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Quasielastic electron scattering on a two-nucleon model system:
Scaling and cumulant expansion of the structure function
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The structure function S(q, co) for quasielastic electron scattering on a nonrelativistic two-

nucleon model system is evaluated numerically. These S values are considered as pseudodata to
study sum rules, y scaling, and the cumulant expansion. For the force models considered it is found

that the reduced structure function (q/2m)S(q, co) in the limit q~ ~ scales to the longitudinal

momentum distribution PL(y) in the target. Except for small y values, this limit, however, is

reached only very slowly, which may be due to the strictly nonrelativistic treatment. The cumulant

expansion based on low-order cumulants is not useful. We also derive the analytical result that in

our potential model S(q, co) =O(co ' ') for co~ ~ and fixed q. This sho~s that higher-order cumu-

lants do not exist.

I. INTRODUCTION

Inclusive electron scattering on a nuclear target pro-
vides through the structure function an important insight
into the dynamics of the target constituents. The struc-
ture function S depends on the energy co and the magni-
tude of the three-momentum q transferred to the target.
What are the properties of that function, especially for
large values of q and co? We investigate this question in
the context of a nonrelativistic potential model of two
"nucleons, "which interact by a potential with range and
strength typical for the NN force. Our study is stimulat-
ed by the classical review on electron scattering. ' There
it is shown that (q /4m)S(q, to)~5(ri —1) for q~ao
with ri =co/(q /2m). This simply reflects the quasielastic
scattering on a constituent with mass m. According to
the notation chosen in Ref. 1 it may be called g scaling
(g—:I/71), a scaling behavior which can be regarded as a
nonrelativistic analogue to the relativistic Bjorken scal-
ing. What is the leading correction term, which breaks
that scaling behavior? What is its power law in q and
which dynamical information can be inferred from it?
We shall show that it is again a distribution. A possibly
useful and immediate consequence are sum rules. Of
course they can also be established by standard steps,
which, however, hide their connection to g scaling and to
the term breaking g scaling in leading order. In Ref. 1 it
is also shown that (q/2m)S(q, co)~PL (y) for q~ ac with

y =(q/2)(g —1). Here PL(y) is the distribution of
momentum components p~~=p. q in the target. This
would be a very desirable information about the target if
it could be extracted from the structure function in a
model-independent way. At which q s is this reliably pos-
sible, if at all? How important is the final-state interac-
tion in the evaluation of the structure function?

In Ref. 2 the structure function is examined in terms of
a few cumulants which serve to characterize the position,
height, and width of the quasielastic peak. Is the cumu-
lant expansion quantitatively useful in the sense that a fit
of that form to a given (experimental) structure function

leads to reliable values of the cumulants? This would be
useful since the low-order cumulants have a physical
meaning. In this context we pose the question of whether
cumulants of higher orders exist at all. This depends on
the asymptotic behavior of S(q, co) for co~ ac and q fixed.
Does it decrease exponentially or only like an inverse
power law?

We study these questions in a strictly nonrelativistic
context. We are aware of the physical limitations of that
model, especially in view of the high momentum transfers
which we will see to be necessary to reach really the
domain of scaling. Insofar as this study is academic,
however, the insight we shall gain may be valid qualita-
tively also in a future study including relativity (not only
relativistic kinematics). Similar studies in potential mod-
els have been carried through. ' Here quasielastic
scattering on one particle bound in a square well or
Woods-Saxon potential has been investigated numerical-
ly. We perform a study on two strongly interacting parti-
cles which are either both charged, allowing us to see in-
terference effects, or where only one particle is charged.
The latter case corresponds to the previous studies ' of
one particle bound in a potential. The final-state interac-
tion of the two outgoing "nucleons" turns out to be very
crucial. Since their energy of relative motion can be very
high, a partial-wave expansion is not very adequate and
may be very unreliable. In Ref. 3 numerical difficulties
were pointed out in that context. We allow the two "nu-
cleons" to interact in all partial waves and keep the
scattering angle as a dynamical variable instead of using
orbital angular momenta. This is a much better represen-
tation of the two-body T matrix which is considerably
peaked in forward directions than building up T by
strongly oscillating partial-wave contributions. In addi-
tion our interaction, superposition of Yukawas in the
form of the Malfliet-Tjon potential (MT III) (Ref. 4) are
"closer" to the reality of NN forces than a square well po-
tential. We assume the potential to be local and therefore
to act in all partial waves (not only in s states). In this
model we are able to provide analytical insight and to

42 2342 1990 The American Physical Society



42 QUASIELASTIC ELECTRON SCATTERING ON A TWO-. . . 2343

solve the numerical part exactly, since we work with
three-vectors.

In Sec. II we define the model and formulate the exact
expression for the structure function suitable for the nu-
merical evaluation. The g scaling and the leading correc-
tion term are derived in Sec. III. There we also set up the
sum rules. In Sec. IV we review the y scaling and in Sec.
V the cumulant expansion of S. In Sec. V we also derive
the asymptotic co dependence of S for fixed q. Section VI
describes our numerical techniques and there we show
and discuss the numerical results. Finally, we present a
summary in Sec. VII.

II. THE MODEL AND ITS STRUCTURE FUNCTION

%'e regard two spinless "nucleons" which are both
equally charged and interact by a local potential, which
supports one bound state with a binding energy of
e = —2.23 MeV. Charging both nucleons leads to
coherent and incoherent contributions to the structure
function and we shall get a rough idea of what will hap-
pen in He. We also regard the case of a model deuteron,
where only one "nucleon" is charged. The longitudinal
structure function for nonrelativistic nucleons is'

P(q, ~)=g ~(tpf ~e~'~ ~& r+e ~'~~~a'~+) ~~

f

X6 co+e —e
4m

(2.1)

Here the operator in the matrix element is

p(q)= g e (2.2)

the single-particle density for point nucleons in the c.m.
system (r—:x, —xz) for a given three-momentum transfer
to the target, y is the two-body bound state, and the sum
over f includes tp and the two-body scattering states qr'+'
in the potential V. The argument of the 5 function de-
scribes energy conservation in the laboratory system: the
transferred energy co together with the binding energy
e &0 is equal to the c.m. energy of the two nucleons
q /4m and the internal energy ef, which is either
e= —a /m (elastic scattering) or p /m (breakup pro-
cess).

