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The effects of the residual nucleon-delta interaction proposed by Ferreira et al. to eliminate the
discrepancies between theory and experiment in md elastic scattering are studied for the breakup re-

action at 228 and 294 MeV. It is found that in first order the residual interaction lowers the cross
section particularly in the region of the neutron-proton final-state interaction. However, the effects
of higher-order corrections generated by the Xh interaction are found to be non-negligible, which

implies that the parameters extracted by Ferreira et al. probably must be modified.

I. INTRODUCTION

The effects of a residual nucleon-delta interaction
which is not contained in the standard three-body
description obtained from the relativistic Faddeev theory,
have been studied for m.d elastic scattering by Ferreira
et al. ' Contributions to this residual interaction can
arise, for example, from the exchange of a p meson be-
tween the nucleon and the delta or from a direct mob,
vertex which would give rise to a t channel one-pion ex-
change (OPE) interaction. The method used by Ferreira
et al. was to calculate a correction to the pion-deuteron
elastic scattering amplitude coming from the scattering of
a nucleon and a delta in intermediate states with the
partial-wave nucleon-delta T matrix parametrized in
terms of the two parameters 5 and rt, where 5 is the phase
shift and g the inelasticity. They then added this correc-
tion to the pion-deuteron elastic scattering amplitudes of
Ref. 7 and determined, in this way, the parameters 5 and

g of the Nh channels 'S2 and P3 such that they would
eliminate almost completely the discrepancies for the to-
tal cross section, the differential cross section, and the
vector analyzing power iT» throughout the energy re-
gion 125 & T ~ 325 MeV.

The main effect of the residual Nh interaction in the
case of the differential cross section was to remove a
long-standing discrepancy of a factor of 2 in the angular
region around 100'. Thus, since also in the case of the md

breakup reaction there exist in several regions of phase
space discrepancies of roughly a factor of 2, it is tempting

to see if the residual Nh interaction would also help to
remove these discrepancies here. Some estimates for the
effects of this interaction in the closely related ~d ~Nh
channel have been carried out already by Dosch and Fer-
reira. Similarly, the effects of the residual interaction in
the reactions nd~NN . and NN ~NN have been studied
recently by Alexandrou and Blankleider.

An important point raised by Alexandrou and Blank-
leider is the question of the convergence of the residual
Nh interaction, that is, whether or not it is justified to
use just the lowest-order term as did Ferreira et al.
Thus, we have also studied the effects of higher-order NA
terms. Since the equivalent to the std elastic reaction in
the case of the breakup channel is the region of the
neutron-proton final-state interaction, one expects that
the effects of the residual interaction will be strong here,
and, therefore, we have performed our calculations at
T =228 and 294 MeV in order to compare with the data
of Mathie et al. and List et al. ' which cover this region
of phase space.

II. FIRST-ORDER Nh INTERACTION

A. Relativistic three-body model

The relativistic three-body theory of Ref. 7 was ob-
tained by applying the isobar ansatz for the two-body
subsystems and the condition that all the spectator parti-
cles be on the mass shell. It leads to the integral equa-
tions

„k,dk, 1mv, gm, vF" ""'' ''(k k)=V" ""'' ''(k k)+V V V" ""'' ''(k k)~(k)F' '"' ''(k k)
7

i&n j, m, v,

where co; =(k; +m; )'~, J is the total angular momentum
of the system, and k,- and v; are the magnitude of the
three-mornenturn and the helicity of particle i, respective-
ly, while j;, and m,- are the spin and helicity of the pair
jk, which in the isobar ansatz correspond, respectively, to
the total angular momentum of the pair and its magnetic
projection along the direction k, +kk [for simplicity we

I

have left out in Eq. (1) the isospin and orbital momentum
quantum numbers of a pair]. The transition potentials

i m v, jmv,
VI/ J ' ' ' ' '( kl, k; ) in Eq. (1) are the partial-wave projec-
tions of the diagram where one exchanges particle k be-
tween a state consisting of particle i and the isobar i, and
a state consisting of particle j and the isobar j. The cou-
pling of the isobars to the pion and nucleons is given by
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the standard relativistic vertices that couple particles of
spin 0, —,', 1, and —,

