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Coulomb energy of a proton in the relativistic nuclear shell model
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We examine the Dirac equation for a proton in a nucleus, with a shell-model potential consisting
of nuclear and Coulomb parts. When the Dirac equation is reduced to a Schrodinger-like equation,
the effective potential Win it exhibits two Coulomb-related effects that are absent in the usual non-
relativistic treatment: (I) W contains a Coulomb-nuclear interference term; (II) W depends strongly
on the proton energy, which in turn depends on the Coulomb energy. If the shell-model potential
consists of a strongly attractive Lorentz scalar and a strongly repulsive Lorentz vector, effect I by it-
self is very large. However, effect II counteracts effect I, leaving a squall yet signi6cant decrease in

the Coulomb energy as compared with its nonrelativistic counterpart.

I. INTRODUCTION

Consider the relativistic nuclear shell model. The po-
tential for a proton consists of nuclear and Coulomb
parts. Let us assume that the potential is a sum of an at-
tractive Lorentz scalar S and a repulsive (zeroth com-
ponent of) Lorentz vector V, and that S and V are both
large in magnitude. Such a combination of S and V is
strongly hinted at by the successful Dirac phenomenolo-
gy.

' We write Vfor proton as V= V~+ V&, where Vz
is the nuclear part and Vc is the Coulomb potential. We
also consider a fictitious "neutral proton" for which
V = Vz. We refer to it as neutral proton rather than neu-
tron because in a realistic shell model VN should differ
between proton and neutron. For light to medium nuclei,
however, the difference between the neutral proton and
neutron would not be very significant.

If we reduce the Dirac equation to the nonrelativistic
Schrodinger equation by means of the Foldy-Wouthuysen
transformation, the nonrelativistic potential that emerges
is S + V plus corrections of higher order with respect to
I /m. However, S and V~ within the nucleus are believed
to be 300—400 MeV in magnitude and, although S+ Vtv is
much smaller than the nucleon rest mass m, 5 and Vz are
individually not. Hence, the nonrelativistic reduction of
the Dirac equation by means of the Foldy-Wouthuysen
transformation is misleading in this case and one must
solve the Dirac equation as such. Even then, the Dirac
equation can be reduced to a Schrodinger-like equation
with an effective potential W. As it turns out the W for
proton contains a term —V~ V&/m. For V& ——400 MeV,
we find —Vz V&/m = —0.4Vc, hence, this interference
term reduces the Coulomb potential within the nucleus
by about 40%. This would result in an enormous reduc-
tion of the Coulomb energy. Would this be truest This is
the riddle that motivated us to scrutinize relativistic
effects on the Coulomb energy.

W has another aspect that is of crucial importance re-

II. MODEL

We start with the Dirac equation

[a p+P(m +S)+V]/=Etta . (2.1)

garding the Coulomb energy: W is strongly energy
dependent. W becomes less attractive as the binding en-

ergy decreases. The Coulomb energy decreases the bind-
ing energy, making W less attractive. We refer to the
effect due to the Coulomb-nuclear interference as effect I,
and that due to the energy dependence of W as effect II.
Although effects I and II are individually very large, they
counteract each other leaving a small yet significant
reduction of the Coulomb energy of a bound proton as
compared with its nonrelativistic counterpart.

In order to avoid possible confusion, let us emphasize
the "novelty" of the two effects. Suppose one takes the
usual nonrelativistic approach with the shell-model po-
tential for the proton, Vz NR+ Vc, where Vz NR is the nu-

clear part of the potential. If one solves the Schrodinger
equation with this potential, the solution, of course, con-
tains Coulomb-nuclear interference effects. This should
not be confused with effect I in which the Coulomb-
nuclear interference shows up in the potential W for the
Schrodinger-like equation; it is there before the equation
is solved. One may say that VzNR contains Coulomb-
nuclear interference effects if VzNR is, say, a Hartree-
Fock potential. This is correct, but this is not of relativ-
istic origin. We are ignoring this aspect of the nuclear
shell-model potential. A similar point may be raised re-
garding effect II. The Hartree-Fock potential is non1ocal
and energy dependent. This is due to many-body effects,
and should be distinguished from our effect II, which is
of a relativistic origin. In a more realistic calculation,
these many-body effect must be incorporated.