In explicit momentum-space representation, Eq. (2.1)
reads

T 2
2S=4 f dpqr p++ y(p) 5 co—

2 4m

+ p ppp p g p +g p+
2 2

S ~+e —p —q
m 4m

(2.3)

The factor of 4 results from the permutation symmetry of y. The momentum space representation of the two-body
scattering state is

q ~+'(p') =5(p —p')+
(p /m)+ie —(p' /m)

(2.4)

where T is the half-shell two-body T matrix and obeys the Lippmann-Schwinger equation

&(p', p)=v(p', p)+ fdp" &(p,p"), „, T(p",p) .
(p /m)+ie —(p" /m)

(2.5)

Since we are interested only in inelastic scattering we regard only the second part in Eq. (2.3) which inserting Eq. (2.4) is

Sc= dp qp p — +qp p+ + dp y p — +y p+
2 2 (p /m) —ie (p' /m)—

2
2 2

5 ~+e-
m 4m

(2.6)

The first part alone stems from the free two-nucleon states and the second part proportional to T* incorporates the
final-state interaction of the two outgoing nucleons. In our model the two-body bound state is a pure s state. The scalar
potential V leads to a scalar T matrix:

&(p' p)=~(p' p p' p) .

We end up with

(2.7)
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+1
Sc=mmk J dt (p k + —kqt—1 4

'1/2 '
2

+(p k + +kqt
4

' 1/2

r2 +1+ dp'
~

'
~

"d' ~ p'+' -p'q'
(k /m) —ie —(p' /m) —) 4

1/2
2

+y p' + +p'qt'
4

1/2 '

X J dct)'T (p', k, cosa)
0

(2.8)

where

cos8=tt'+( I t )'—/ (1 t' )—'/ cosct)' (2.9)
(p(p)

8n. (p'(r =0) C
)3/2 p4 p4

(2.14)

and In the case of the Yukawa potentials [Eq. (2.11)]q)'(r =0)
is different from zero and is given by

1/2

k = m (co+e)—
4

(2.10) q)'(r =0}=(p(r=0)—( V, + V2) .
m

(2.15)

We choose two types of "two-nucleon interactions:"
Since we shall determine (p(p} directly in momentum
space (see Sec. VI), we use, in accordance with (2.13),

and

p P l'

V(r)= V) + V2
T

V(r)= V() e

(2.1 1)

(2.12)

„,f, dpp'q(p}. (2.16)

III. 0 SCALING

In the case of the potential (2.12), one finds cp'(r =0)=0
and the decrease is O(1/p ).

(p(p)=
3 2 I dr r jo(pr)q)(r) .

(2n) / o

Simple partial integrations yield, for p ~ 00,

(2.13)

They are supposed to be local and act in all partial waves.
The expression (2.8) will be evaluated numerically and
delivers pseudodata for the structure function, which will
be analyzed with respect to scaling behavior, sum rules,
and the cumulant expansion.

In the case that only one nucleon is charged, there is
only one term in (2.2) and so the two sums over two
bound-state wave functions are replaced by just one term,
respectively.

The asymptotic behavior of the two-body bound-state
wave function q)(p) for p~ ()() will be important in the
following. It is connected to the configuration space
wave function by

with

$~ (X)

S - 5(g —1}
4m

(3.1)

1g=2 mcoq/= —. (3.2)

The case 2}=(=1 describes the simple kinematic situa-
tion that all the energy ~ is transferred into kinetic ener-

gy of one knocked out constituent. Here we are interest-
ed in looking for the leading correction term which
breaks that scaling law. To this result we rewrite (2.1) as

Let us first regard the case of the two charged "nu-
cleons. " The dominance of quasielastic scattering at the
constituents of the target should get more and more pro-
nounced with increasing momentum and energy transfer.
Indeed as shown in Ref. 1,

2
S=y&q~(e""'q'+e-"'q')fi ~+e —H —q )q )&q ~e""'q'+ -'"'q'~q)

f
co e iPf ff e

2
((p~(e(i/2)q r+e —(i/2)q. r)$ CO+e

4m
(i/2)q r+ —(i/2)q. r)~ ) (3.3)

We introduced the two-body Hamiltonian

H =H0+ V

with the eigenfunctions q) and q)f. Expression (3.3) can be rewritten as

S = ——Im(q)~(e' 'q'+e ' 'q') (e(i!2)q r+e —(I/2)q r)~+)
7r co+e H (q /4m)+ie— —

(3.4)

(3.5)
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For a local potential the Galilean transformation e' 'q' yields

2—(i/2)q. rH (i/2)q r —[p+(ql»] + V
m

Consequently,

(3.6)

S= ——Im&q)l(1+e' ')2

co+e p+ +
2

m —V (q—l4m)+ie
Iq &

with

2
Im&(pl(1+e'q')

2

1 4m 1

7T q q —1 —(2p~(/q) (2—mlq )(H e)—+ie
(3.7}

Pll—=P q. (3.S)

In the case of the one charged particle the factor of 4 is replaced by 2 and the interference term e'q' arising from the
scattering at different particles is absent.

