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Structure and decay modes of antisymmetric P vibrations in the O(6) limit
of the neutron-proton interacting boson model
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We investigate the structure of the intrinsic states for the symmetric and antisymmetric p vibra-
tions in the O(6) limit of the neutron-proton interacting boson model and of the low-lying
configurations projected from these intrinsic states. We study the decay modes of these low-lying
states, particularly the antisymmetric 0+ state. This level appears to decay only to the 1+ and 2+

mixed-symmetry states. The signature for these decays is that the M1 and E2 strengths go to zero
for N„=N .

I. INTRODUCTION

Ever since the theoretical papers of Iachello' suggest-
ing the algebraic properties of mixed-symmetry states
within the proton-neutron interacting boson model (also
referred to as the IBM-2) and the subsequent experimen-
tal observation of the predicted M1 scissors mode in

Gd, there has been considerable interest, both theoreti-
cally and experimentally, in describing and locating
such excitations in a wide variety of medium-to-heavy-
mass nuclei. Besides the small amplitude, scissorlike
counter oscillation' ' between the proton and neutron
distributions in well-deformed nuclei [the SU(3) limit of
the IBM-2] leading to an excitation of J =1+, there are
predictions of a mixed-symmetry 2+ state in the U(5} lim-
it of the IBM-2, ' ' corresponding to small-amplitude p
vibrations of the protons and neutrons which are 180' out
of phase, with some experimental indication of their ex-
istence.

While the properties of SU(3)- and U(5)-like nuclei
have been described theoretically in several ap-
proaches, ' " including the IBM, the structure of 0(6)-
like nuclei is less well understood, with many predictions
regarding the properties of such nuclei coming from the
IBM.' ' ' Detailed studies have been made of the low-
lying properties of 0(6) nuclei within the IBM-2 for the
totally symmetric states [N] (i.e., the IBM-1
configurations or equivalently the states of maximal F
spin F,„=—,'N, where N=X„+N =number of proton
bosons+ number of neutron bosons) and the first set of
mixed-symmetry states [N —1, 1] (i.e., those with an F
spin value of F,„—1). The label [N f,f ] denotes the—
U(6) representation of the IBM-2 configurations. In pre-
vious studies ' one has concentrated on the states with
the maximum 0(6) symmetry or, equivalently, maximum
sigma quantum numbers for each group of states, namely,
(N, O) for [N, O] and (N 1, 1) for [N —1, 1—], where
(o &, o2) denotes the 0(6) representation of each IBM-2
state. In particular, the lowest-lying configurations of

II. STRUCTURE OF THE O(6) IBM-2
MIXED-SYMMETRY P VIBRATIONS

We will consider the 0(6) limit of the IBM-2 corre-
sponding to the group chain

U(6) XU(6)

& U ~„(6) & 0 +„(6) & 0 + (5) Z 0„+,(3) (1)

I(~i, ~q)

where the quantum numbers for each step in the sub-
group chain are listed below each group classification.
A possible spectrum of a "typical" nucleus with this
dynamical symmetry chain is illustrated in Fig. l, where
only the first few states of each representation are shown.

The states of interest to us are those of the
[N —1, 1]( N —2 ) representation, particularly the 0+

[N —1, 1](N—1, 1) are a 2+ state and a 1+ state, with
the 1+ state being the 0(6) analog of the M 1 scissors
mode in the SU(3} limit. '

In a recent paper, Balantekin, Barrett, and Halse'
have described and discussed in the IBM-2 the 0(6) anal-

ogy of the 2 excitations in the U(5) limit, representing
symmetric and antisymmetric vibrations of the p degree
of freedom of the protons and the neutrons. Contrary to
the U(5) case, ' in the 0(6}limit these p vibrations occur
in the next higher sigma representation, being (N —2, 0)
for both [N, O] and [N —1, 1]; in each case these excita-
tions are built on an intrinsic state whose lowest wave
function has J =0+. As pointed out in Ref. 13, the an-
tisymmetric p vibrational 0 state may occur as low as
3.1 MeV in ' Ba and 2.1 MeV in ' Pt, and, hence, be
available to experimental detection; the problem being
one of determining an appropriate "signature" for identi-
fying this particular 0+ excitation. In this paper, we will
discuss the structure of this 0+ state and its decay modes,
pointing out features which may make it stand out in the
experimental data.
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Otsuka and Sugita' and Leviatan' have shown that for

p =p„= 1 and y =y„ the above intrinsic state generates
all the O(6) state with ( o &

= ( N &.