In Sec. II, we illustrate how effects I and II are individ-
ually large and how they tend to cancel. We discuss im-
plications of the results in Sec. III.
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We use units such that c =%=1 and the standard nota-
tion. The Dirac wave function P can be written in the
form of a two-component function, the upper and lower
components being G and F, respectively. Then Eq. (2.1)
becomes

F' aF—/r = —(E —V —m —S)G,
G'+aG/r =(E —V+m +S)F,

(2.2)

(2.3)

where F'=dF/dr, and ~ is related to the angular momen-
tum j by ~=+(j+—')=+1, +2, . . . . If we eliminate F
in favor of G, and define g by

gs 420 MeV gv 340 M V (2.1 1)

Then the ground-state energy comes out about right. For
the Coulomb potential we use the one for a sphere of ra-
dius R with uniform charge (Z —1)e, i.e.,

these values such that 8'conforms to the standard ernpir-
ical low-energy (E=m) shell-model parameters. With
his parameters, however, we found that the single-
particle binding energy tends to be somewhat too large.
This is because Noble used W for E =m (instead of the
W for the average value of E of bound nucleons) in deter-
mining the strength parameters. Instead, we take

y=(E —V+m +S) ' G,
Eqs. (2.2) and (2.3) can be reduced to

—y" /(2m)+ Wy=[(E m)/—(2m)]y,

(2.4}

(2.5)

Vc(r)=(Z —1)e /r for r &R, and

(Z —1)e
3

r
c for r&R . (2.12)

l
2

„4&D' 3D'
8mD r D

where

D =E —V+m+S . (2.7)

The reduction of the Dirac equation to the Schrodinger-
like equation given above is exact. If S and V are both
much smaller than m, the leading term in the I/m expan-
sion of W is S+V, as expected. In comparing the 8"s
for proton and neutral proton, we denote them by W
and W„, respectively: W ( W„) is given by Eq. (2.6) with
V = V~+ Vc ( V = V~ ).

There are two crucial features to be observed. If one
works entirely in nonrelativistic quantum mechanics, one
would think that W and W„are simply related by
W = W„+ Vc. This is not the case for 8' and W„.
Secondly, unlike the potentials usually used in nonrela-
tivistic calculations, W is energy dependent. In fact, for
the combination of strong S and V, W depends on energy
strongly. Effects I and II mentioned in Sec. I are due to
these two features, respectively.

For the model interaction, we assume the following: S
and Vz are of the form

which is of the form of the Schrodinger equation except
that E is the relativistic energy including the rest mass m.
The effective potential W is given by

2EV +S V /c( 1 +Ic)
2m 2m'

We consider the following two sets of parameters, one
corresponding to Pb,

Z =82, R =6.5 frn, s =2.3 fm,

and the other to Ca,

Z =20, R =3.64 frn, s =2.5 fm .

(2.13)

(2.14)

We refer to the above two sets of the parameters as mod-
els Pb and Ca, respectively. We use the nucleon mass
m =939 MeV.

We have solved Eq. (2.5) with W~ and with W„ for the

ground (a = —1}and the first excited (1~=1)states; we re-

quire the consistency with respect to energy E such that
the E in W of Eq. (2.6) is the eigenvalue E determined by
Eq. (2.5). Unless otherwise specified, by W we mean

W (E~), where E is the energy determined as we have

just stated.
We compare the results for W with its nonrelativistic

counterpart. The latter is obtained by using

Wp, wR
= W. + Vc (2.15)

in Eq. (2.5). Here it is important to specify the W„ in

Wp NR clearly. This W„ is for E =E„, where E„ is the

energy determined earlier using W„alone; the energy
that enters in this W„ is fixed once and for all. Unlike the
relativistic version W, W ~„ is hence energy indepen

dent.
Table I lists the binding energies calculated in three

ways, i.e., using W, W„, and W NR, for the two models.