The typical finite momenta in the matrix element are determined by the bound-state wave function and the two-body
force V. Hence, for q sufficiently large the denominator can be expanded:

2' S=——Im«l(1+e"'}
4m

p~~q+ mq'H —e

g —1+ie (g —1+je)
[(2p

~~

/q)+ (2m /q )(H —e) ]+ " + Iq)
(q —1+ie}1. . . 1 p~~/q ( p~~/q )+(4m/q )[V,p((]

1+ie (g —1+ie) (g —1+ie)
In the last step we used (H —e)q) =0.

With

(3.9)

1 1
5(g —1)= ——Im

g —1+is ' (3.10)

and the derivatives thereof we get

iq r+ & q'le' 'lq & }&(U 1 ) —( & q)lp~( lq) & + & q)le' 'p)) lq) & )&'(2) I )+(2/q )( & q)lp Iq) )+& Ie'q' 2
I

&)p"( —I )

+(2m/q )( & q'I[ V p~) ]I%&+&(pie'
'

[ V p~) ]lq & @"(g—1)+ (3.11)

Note that all matrix elements are real and therefore the imaginary parts arise solely from the denominators. Obviously
one has

and

&qlp Iq&=o

&ql[v p, ]lq &=0,

(3.12)

(3.13)

&qlp((lq &=
3

&qlHolq&=
3

&Ho&.

We thus obtain

(3.14)

l r
4m

~ = (1+& q I
e"Iq & +(n —I}——

& q le"'p lq & &'(q —I)
q

Il

+[(2m/3q )&H )+0(2/q )&q)le'q'p)) Iq))]5"(g—I)+O(1/q3) . (3.15)
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It is easily estimated using (2.14) that the interference
terms behave asymptotically as

The lower limit of integration g;„, referring to the
continuum part S&, follows from the energy conserving 6
function in (2.1) and is

(q le'&'lq & =0 1
4

(3.16) 1
Dmin=

2

2me

q
(3.24)

(3.17)

(3.18)

Therefore we find in leading order in 1/q,

S 5(rl —1)+,(H &fi"(g—1),2m

4m 3q
(3.19)

which displays explicitly the g-scaling breaking term. In
our model with (Ho) =10.8 MeV

0.4 fm2m &H, )

3q
(3.20}

00 q —+ oo

dgS q,g:1,
4m

oo"dye —1S q, g
4m ~mtn

QO
q

q "
n~ —1'S q

4m ~mtn

(3.21)

=0, (3.22)

:(4m/3q )(Ho) .

(3.23)

In the case of the one charged particle the interference
terms in Eq. (3.15) are absent and S is to be replaced by
2S in Eq. (3.19}.

In order to extract the information (Ho) from Eq.
(3.19} it seems unavoidable to integrate the distributions
with suitable functions, which naturally leads to sum
rules. Possible functions are powers of (rl —1) and we get
three sum rules:

The elastic part of the structure function S„ is propor-
tional to 5(g —

—,') as is obvious from Eq. (2.1) and does
not contribute to Eqs. (3.21)—(3.23).

If one integrates (3.15) instead of (3.19) one arrives at
the following three sum rules:

2

qS q, g =1+ y e'~' q4m Imin

2

dg q —1S qg =—ye'~ p4m "Imtn q
2

J de (rl —I)'S(q, rl)
4m ~mtn

(3.25)

(3.26)

, (H, )+, (gi ' 'p'„iq &

+, &qle"'[Vp()llq & .

(3.27)

In contrast to what one might expect these are exact rela-
tions except for corrections from the elastic channel
which die out very quickly with increasing q. They also
follow [Ref. 5] simply by standard steps from the very
definition of S [Eq. (2.1)].

In the case of the one charged particle all the interfer-
ence terms are absent and one arrives at Eqs.
(3.21)—(3.23) valid now for all q, with S replaced by 2S,
again except for correction terms from the elastic chan-
nel. Particularly, the last sum rule may be of interest to
extract (Ho). We shall investigate this point for our
pseudodata in Sec. VI.

Equation (3.21) is a normalization property. Integrating
over co instead of q the right-hand side will be 2, which
measures the number of charged particles as is clear from
the very definition [Eq. (3.1)] for S. The second sum rule
tells that S is asymptotically an even function around
g=1. In the numerical evaluation in Sec. VI, we shall
infer from these two sum rules the necessary range of g
values and the q values beyond which the interference
terms are negligible. The last sum rule is the interesting
one since it delivers the expectation value of the kinetic
energy in the ground state.

IV. 7 SCALING

m q
CO

q 2m
=&(g—1) .

2
(4.1)

We introduce y in Eq. (2.7) and get

While (q /4m )S tends towards a distribution for
q~ao, the product (q/2m)S tends towards a normal
function and scales in the variable y

S = —— Im(y~(1+e'~')
z

1 2m 1
lq) .

y pll (~ +p )/q —(mV/q)+i e

Now one can expand for large q values:

(4.2)

S = ——Im(q&~(1 +e' ') ~p) — Im(y~(1+e' ') (a +p +mV) ~qr)+0
1 1 1 r 1 2 2 1 1

2m 7T y —p~~+i e mq p~~+ 7 pI~+' q
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The leading term is

——1m&el . Iq &=f dplq(p)l'&(y —
p~,

)=fdpilq((pi+y')'")I':— PL, (y)
1 1

y pll+i e
(4.4)

which apparently is the longitudinal momentum distribution in the state q. For the numerical evaluation it is con-
venient to rewrite PL (y) as

P, (y) =2~f "dp p lq(p) I' .
lyl

As an example, we estimate the first interference term:

——Im&iple'q' lip&=2m f dp, p, ip((y +p', )' ')ip([pi+(y+q) ]' ') .
7r Pll + l 6 0

For fixed y and q ~ ~ one can replace the second ip by its asymptotic form, Eq. (2.14), and find

(4.5)

(4.6)

2n.C f dp, p, tp((y'+p', )'i')
2 2 z

=O
0 (pi+ q')'

(4.7)

This term can therefore be safely neglected for large q values. The leading correction term to P~ (y ) is

Im&g I . (ir +p +tttI ) lip&= &ipl5'(y p~~)(tt +p )lip& &ipl&(y pi)v
y —

S ll+i~ y —all+I~ 2q q
II y

(4.8)

where P denotes the principal value prescription. The matrix elements exist and are manifestly odd in y as is well
known. The leading correction term is therefore only O(1/q). This is also true in the case of the one charged particle.
That contribution term vanishes in the quasielastic peak y =0. The related interference term is again of higher order in
1/q.