The mixed-symmetry intrinsic state, from which lOM &

can be projected, can be written in the form' (assuming

P =1)
l@'"(0M )&=[()/'N /Nrt, (S„)(A,„) "'

(A, )

QN„/—N q (S )(A, )
'

(A,„) ']l0&,

(6)
FIG. 1. "Typical" spectrum of a nucleus with the dynamical

symmetry chain (1), including the & N 2,0) O—(6) con-
figurations.

where

(7a)

band head, denoted by

[N ][N„][N—1, 1](N 2&(0)0+ &
—= l0M+ & (2)

(d2+d 2)
cosy d() +siny — ~ —s

2 ~ ( ~ v'2

N (N —1)

N !(N +1)!

(7b)

(7c)

For convenience and conciseness, we hereafter omit
second quantum numbers (e.g. , f, o2, or r2) which are
zero. We use M' to distinguish the (N —2& mixed-
symmetry states from the (N 1, 1& mixed—-symmetry
states which are usually denoted by a subscript M.

Using the notation of Van Isacker et al. , we refer to
the symmetric p vibrational band-head state as

and p=n. or v while p'=v or n. Since S is an O(6) sca-
lar, ' it is seen that the intrinsic state (6) has
&o&=(N —2&.

In the limit of large N (i.e., N ~ oo, N„+ac), Eq. (6)—

takes the form

l4'"(OM ) &)v „[oP—oP„] (A,") (iL, )
"

l0&,

I II

I[N„][N„][N](N—2&(0)0+ &
=—l03+ & . (3)

lN. ,p„,y„;N„p„,y„& = [&'.(p„,y.)]N!N!

According to the study of O(6)-like nuclei by Casten and
von Brentano, ' states of this possible structure exist in
the spectra of the Xe and Ba isotopes.

Before describing a specific form for the states l0))t &

and l03+ &, we will discuss the structure of the intrinsic
states, from which the states lOM & and l03+ & and the oth-
er states in their corresponding bands can be projected.

The IBM-2 intrinsic wave function, including the y de-
grees of freedom, is generally defined as'

&
e'"(0+, ) lM.„lC'"(0+.) & =Ng, ,

where

M„,=$2(sg —dp )' (s„d —d,s )

(dtgt )(k)(d d )(k)

k=1, 3

(10)

where the second and third terms on the right-hand side
of Eq. (7a) are of O(1/N ) compared with the first term.
In Eq. (8), Part I is seen to be antisymmetric in the m and
v degrees of freedom and is, in fact, an F=O pair of a
proton boson and a neutron boson. Because of the struc-
ture of Part I, only the g2 term in the Majorana interac-
tion has a nonvanishing contribution. By a straight for-
ward calculation one can obtain

where

x[) '„(p„,y„)] 'lo&, (4) Note that Eq. (9) holds for the intrinsic state with finite
N's in Eq. (6). ' The intrinsic state (8) is no longer a state
of good ( o &, because of the neglecting of terms of
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0(ii+N, ).
The intrinsic state, from which I03 ) [see Eq. (3)] can

be projected, is similar to (6), except that it has a plus
sign, instead of a minus sign, between the two terms and
the factors of QN are interchanged.

Returning to Eqs. (2) and (3), we first observe that ex-
cept for the decomposition U +„(6)DO +„(6), the two
states I03+ ) and IOM ) have identical structure, where this
difference represents coefficients depending only on N
which make the states orthogonal. Using the isoscalar
factors of Van Isacker, Frank, and Sun' one can con-
struct the corresponding states for N, =N —1 and N = 1

in a straightforward manner to obtain

I03+) =I[N„=N —1)[N =1];[N]&N—2)(0)0+)

I &N —1) I

&(N+1)(N —2)
[&N 3)I (1 la)

IOM ) =I[N„=N—l][N =1];[N—1, 1]&N—2)(0)0 ) =
N

[&N 1&I
N

[&N 3&I
v' N+1 N —2

(1 lb)

where

and

&N 1) &1—) &N —2& (r) (~) (O)

(o) i I o
7 7

&N —3) &1) &N —2) (r) (r) (0)
&N —3) I =+ (r) (r) (0) l I 0 (l[N„]&N —3)(w)l)„(b, )~}

T7

(12a)

(12b)

The brackets &
I ) represent the O(6) and O(5) isoscalar

factors, respectively. A similar type of structure exists
for I23+ ) and I2~ ), the configurations corresponding to
the 2+ states in each band.