S(r)= graf (r}, V(r) =—gvf (r), (2.8)

where f (r) is the Woods-Saxon function for the nuclear
density,

TABLE I. The binding energies in MeV determined by the
potentials W, Wp NQ and W„.

—R/a

(r —R)/af (r)=

Parameter a is related to the surface thickness s by

(2.9)
State Potential

W~

Wp, Na

W„

Pb

47.67
46.10
71.64

Ca

46.93
46.27
56.70

s =4a 1n3=4.40a . (2.10)

For the strength parameters gs and gv, for example, No-
ble took g&=420 MeV and gv=328 MeV. He chose

Wp

Wp, NR

W„

39.84
38.53
62.91

25.77
25.37
34.82
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The energies determined by 8' and 8'„are what we

have been calling E~ and E„, respectively. Let Ep
denote the energy determined by 8' NR. The empirical
binding energy of the proton in the 'S, &z state of Ca is
55+9 MeV, ' which can be compared with E =46.93
MeV of Ca of Table I. The Coulomb energy of the pro-
ton is given by"

0—

—0.04—

: w, (z,)
——:w„(K„)

———:w„(E„)+v

=E (2.16)

and its nonrelativistic counterpart by

Ec NR Ep NR En (2.17)

TABLE II. The Coulomb energies Ec and Ec NR, and the rel-
ativistic correction Ec—Ec NR, in units of MeV.

Table II lists Ec, E&NR, and the relativistic correction
Ec —E~NR. This correction is as important as various
other corrections to the Coulomb energy. Consider, for
example, the ground state of Pb. The relativistic correc-
tion is —1.57 MeV, which is 6.6% of Ec=23.96 MeV.
This can be compared with the proton-neutron atomic
mass difference of 0.78 MeV, and the exchange correc-
tion, which is of the order of 4% of the Coulomb energy
for Pb. "' For the ground state of Ca, the relativistic
correction is —0.66 MeV, which is 6.8% of Ec=9.76
MeV. The exchange correction to the Coulomb energy is
about 10%

Figure 1 shows the potentials (for the ground state
with a.= —1) for model Pb, and Fig. 2 those for model
Ca. The small dip in the potential near the origin is due
to the term proportional to D'Ir in W of Eq. (2.6); it is
noticeable only for model Ca of Fig. 2. Figures 3-5 are
all for model Pb. Figure 3 compares Vc and
W (Ez)—W„(E ); here, note that W„(E ) is for the same
energy as for 8' . The difference between the two curves
shows the reduction of the Coulomb potential within the
nucleus due to the Coulomb-nuclear interference; this is a
relativistic effect. Figure 4 exhibits the energy depen-
dence of 8'„. In a consistent calculation, the potential
that binds the neutral proton is W„(E=E„),but if we
artificially substitute energy E=E of E=m, W„(E)
changes as shown. Crudely speaking, the reduction of
the Coulomb repulsion from V& to W~(Wz) —W„(Ez),
shown in Fig. 3, is almost compensated by the reduction
of attraction from W„(E„)to W„(E ) of Fig. 4. Finally,
Fig. 5 compares W (E=m) and W„(E=m)+Vc. We
will discuss Fig. 5 in the next section.
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FIG. 2. The same as for Fig. 1, but for model Ca.
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FIG. 1. The effective potentials W~ and W„ in the
Schrodinger-like equation for model Pb, compared with the
nonrelativistic version W~ NR.
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FIG. 3. Comparison between the Coulomb potential Vc and
the (Coulomb plus Coulomb-nuclear interference term) of the
relativistic model Pb.
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FIG. 4. The energy dependence of 8'„ for model Pb; E„ is
the energy of the "neutral proton" determined by 8'„(E„),
while E is the energy of the proton determined by W~(E~ ).