V. CUMULANT EXPANSION AND ASYMPTOTIC
BEHAVIOR OF S(q, co) FOR co~ (x)

S(q, co)=— f dt e '"'F(t), (5.1)

where

In Ref. 2 Rosenfelder advocated the use of a few low-
order cumulants for the representation of the Fourier
transform of S in order to parametrize location, width,
and height of the quasielastic peak. We shall apply that
concept to our model case. I.et

ge' ' 'l&qfl~lq &I'
mp

& +l g teit(H —e) g
l

& q I
& 'a

I q &

Formally, this can be written as

(t't)" mk

k!

(5.6)

(5.7)

A partial summation is achieved in the cumulant expan-
sion, which is again formally,

2

N—:N
4m

(5.2) F(t) =exp
co (it)k

(5.8)

is the energy transfer into internal motion. The moments
of S are defined by

The obvious connections between the first few cumulants
A, I, and the moments mk are

mk =—f dao'co'"S(q, co),
0

which according to Eq. (3.3) can be written as

mi, =
& yl A (H —e)"A lip &

(5.3)

(5.4)

k]
mp

2k2=
mp mp

(5.9)

(5.10)

with

( i I2)q r + —(i /2)q -r (5.5)

m3
A3=

mo

m2ml +2
mp

m(

mo

3

(5.11)

From Eqs. (5.1) and (2.1) follows Truncating the expansion at A,2 yields
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mP + t itA
I
—t A2/2

S(q, ~)=S2—= f dt e ' 'e
2' E i—e H—+[E E— +Ho(p )—Ho(p+ q) ]

mQ —(ap' —A. ) /2A,I 2

(2m.)(, )'
(5.12)

1

EP q
EE H Q

(5.20)

This results in a peak at the location co'=A, , with a width

QA, 2. Truncating at A, 3 and expanding in A, 3 yields
with

2p q 2q 2p q
m m m

(5.21)

co A]
X 1+

2

'2
CO 1

which is peaked at

mQ —(co' —A, ) /2/}(.

S(q, r0) =S3 —=
, /2

e
(2m ',2)

3

)(2

(5.13)
M —= (((()'+'le'q'lq) )

=&p —qlq&+&p —ql«' 'Iq &. (5.22)

Using the resolvent identity

The tilde on p indicates the operator character in con-
trast to the c number p. With this preparation we are
ready to regard the type of matrix element occurring in
Eq. (5.15):

3

2A2
(5.14)

G' '=G' '(Ep )+G' 'aG' '(E ), (5.23)

In view of the power-law decrease of q)(p) the question
arises whether higher moments exist at all. One has to
know how S(q, co) decreases for a)~oo and q fixed. In
our model of Yukawa or exponential interactions we can
give an analytical answer which we shall derive now. Ac-
cording to Eq. (2.3) the continuum part of S has the exact
form

fdpi (q) + le(i/2)q r+e —(i/2)q r ) l2
P 2k

we get

M = &p
—

qlq &+(p-ql«'-'(E, , )lq )

+ & p —
ql VG' 'aG' )(Ep q)lq & . -

The first two terms combine to obtain

(~(+) ~) ()

and we are left with

(5.24)

(5.25)

where

dpi(+(+)le( /2)q +e —
( /2)q l+) l2 (5.15)

M= (p —qlVG' )alq)) .
Ep —e

Now we use

(5.26)

k =[I(co+e)—(q /4)]'/2 (5.16) G' 'a =[G' ', a]+aG'

increases with m. A naive estimate for large ~ and there-
fore large k would be to approximate lpz+') by the free

state lkp). Based on Eq. (2.14) this would yield the
power law 0 (1/a) ); this is incorrect. The estimate has
to take into account the orthogonality of y'+' and y. We
Galilean transform the scattering state in the form

&q)'+'le' '=&pie' '+(plVG' 'e' '
P

=&p —ql+&p —qlvG' '.

=G(-)[V,2y q/m]G(-)+aG( ', (5.27}

and note that

This allows us to put

2(p —q) q+ 2q' 2p q =0. (5.28)

Here &p
—qlva =&p —ql[V, a] . (5.29}

6(—)

E i e H()(p) V— — — (5.18)
All this together with another application of Eq. (5.23)
yields

and

6(—)

E —ie —Ho(p+q }—V
(5.19)

In view of the transformed free state (p —ql, we rewrite
G'-'as

1

, & p —ql[ v allq &+. . .
(E q

—e)
(5.30)

to leading order for lpl ~ 00.
The estimate of the matrix element is done most easily

in configuration space:
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Mo—:(p —ql[V, a]ly) = fdre "~ q ' ' V'(r)y(r)
)3/2 m

f dr r J', (Ip —qlr)V'(r)y(r) .
(2~) ~ m Ip ql

%e use the integral representation

j,{z)= ——f dt te'"P, (t)
2 —1

and

p~ 00

Ip
—

ql
.-p —p q

and can rewrite the integral in Eq. (5.31) as

2i( —" )tr i +' iptr——' f +'dt t f "dr r e "& P'q""V'(r)y(r)= ——' f dt t e 'f'q'"[r V'(r)]y(r)lo"
2 —1 0 2 —1 ipt

(5.31)

(5.32)

(5.33)

f "dr e'~'"
I e '~'q'"[r V'(r)]y(r) IiPt 0 Br

[r'V'—(r)]I„=,q(» =0)+0 1

p p
(5.34)

The coeScient of 1/p is different from zero for Yukawa interactions. Finally we expand the factor in front of the in-
tegral in Eq. (5.31) and the denominator in Eq. (5.30) and end up with

M ~— (r V'(r) ) I „Op(r =0) p q-p' (2n)'~' p
l+51q

p
(5.35)

Then going back to Eq. (5.15) we find

Sc(q,co}~ „[[rV'(r}]l„otp(r =0)I fdp[5(p q) —
q ]2k" (2n )

j [r'V'(r)]l „0y(r =0)I' „~z
= C (5.36)

for co~ Oo.