' of either positive or negative parity.
The isobar propagators ~ (k; ) are related to the on-shell

amplitudes of the pair jk, as

i is(s )r (k, )=, , sin5(s, )e

~g,', (p )p;
'

where

s, =(3/S —Qk;+m; ) —k;

and

[s, —(m +mk) ][s;—(mj —mk) ]
4s,

(4)

with S the total invariant energy squared of the system
and g~(p; )=1/(1+p; /A ), with A=1 GeV/c for the

pion-nucleon channels, while for the nucleon-nucleon
channels they are constructed from the bound and anti-
bound state solutions of the Paris potential. The input of
these equations are the six S- and I'-wave pion-nucleon
channels (S», S3„P»,P», P», and P33) and the
nucleon-nucleon 'So and S,- D, channels as described in
Ref. 7. In the nucleon-exchange diagram for the transi-
tion potential from a NN isobar, with a pion as spectator,
to a nN isobar, with a nucleon as spectator [see Eq. (77)
of Ref. 7], we have included only the positive-energy
components in the propagator of the exchanged nucleon
since it is our experience that the inclusion of the
negative-energy components always leads to a poor
description of the elastic and breakup reactions. This is
similar to the case of nucleon-nucleon elastic scattering
where the negative-energy components lead, in general,
to a poor description of the data so that they are usually
removed. "

B. Nh interaction in md ~md

The possibility of a residual nucleon-data interaction
not contained in the integral equations (1) can be under-
stood by considering, for example, contributions to the
Nb, Nb transition —potential arising from the exchange
of a p meson or from a direct m.b 5 vertex. In principle,
this residual interaction could be simply added to the
standard transition potential defined by the three-body

I

(c)

FIG. 1. The lowest-order contributions of the residual NA
interaction to: (a) m.d elastic scattering, (b) md breakup, and (c)
n.d breakup in the region of the neutron-proton final-state in-

teraction.

theory, and its effect calculated by solving the integral
equations (1) with the modified NA Nb, transition p—o-
tential. This is the approach followed by Alexandrou and
Blankleider. However, one may also consider using
first-order perturbation theory and simply add the Nh T
matrix generated by the residual interaction alone to the
full amplitude generated by the three-body model. This
has been the approach followed by Ferreira et al. The
process considered by Ferreira et al. in their study of the
effects of the Nh interaction in md elastic scattering is de-
picted in Fig. 1(a). The expression for this process within
the theory of Eq. (1) is

mf, mo i i ~ i dki lmfm, v , m, v, m v» m.'v, lmo
~g J( f, k())= gg, V„d ivI)'J(kf, k, )ii(k, )fiv~

'
ivi, 'J(k, , k,')~~(k,')V~~ '

d J(k,')ko),2- o 2-
(5)

where mo and mf are the initial and final helicities of the
deuteron and implicit in Eq. (5) is the fact that the pion
has spin 0 and the delta has spin —'.

I

The NANNA, T matrix fez ' zz'J(k, , k,') in Eq. (5) has
been written in the helicity basis, which is related to the
corresponding T matrix in the LSJ basis, as

m, v, m, v,. LS,L'S' I ~t ~t
fbi).

' it'ia'J(k, , k,')=g g bL+J'f~t)' Ni) J(k;, k,')bl s J
LS L'S'

where

b„',"'=&(21.+1)/(2J+1)C,'" „C'"'."'
t l t t

(7)
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In the study of Ferreira et al. only the contribution of
the Nh states with lowest orbital angular momentum was
taken into account in the case of J=2 and J=3, that is,
only the S2 and P3 NA channels, so that with this
simplification the corresponding equations (6) become

I I I I
m v.

fJVg Na 2(k;, k )=b022'f~a ~g 2(k;, k )bp g2', (8)
I I I I

f~a ' ~'a'3(k(, k )=b,2'3'f~a' ~a 3(k;,k )b, 2'3' . (9)