III. DISCUSSIONS
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FIG. 5. The proton-nucleus potential $Y~(E =m) for model

Pb compared with its nonrelativistic analog 8'„(E=m)+ V&.

We examined the Coulomb energy of a proton in a rel-
ativistic shell model and found that there are two effects,
I and II, which are both absent in the usual nonrelativis-
tic treatment. For the relativistic shell-model potential
consisting of strong S and V, the two effects are individu-
ally very large but they counteract each other resulting in
a small yet significant departure from the nonrelativistic
treatment. The net effect on the Coulomb energy is com-
parable with and of the same sign as the exchange effect.
Since there are two large effects involved, the variation of
the Coulomb energy from one nucleus to another may be
more appreciable in a relativistic model than in its nonre-
lativistic counterpart. This should be remembered in ex-
amining the Coulomb energies of very heavy nuclei.

The Coulomb energies of nuclei have been a subject of
considerable interest for many years, in particular since

Nolen and Schiffer pointed out a systematic discrepancy
regarding the Coulomb energies of a large number of nu-
clei. ' Also, there is a well-known discrepancy regarding
the difference between the binding energies of H and
He. Theoretical estimates based on charge symmetric

nucleon-nucleon interactions account for about 90% of
the empirical value of the binding-energy difference of
this pair of mirror nuclei. ' The relativistic effect will

probably reduce the Coulomb energy of He, resulting in
an enhancement of the discrepancy. This discrepancy
calls for charge-symmetry-breaking (CSB) nuclear in-
teractions of some other origins, somewhat stronger than
those considered so far.

In order to avoid possible confusion regarding the
usage of the term CSB, let us make the following point
clear. In this paper, we assumed that the relativistic nu-
clear interaction (S+ VN ) is charge symmetric. Howev-

er, when the relativistic model is transcribed into the
form of an effective nonrelativistic model as we have
done, the effective nonrelativistic interaction that
emerges obtains a CSB term like —V~ Vc/m of effect I.
This illustrates the point that what one means by CSB de-
pends on the framework in which one chooses to work.
This kind of symmetry breaking occurs whenever some
degrees of freedom are eliminated in a theory with a
higher symmetry. The CSB effect that we mentioned to-
wards the end of the preceding paragraph is the one
which exists even in the relativistic interaction; for exam-
ple, the nuclear interaction mediated by the p-co mixing
or by the y-vr exchange. '

We have seen that effects I and II on the Coulomb en-
ergy are individually large but they almost cancel. This
prevents the Coulomb energy of the relativistic model
from being drastically reduced than its nonrelativistic
counterpart. This is an answer to the riddle that motivat-
ed us to examine the Coulomb energy in the relativistic
Hartree-Fock calculations including the Coulomb in-
teraction, and the features that we have discussed must
be there implicitly in these calculations. '

In scattering problems, however, effect II is absent in
the sense that the energy is externally fixed rather than
determined by the interaction. In principle, therefore,
one would be able to see effect I in its unsuppressed form.
We can think of two model potentials for proton-nucleus
scattering. One is derived from a relativistic interaction
as we did, say, for E =m; this is the W (E =m) shown in
Fig. 5. The other is its nonrelativistic analog defined by
W„(E =m)+ Vc, also shown in Fig. 5. The difference
between these two potentials is a manifestation of effect I;
the difference amounts to about 40% of Vc within the
nucleus. To detect consequences of this difference may
be rather impractical for nucleon-nucleus scattering.
However, one can imagine a similar situation for
nucleon-nucleon scattering. For the nucleon-nucleon sys-
tern, the singlet scattering lengths for pp and nn are both
known; the uncertainty is stiH rather large for nn though.
For these quantities, there will be a CSB effect of type I
(but not II) that arises in nonrelativistic reduction of a
relativistic equation. Recall that all analyses of CSB
effects with respect to low-energy nucleon-nucleon
scattering have been done within the nonrelativistic
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framework using the Schrodinger equation. We will dis-
cuss this problem in a separate paper. '
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