+2.005
—5.628

Interaction
+HTB + +1p-lh

—6.345
—0.622
—0.544
+1.944
—5.567

+H7B(central) + alp-1h
—6.341
—0.622
—0.544
+1.940
—5.567

C. The tensor contribution to initial-state
admixtures

the initial and final states are caused by different sets of
two-body matrix elements.

We have emphasized the strong role of the tensor com-
ponent of the residual interaction in final-state correla-
tions for rank-zero and rank-one decays. The question
arises as to the importance of the tensor component in
initial-state admixtures. We investigated this effect by
calculating the zMTI(0 ) ~ 2osPb(0+) transition of Ta-
ble II with the following three interactions: (a) The Kuo-
Herling interaction for the orbits below Pb truncated
to the eight orbits below Z = 82, N = 126 shown in Fig.
1. The Kuo-Herling (KH) interaction in approximation
(2) of Ref. 30 —which we used —has a bare G-matrix
part and a 1p-1h renormalization part,

GKH —Gbare + Glp- lh ~

(b) The second interaction used replaced Gb~e with

GH7B, which it is equivalent to in principle and closly
equal to in fact. Thus,

G2 —GH7B + Glp-lh.

This step was made so as to be able to separate the cen-
tral and tensor components of Gb,„,. (c) Thus, the third
interaction used was

Gs —GH7B(central) + Glp-lh ~

D. Concluding remarks

The results presented here were motivated by a de-
sire to understand first-forbidden beta decay in the A =
205—209 nuclei. They will be utilized in a study of this
subject which is currently underway. s As stated above,
the quenching of the rank-zero matrix elements is in-

tricately intertwined with non-nucleonic effects and one
cannot easily make a meaningful comparison of experi-
ment with the present predictions; however, an attempt
will be made. ss The present results for the rank-one op-
erators are quite consistent with a preliminary analysis35
of the experimental data as well as with the semiempir-
ical estimates of Damgaard, Broglia, and Riedel. s One
should note that we have only dwelt on one aspect of
the determination of the effective operators. We have
assumed that initial-state admixtures can be handled
within the model space. If not then their effect should
also be included in the q (j ~ j,). We have not consid-
ered non-nucleonic effects such as mesonic processes and
relativistic effects. Our point of view is that a careful
appraisal of "final-state correlations" —which as shown
can be quite sizable —will aid in the determination of
these non-nucleonic effects.

In all three cases the vlg9/2 ~ m0h9y2 transition was ig-
nored and the v0i11~2 ~ lr0h11~2 transition was added
perturbatively using the H7B interaction with or with-
out the tensor component as appropriate. The results
are shown in Table VI. From comparison of the last two
columns of Table VI we see that the tensor (and also
LS) component of the interaction has negligible effect on
the relative contributions of the different transitions. We
conclude that —in this case at least —initial-state ad-
mixtures are insensitive to the tensor component of the
interaction. This is not surprising since admixtures in
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