In the case of the one charged particle the decrease is
one power less:

2
1

S(q, a))~ [[r V'(r)]l, Oy(r =0) I
3m CO

(5.37)

It is interesting to note that in Ref. 7 an exponential de-
crease has been assumed which is in conflict with that
analytical result.

An immediate consequence of that power law is the
nonexistence of the moments mk for k ~5, for two
charged particles, and k ~4 for one charged particle.
This rules out the expansions {5.7} and (5.8) and throws
doubts on the quantitative usefulness of the low order ap-
proximations (5.12) and (5.13).

From Eq. (5.1}it follows that

a)F'"'(t)l, o= dt0'(isa')"S(q, co)
0

(5.38)

which exists up to n =4 in the case of two charged parti-
cles. Therefore, putting

4 tn
F(t)= g, F'"'(0)+f (t)

0 nf

it is easy to see that

f(t)~constt +'

(5.39)

(5.40}

for t ~0 and that it is therefore not analytic at t =0. In
Sec. VI we shall see indirectly the quantitative impor-
tance off (t). In doing that one has to determine the few
low order moments. This is straightforward following
Refs. 2 and 5 with the results
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mo= &q I
A'A lq & =2+2&q le"'lq &, (5.41)

2

m, =
& ip I

A (H —e) A
I ip &

=
—,
'

& apl [A, [H, A ]] I ip &
= (1—

& ip I
e ' 'I ip & ), (5.42)

~~=&qlA'(H —e)'Ale &=&pl[A",H][H, A]lq &

, +
3

& H &
—

z & iP le "liP & + , & iPIP [~e "'lip &
— , & iP IP [~e "'liP & (5.43)

and

m 3
=

& ip I
A (H e—) A I(p &

=
—,
'

& ip I [[ A H] [H, [H A ]]] I ip &

4

, + q, &Ho&+ ~, & I
"'Ig &—,&alp„"'Iip&+, &qlP'„"'Iq&

32m 2m 32m 2m 2m

2 2

=,', &~v&+ ', &~l[p„,[p, v]] "'l~& (5.44)

The cumulants follow from Eq. (5.9)—(5.11). For q~ ~
the interference terms are negligible and one gets

T(p, k, t)= V(p, k, r)

k2

k3

q
4m

~ &H, &,

&~V&.
6m

(5.45)

(5.46)

(5.47) where

+ f dp'V(p, p', t) T(p', k, r'),Ek+te —
Ep

(6.2)

In the case of the one charged "nucleon" one has, in-

stead of Eq. (5.5),

(i/2)q r~ A t (5.48)

VI. NUMERICAL RESULTS

and it is easy to see that in this case equal signs in expres-
sions (5.45)—(5.47) are valid. Also note that for q~ 00,
the cumulants are independent of the charge of the tar-
get.

t'=p' g,

and

r =P P =tr'+(1 —r')'"(1 r')'"—cos(P P') . —

For a Yukawa interaction V = Voe"'/r,

(6.3)

(6.4)

(6.5)

The two "nucleons" interact by the local potentials
(2.11) or (2.12), which support one bound state ip with en-

ergy e = —2.23 MeV. For the parameters of V in Eq.
(2.11) we refer to Ref. 4; the parameters of V in Eq. (2.12)
are Vo= —0.8150 fm ' and p=1.35 fm '. They are ad-
justed such that Vof Eq. (2.12) has the same &Ho & =10.8
MeV as V of Eq. (2.11). ip(p) is determined numerically
via

Vo /2n
V(p, p', t) =

z2+ 2—~~~ t +~2
(6.6)

and the P' integral in Eq. (6.2) can be performed analyti-
cally:

ip(p)=, f dp'p' VO(p p')ip(p'»
e —(p /m)

(6.1)
TABLE I. Bound-state wave function y(p) for the potential

(2.11)and its asymptotic behavior.

where Vo(p,p') are the well known s-wave momentum
representations of Eqs. (2.11) and (2.12). Since the
asymptotic behavior [Eq. (2.14)] is important for all our
estimates we display it in Table I for the potential MT III
of Eq. (2.11).

The final-state interaction is driven by the two-body T
matrix [Eq. (2.7)], which obeys the Lippmann-Schwinger
equation

p (fm ')

10.0
20.0
30.0
40.0
50.0

100.0
200.0

y(p) (fm )

—0.400 X 10
—0.170x 10-'
—0.312X 10
—0.967 x 10-'
—0.393x 10-'
—0.243 x 10
—0.151X 10

g(p)p (fm ' ')
—0.400
—0.269
—0.252
—0.248
—0.246
—0.243
—0.242



QUASIELASTIC ELECTRON SCAg-& FRING &N A ~( ~ ~ ~

V p p' t t ) f 2vr

P~p', t)

Vp lm.

[(p +p 2+ 2

Then the t .
~ PP tt') —4

e twodimension I.
t }( I —t')] 1n

na 1ntegral eg quat1on for T to b

T(

g o e solved is

K(p, k, t, t )=

et1c and define

v(pk t t 'p

et nes the E matr' bne rix y

0)+ dp pPEp
'

p,p, t, t )K(p' k tt ~to) ~

p, k, t) V(p, k t)+7 dp p
1

(k'
+1

ollowing Ref. 8 one avoids

, , t T(p', k t') .