&
2+,

I I g, I lo,+ &'=
& 2,'I Ig, I

lo+, &'

4(N+ 1)N„N
for p=v or 7r (13a)

(N —1)N

and

Q =(s d+d s) (13b)

III. RESULTS

The similarity of the structure of the states IOM ) and

I03+) and their associated 2+ states leads to some im-

mediate conclusions:
(1) The energy of the 0+ band-head states is the same

except for the g2 term in the Majorana interaction, which

pushes the mixed-symmetry state up in energy. This con-
clusion follows directly from the structure of the intrinsic
states described in Sec. II and is the same as the result in
Balantekin, Barrett, and Halse, ' for the classical limit.
For $2=0 the two states are degenerate, a result borne
out by explicit IBM-2 calculations.

(2) The E2 reduced transition matrix elements between

I23+) and IOM. ) and between I2~ ) and I03+) are identi-

cal, namely,

2(N+3) 2&2srII~PIIO~') N(N+2)(N 2)
(N

and

(14a)

&1+ IIL Ilol, )'= + (N„—N. )2
N (N —2)

for p=m. or v . (14b)

One immediately observes that these reduced matrix
elements are proportional to (N N„}and, hence, van-—
ish for N„=N . Since Eqs. (14) hold for proton and neu-
tron bosons separately, the vanishing of these reduced
matrix elements occurs irrespectively of the value of the
F-scalar and the F-vector boson charges. ' One also

As pointed out in Balantekin, Barrett, and Halse, ' the
states in the representation [N —1, 1]&N 2) cannot —de-
cay to the states in the lowest representation [N]&N ) by
Ml transitions [l. =v 10(d 2 )"'] or E2 transitions of
the form (13b), because these operators transform accord-
ing to the O(6) representation & 1, 1 ) and so cannot cou-
ple &N, o) to &N —2,0).

If the state I23+ ) lies higher in energy than the state
Iosr ), as appears to be so from model calculations (see
Fig. 1), then the state IOM ) has the possibility of decay-
ing only to the states

I
I~ ) and I 2xr ), the mixed-

symmetry 1+ and 2+ states in the representation
[N —1, 1]&N—1, 1). The reduced matrix elements for
the M1 and E2 decays, respectively, to these states are
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notes the F, = —,
' (N N—, ) = the z component of the F

spin, so that these reduced matrix elements are propor-
tional to F, . It now becomes apparent why Eqs. (14a)
and (14b) take this form. We are making an isovector
transition in F spin between two configurations having
the same total F spin. The Clebsch-Gordan coefficient
for such a transformation is simply

F,
(FF„10iFF,) = F(F+1) (15)

An immediate consequence of this result is a new selec-
tion rule for the O(6) limit of the IBM-2, which says that
the state i0~ ) cannot decay for N„=N„and, as such,
forms an isomeric state.

We would like to encourage experimentalists to look
for the decay of the OM ) state in a series of isotopes,
such as the Ba isotopes, which are thought to be good
O(6) nuclei. ' In such an investigation the

8 (E2,0~ ~2~ ) strength or the 8 (M1,0~ ~1M ) should

go through a minimum for N„=N„, e.g., for '
56Ba76.

In the two limiting cases, hz =0 and g& =g& = —2(z, one
obtains the following simple relations for E + .

M'

and

E + =E + for hz=0
OM' 03

(16)

(N —1)E+=
2(N+ 1) 3 M

E++~+ «r (i=4= —24

where Eq. (17) was derived by Balantekin, Barrett, and
Halse. ' The energies of the states projected from the in-
trinsic state (6) depend only on the gz terms in the Ma-
jorana interaction (10) and not on the gi and g& terms.
Consequently, the OM. state may lie lower in energy than
the ll state whose energy also depends upon the g, and

gz terms. ' Also a low-lying 0~. state (near the Oz+ state)

would indicate a small value for gz.
We have performed IBM-2 calculations for the Ba iso-

topes, and these calculations numerically verify all the re-
sults previously stated.

IV. SUMMARY AND CONCLUSIONS

We have described the structure of the intrinsic states
for the symmetric and antisymmetric O(6) configurations
with (o ) =(N —2). We have also discussed specific
representations for the i0+ ) and

~

2+ ) states, which can
be projected from these intrinsic states. From the struc-
ture of the mixed-symmetry 0+ state, we have seen that it
has very limited possibilities for decay, only to the i 1~ )
and i 2 ir ) mixed symmetry, ( 0 1,o z ) = ( N 1, 1 )—states,
and have obtained analytic formulas for the reduced ma-
trix elements for these decay modes. The "signature" for
these particular M1 and E2 decays is that they are "for-
bidden" for N =N„, i.e., for a "good" O(6) nucleus, the
OM state is an isomeric state. We encourage experimen-
talists to study the decay of O(6)-like nuclei for the pres-
ence of this signature, particularly for an isotropic chain
of nuclei, such as the Ba or Xe isotopes.
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