The residual Nb, T matrices fez' Na J(k;, k ) in Eqs. (8)
and (9) for J =2 and 3 and energies 125 T„325MeV,
were parametrized by Ferreira et al. as

fNg' Jva, J(k& k& ) =Brjy~a

where

where p„s„,q„,and I & are the mN relative momentum,
m.N invariant mass squared, Nh relative momentum, and
width of the delta, respectively, all evaluated at the reso-
nance position. The Nh phase shifts and inelasticities 5z
and gz were chosen such that the theoretical description
of md elastic scattering improves dramatically after add-
ing the correction (5) to the standard nd amplitude. We
should mention that Ferreira et al. took into account,
approximately, the finite width of the delta by evaluating
the Nb, an-shell momentum q, from Eq. (A6) by using
the complex 6 mass and then replacing q„in Eq. (12) by
Re(q„). We have also used this prescription as well as
their values of Re(q„)in the applications involving Eqs.
(10)—(12) at T =228 and 294 MeV.

C. Nh, interaction in md ~~NN

(12)

and B is a constant that, in our normalization and in the
zero-width approximation (see Appendix A) is given by

p„ga(p„)&s
s„Izq„

Following the same technique as in Eq. (5), one can
evaluate the contribution of the residual Nh interaction
to the md breakup reaction depicted by Fig. 1(b) as

5I'"'d"' ~~ J(pk, , ko)= $ $ (pj01 —', m, )ga(p, H~(k, ) f ' ' f~~""~a J(k, , k,')~~(k,')&Na" d J(k,', ko), (13)
m

0 26)imt m,. v,.

and that of Fig. 1(c) as

bF„d' 'NN J(pkkk, ko)= g g g (ppJIJk~'k)gq (pk)r) (kk)
JI mI m V

l l

kidk, ~ ki dk,
'

)„mk m v
X f ' ' f V~d "~a J(k„,k;)i~(;)

0 2'; 0

I I I I
m, v, m, v, m, v, 1mO

xf~g gQ J(k/ k t} r&(k t)V&&
' «J(k, ko), (14}

where p; and p are the final helicities of the two nu-

cleons and (p;p~ l jk mk ) is the angular part of the vertex
of an isobar of spin jk and helicity mk that decays into
particles i and j with helicities p; and pj. Figure 1(b}has
been previously estimated by Dosch and Ferreira, while
Fig. 1(c), which is the relevant one in the region of the
neutron-proton final-state interaction, has never been
evaluated before.

III. HIGHER-ORDER NLL EFFECTS

There are three points which are questionable within
the approach of Ferreira et al. that we have described in
Sec. II. Firstly, they have considered the effects of the re-
sidual Nb interaction by means of perturbation theory
keeping only the lowest-order term and give no informa-
tion on the validity of this approximation. It is not obvi-
ous that perturbation theory should be valid in this case
since the residual Nb interaction is not weak. Secondly,
they have parametrized the on-shell residual NA ampli-
tude in a way corresponding to a stable b particle (zero-
width approximation), while one knows that the b, is not
a stable particle but a rather wide pion-nucleon reso-

I

nance. Thirdly, they have used a parametrization of the
off-shell residual Nb, amplitudes [see Eqs. (10) and (11)]
which is identical to the on-shell one, that is, their off-
shell amplitudes do not go to zero as k, or k,'~ ~. In
addition, for a given orbital angular momentum L they
do not have the proper threshold behavior due to the an-
gular momentum barrier that it should behave as k; or
k,

' as k, or k,'~0. Consequently, in this section we will

reformulate the contribution of the residual NA interac-
tion in such a way that these problems can be overcome.
First of all, we will rewrite the integral equations (1) with
the residual N 5 interaction included to all orders.
Secondly, we will introduce a separable model for the re-
sidual nucleon-data amplitude which is unitary also in
the case of an unstable delta so that no zero-width ap-
proximation is needed. This will also allow us to solve
the problem of the proper threshold and asymptotic be-
haviors of the residual amplitude.

A. Higher-order corrections

If one includes a residual nucleon-delta interaction U

in the integral equations (1), one must make the replace-



42 NL INTERACTION IN md BREAKUP 2337

ment V&z~ Vzz+U", so that the equation for an initial
n.d state and a final Nh state becomes

TABLE I. Parameters of the NA separable potentials de6ned

by Eqs. (19) and (24).