'
s complex arithm

7

235]

(6.7)

(6.8)

(6.9)

Thereforore, the half-shell T ' ' 'vmatrix is ivg'ven by quadrature

T(p, k, t)= K(p, k, t, I
+1

dt'K(p, k, t, t'}T(k,k, t'

(6.10)

This re uireq ires the knowled e og
y is given through th

equation
e one-dimeenS1Onal

T(k, k, t)= K(k k, ,, , t, I)
2I ) dt'K(k, k, t, t')T(k k t'

(6.11)
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lp

lp

lo'

p-1

Q8 Q9 1.2

FIG. 3. The quantity (q /4m)S for the potential (2.11)
against g. The same q values as in Fig. 2, now counted in re-
verse order in the maxima.

responsible for the deviation from 10.8 MeV. Both con-
tributions are of equal magnitude. In the case of the reg-
ular and purely attractive potential [Eq. (2.12)] the ap-
proach towards the asymptotic value is faster as shown in
Table III.

Experimentally, the structure function is increasing
again on the right-hand side of the quasielastic peak due
to isobar excitations and other processes, which are not
taken into account in our model. Therefore, we ask how
well can one extract (Ho ) alone from the left wing of the
peak. In other words, we replace the integral in Eq.
(3.23} by twice the integral from ri;„ to 1. Table IV
shows the results. We see that only around q -7 fm ' do
we come into an acceptable neighborhood of the actual
value.

We mention that in the case of one charged particle the
sum rule

2

gg —1 Sqg
2m Imtn

is an exact identity. Here we added explicitly the correc-
tion term linked to the elastic form factor, which dies out
quickly with q. This relation was a useful numerical test,
which turned out to be fulfilled within three digits.

If one neglects that correction term in the spirit of the
model-independent extraction of (Ho), one only gets
(Ho) =9.71 MeV at q =2.5 fm ', whereas already at
q =5.0 fm ' the correction term can be neglected.
Therefore, in Table II we see that at q =2.5 fm ' the
contribution from the elastic channel is important. In
the case of the deuteron this correction term can be taken
from the elastic form factor and therefore (Ho) can be
extracted from the structure function for all q values.
For q ~ 5 fm ', where the interference terms are negligi-
ble, we expect a similar g scaling behavior for He and
the deuteron. Taking only the left wing of the quasielas-
tic peak into account, the extraction of (Ho) is less
favorable. For q =2. 5, 5.0, and 10 fm ' one gets
(Ho) —6.21, 9.61, and 10.2 MeV, respectively, neglect-
ing the correction term.

Let us now regard y scaling in some detail. The scaling
limit is the longitudinal momentum distribution PL(y),
which we display for our model in Fig. 4. Up to y =+2
fm ' the decrease is roughly exponential, then the zero
of y(p) causes the shoulder. In a more realistic deuteron
model the d-wave admixture fills that dip. At much
larger values, however, the decrease has to go over into a
power law. In our model, as follows from Eqs. (4.5) and
(2.14), the decrease is asymptotically O(1/y ), which
roughly starts at y =30 fm ' according to Table I.

As we saw in Sec. IV the leading correction term (4.8)
to the y scaling is the same in both cases, one or two
charged "nucleons. " Beyond that the first interference
term (4.6) is of fourth order in 1/q. Therefore the y-
scaling behavior is the same in both cases and we discuss
only two charged "nucleons. "

Now Fig. 5 displays our pseudodata (q/2m)S for
different q values against y in comparison with the
asymptotic limit PL (y}. A rough glimpse tells that there
is scaling to the right values for —1.5 fm '~y 1 fm
and q & 5 fm '. For y values outside that interval, scal-
ing is not yet reached for the rather large q values shown.
For q ~ 10 fm ', the left wing pseudodata scale in the full
interval shown —but not to the correct function. This is

TABLE II. Sum rules (3.21)-(3.23) for the potential (2.11) for various momentum transfers q. The
last row displays the exact values. g,„are the cutoff values necessary to evaluate Eq. (3.23) within four
digits.

q (fm ')

2.5
5.0
7.5

10.0
20.0
30.0
40.0
50.0

Sum rule

[Eq. (3.21)]

0.97
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Sum rule

[Eq. (3.22)]

0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

(0, ) (MeV)
[Eq. (3.23)]

9.84
10.6
1 1.1
11.1
10.9
10.8
10.8
10.8
10.8

Imax

40
30
30
30
12
12
10
10
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TABLE III. Same as in Table II for the exponential potential (2.12).

q (fm ')

2.5
5.0
7.5

10.0
20.0

Sum rule

[Eq. (3.21)]

0.98
1.00
1.00
1.00
1.00
1.00

Sum rule

[Eq. (3.22)]

0.02
0.00
0.00
0.00
0.00
0.00

(Ho) (MeV)
[Eq. (3.23)]

10.1

11.0
10.9
10.8
10.8
10.8

Imax

35
30
30
20
20

q me

q
(6.1 3)

Besides the asymptotic value PL {y) 10%%uo and 30% devia-
tions are also shown. Note that even at y =0, right in the
quasielastic peak, and q =1 fm ', one is more than 30%
off. Clearly within the interval 10 fm '

q 50 fm ' the

apparently a dangerous situation, since the scaling behav-
ior of the (pseudo)data could be misinterpreted as
representing the momentum distribution. A look at
higher q values reveals that the pseudodata for q =20
fm ' make a move in the direction of the limit function.
The convergence towards that function is, however, very
slow as we have seen by evaluating the pseudodata for
q =30—50 fm '. Therefore, our numerical experience in-
dicates that the limit in q is not uniform in y. One can
see this in the extreme case for fixed q and y ~~. Then
according to Eqs. (4.5) and (2.14), PI (y)=O(l/y ). In
that limit co =0 (y) and q/2mS (q, co) =0 ( I /co ) or
0(1/co ) for two or one charged particles, respectively,
according to Eqs. (5.36) and (5.37). Thus the scaling
function is above PL (y). We think that this tendency is

already visible on the right slope of Fig. 5. We would,
however, like to emphasize that for fixed y and q~ ae,

(q/2m)S has finally to converge to PI (y) for the poten-
tials considered by us. They include superpositions of
Yukawa interactions which are typical for nuclear phys-
ics. It remains to be seen in how far that slow approach
gets modified in a fully relativistic treatment.

A more quantitative insight can be drawn from Fig. 6,
where we display the pseudodata (q/2m)S for various
fixed y's against q. Note that y is limited from below by

pseudodata (q/2m)S do not scale, but move slowly to-
wards the asymptotic value PL (y). In that q interval and
for —1.25 fm '

y ~0.5 fm ' the pseudodata remain
within 10'Fo of the asymptotic value, whereas outside that
y interval the deviations are larger. It is also very in-
teresting to see the varying approach towards PL(y) for
different y's and smaller q's, which bares interesting in-
formation on the interplay of y and the half-shell T ma-
trix.

For the very regular potential (2.12) the approach to-
wards y scaling with the correct limit is faster as shown
in Fig. 7. Note the change of slope for y ~ —0.75 fm
in comparison to Fig. 6. This shows that indeed the
structure function depends sensitively on the properties
of the underlying interaction.

Let us comment on the importance of the final-state in-
teraction in the evaluation of S. Let So be the structure
function putting T=O in Eq. (2.8). We compare in Fig. 8

(q/2m)S and (q/2m)SO for fixed q values against y. We
see a significant difference between the two curves for
negative and positive y's. The difference is essentially
odd in y, which can be easily inferred from Eq. (4.2) in
first order in V and large q values. Also shown is PL (y)
and clearly the approximate structure function (q/2m)SO
deviates more strongly from PL (y) than the correct one
including final-state interactions. The pseudodata are
rather badly described by So on the left wing, where the
analysis of real data is especially of interest in terms of
nucleonic degrees of freedom and (q/2m)So falls below
the values of the momentum distribution.

The difference between S and So is very much visible in
the asymptotic behavior in co for fixed q. It is easily seen
from the exact form

TABLE IV. Same as in Table II but using only the left wing of the quasielastic peak.

q (fm ')

2.5
5.0
7.5

10.0
20.0
30.0
40.0
50.0

Sum rule

[Eq. (3.21)]

0.93
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Sum rule

[Eq. (3.22)]

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

(Ho) (MeV)
[Eq. (3.23)]

6.23
8.43

10.1
10.5
10.6
10.6
10.6
10.7
10.8
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1
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10

0
y [fm']
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2

FIG. 4. Longitudinal momentum distribution PL(y) in the
target bound state y for the potential (2.11).

FIG. 5. Scaling function (q/2m)S for various q's in compar-
ison to its asymptotic limit PL(y) for q ~ ~.
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FIG. 6. Scaling function (q/2m)S against q for various fixed y's. The potential is from Eq. (2.11). The dashed (dotted) lines
denote 30% (10'Fo) deviations from the asymptotic value PL(y) shown by a horizontal solid line.
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+1
So=nmk dt g k + —qt—1 4

1/2 t

1/2 t 2

+y k'+ +kqt
4

(6.14)

with k given by Eq. (2.10), that

So =0 1

7/2
(6.15)

independent of q while

S=O q
11/2

L

The neglect of the final-state interactions is not only
unjustified in the left wing of the quasielastic peak, where
one finally approaches elastic scattering and where obvi-
ously final-state interactions are needed, but also at large
energy transfers in the right wing of the quasielastic peak.
It is only justified in the peak and its immediate neighbor-
hood that the final-state interaction can be neglected.

Though our model neglects spin degrees of freedom in
the NN interaction and is strictly nonrelativistic, our
pseudodata qualitatively show features also present in
real data. In Ref. 10 a "scaling function" is introduced

which in the nonrelativistic limit coincides with our re-
duced structure function (q/2m)S(q, co), including the
definition of y. In Fig. 1 of Ref. 10 experimental data for
the scaling function are shown which for y ~ —200
MeV/c drop with increasing q values and have a tenden-
cy to fiatten out at the largest q values (q —12—14 fm ')
shown. The decrease with q is a clear signature' for the
presence of final-state interactions. Qualitatively, our
Fig. 6 shows a similar behavior and also stresses the im-
portance of final-state interactions. It may be interesting
to point out that for a plane-wave approximation the ap-
proach towards the asymptotic limit is from below. '

This however does not mean that this argument can be
reversed and an approach from below indicates a weak or
negligible final-state interaction. Figure 7 is a clear coun-
terexample of this.

Figure 2 of Ref. 11 is another example where experi-
mental data for the "scaling function" are displayed and
which show a striking qualitative similarity to our Fig. 5.
Again this definition (Definition I) coincides with ours in
the nonrelativistic limit. For y & —0.2 GeV/c and the
momentum transfer considered, a substantial scale break-
ing is present, which in our model, results from final-state
interaction effects. This stresses the importance of prop-
erly including the interacting continuum. Also in our
model-study a partial-wave decomposition of that contin-
uum would have been totally inadequate (see Fig. 1).

-I
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1.0%10

0.20
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FIQ. 7. Same as in Fig. 6 for the potential from Eq. (2.12).
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TABLE V. The first three cumulants for the potential (2.11)
for various q's.

q (fm ')

TABLE VI. Same as in Table V neglecting the interference
terms.

q (fm ')

2.5
5.0
7.5

10.0
20.0

0.330
1.33
2.96
5.25

21.0

0.0308
0.181
0.269
0.407
1.54

—0.004 65
—0.328
—0.148

0.388
1.55

2.5
5.0
7.5

10.0
20.0

0.328
1.31
2.96
5.25

21.0

0.0240
0.0959
0.216
0.383
1.53

0.0222
0.0886
0.199
0.354
1.42

We finally investigate the possibility to represent the
structure functions S by a few cumulants. The first three
cumulants for the interaction (2.11) are displayed in
Table V. This includes the interference terms. In Table
VI we show these cumulants without interference terms,
corresponding to the asymptotic forms, Eqs.
(5.45) —(5.47). The importance of the interference terms
for the cumulants grows with increasing order. For A, 3

even the sign is influenced by the interference terms for

lower q values. According to Eq. (5.14) this determines
the position of the maximum to be left or right of g=1.
We compare in Fig. 9 the exact S with the approximate
Sz and S3 of Eqs. (5.12) and (5.13) for two q values. The
discrepancy is drastic in height and width. S3 even shifts
the position of the peak. This clearly indicates that the t
dependence in Eq. (5.39), beyond the few low-order
terms, is important. The inadequacy of Sz, for instance,
can also be seen in the following manner. One can fit S2
to the pseudodata which provides fits to A, , and A,2. The

1Q
S [fm]

0.08 0.1

Ed [Gev]
0.12 0.14 0.16 018

-0.5 05 1

y [tm'] 0
0.6 0.8 1.2

S [fm]
q 10

4& [Gev]

2
1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

1.75

1.5

1.25

0.75

0.5

0
y [fm']

0.25

0.8 0.9 1.2

FIG. 8. Comparison of the structure function (q/2m)S (solid
curve) with (q/2m)SO (short-dashed curve) and PL(y} (long-
dashed curve) at (a) q =2.5 fm ' and (b) q =10.0 fm

FIG. 9. Comparison of the structure function S (solid curve)
with S2 (long-dashed curve} and S3 (short-dashed curve) against

g or co for (a) q =2.5 fm ' and (b) q = 10.0 fm
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TABLE VII. (Ho) extracted from Eq. (5.46) and the fit

values A, &.

q (fm ')

2.5
5.0
7.5

10.0
20.0
30.0
40.0
50.0

(Ho} (MeV)

5.40
5.25
5.22
5.19
5.15
5.14
5.13
5.13

asymptotic values of A, , and A,z are known theoretically
[see Eqs. (5.45) and (5.46)]. In our model these asymptot-
ic limits are reached around q=10 fm '. Using the fit
values A,z and interpreting them according to Eq. (5.46),
one can "gain" expectation values of the kinetic energy in
the target which are displayed in Table VII. They neatly
get independent of q but deviate strongly from the correct
value (Ho) =10.8 MeV. We conclude that within our
model study the low-order cumulant representation is not
useful.

UII. SUMMARY

In a strictly nonrelativistic model the (longitudinal)
structure function for quasielastic scattering on a model
"nucleus" has been investigated. The model consists of
two "nucleons, " which are either both charged or where
only one is charged and which interact by local spin in-
dependent forces. We have chosen the NN potential MT
III, now acting in all partial waves, and a purely ex-
ponential potential. The final-state interaction is taken
into account exactly by evaluating the two-body T matrix
directly in three-dimensional space. The numerically pre-
cise values for the structure function served as pseudoda-
ta to study sum rules, y scaling, the cumulant expansion,
and last but not least the importance of the final-state in-
teraction. One of the sum rules delivers the expectation
value of the kinetic energy (Ho) in the target ground
state. We looked into the question of whether the left
wing of the quasielastic peak can be used alone to extract
(Ko ). It has to be seen in how far the definite results for
our model will be modified by a full relativistic treatment.
Our results for y scaling, however, show features, which
are qualitatively also seen in real data analysis. ' '" For
small negative y values our pseudodata scale neatly to the

correct limit function PI (y), the longitudinal momentum
distribution, whereas, for larger ~y~ values the scaling
function decreases with increasing q's and approaches
PL (y) from above (in the case of Malfiiet-Tjon potential).
For these large negative y values and a certain range of q
values, the scaling is badly violated. In our case the devi-
ation from the asymptotic limit is a result of final-state-
interaction effects, which stresses the importance of prop-
erly treating the interacting continuum. More
specifically, our model study showed that y scaling to the
correct limit function PI (y ) occurred only for
—1.5 &y ~ 1.0 fm ' and is badly violated for smaller (or
larger} values for the numerically studied momentum
transfers. The approach of the exact pseudodata to PL (y)
for y & —1.5 fm ' is extremely slow with increasing q.
There is even the danger that at not too large q's, the
pseudodata seem to scale without having reached the
asymptotic value PL(y). Though for certain q and y in-
tervals scaling is violated the formal result is that the
pseudodata for the potentials considered scale to the
correct limit function PL (y) in the limit q~ ee. Accord-
ing to our numerical experience that limit in q is not uni-
form in y. An interpretation of the pseudodata neglect-
ing the final-state interaction is highly insufficient except
for the immediate neighborhood of the quasielastic peak.
The q dependence of the scaling function (q/2m)S for
fixed y's (see Figs. 6 and 7} shows a rich structure varying
with y, which results from the interplay of the bound-
state wave function and the half-shell two-body T ma-
trices. Precise experiments would provide interesting in-
sight into these quantities.

With respect to the question of interference terms we
found in our model that they can be neglected above

q =5 fm ', but are noticeable below. Hence, we expect a
similar scaling behavior for He and the deuteron above
q=5fm '.

The representation of the structure function by a few
low-order cumulants turned out to be unsuccessful. We
showed analytically that S(q, co)=0(co ) for Yukawa
interactions. This tells that higher-order cumulants do
not exist.
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