Fzd Vzd+(V az+u")~tFad+ X Vt J~JF~d . (15)
jwh

This equation can be rewritten as

P, (fm '}

1.90
1.68

yL (fm )

—9.86
—98.2

Ftid =(1+f rt, ) Vq d+(1 +f rq) g Vt jrqFJd, (16)
J

where f" is the residual Nh T matrix that satisfies the
Lippmann-Schwinger equation

fR vR+vR~~R (17)

The approach of Ferreira et al. would correspond then
to solving Eq. (16) with f"=0 and simply adding after-
wards just the lowest-order contribution given by the
second term in the inhomogeneous part of Eq. (16).

(23) become the standard expressions for stable particles.
The advantage of Eqs. (20)—(23) is that they allow us to

define a nucleon-delta phase shift without having to in-
troduce the zero-width approximation. As Eqs. (21) and
(22) indicate, the phase shift 5L has in this case the
meaning of an average phase shift, since in Eqs. (21)—(23)
one is integrating over the available width of the P33 res-
onance. We will use for the form factors in Eqs.
(20}—(23) the simple forms

B. Separable model of the residual Nh, interaction

k~ht(k;)=, , L =0, 1
(P2 +k2)L+i ' (24)

The Lippmann-Schwinger equation (17) for a given or-
bital angular momentum L, can be written explicitly as

fz"(k;,k )=uL"(k;, k )

d
+ I vt"(k;, q; }~~(q, )fz"(q, , k,') . (18)

0 2CO;

If the residual Nh interaction is taken to be of the separ-
able form

vL (k;, k/}=hL(ki)yLhL(k }, (19)

ft"(k;,k ) =hL (k; }

AND
sin5"'e' '

hL(k ), (20)

where

2~ q; dq(.
~L, = hL, (q, )1m~~(q, ),

0 2']
and the phase shift 5L is given by

(21)

where yL is the strength of the interaction and hL (k; ) the
form factor, then the solution of Eq. (18) can be written
in closed form as

which have the correct threshold and asymptotic behav-
iors as k, ~0 or k;~ ~. The parameters yL and PL for
L =0 and 1 are given in Table I, and they have been ob-
tained by fitting the Nb, phase shifts of Ferreira et al. at
the two energies that we are considering.

There is no unambiguous way to relate the parameters
of the residual interaction of Ferreira et al. which were
obtained assuming the zero-width approximation, with
those of three-body models where the delta propagator
always contains the width of the P33 resonance. Thus,
Alexandrou and Blankleider, for example, identified the
Ferreira et al. phase shifts with those between a nucleon
and a bare delta in their model. We, on the other hand,
have chosen to compare the phase shifts of the unstable
delta of our model directly to the zero-width phase shifts
of Ferreira et al. This choice can be justified by noticing
that at T„=228and 294 MeV, one is far above the P33
resonance so that when doing the integration over
Imra(q; ) in Eqs. (21) and (23), one is taking into account
most of the width of the delta, and, consequently, the re-
sult of these integrations will be similar to those of the
zero-width approximation. This of course will not be
true at energies below the P33 resonance.

CXL
tan5~~=

yL
—

q,. dq, . 2'; hL g; Re~& g;
0

(22) IV. RESULTS

A. md elastic scattering

The Ferreira et al. T matrix given by Eqs. (10) and (11)
corresponds to the special case of Eq. (20),
hL (k, ) =const. , if the inelasticity i)L in Eq. (11) is equal
to 1. At the two energies that we are considering both
inelasticities q0 and q& of Ref. 4 are indeed equal to 1.
Equations (20) and (21) imply that

fL"(k, , k, )Imv~(k; ) =sin5L e
0 2'; (23)

which is a straightforward generalization of the unitarity
relation to the case of an unstable delta, since in the case
of a stable delta Imi.~(k, ) ~5(k; —ko) and Eqs. (21) and

We show in Figs. 2 and 3 our results for the md elastic
differential cross section and vector analyzing power at
T =228 and 294 MeV. We present in these figures the
results of the calculation without residual Nh interaction
(solid lines), with the Nb, interaction included in first or-
der within the Ferreira et al. model as given by Eqs.
(10)—(12) (short-dashed lines), with the Nb, interaction in-
cluded in first order as given by our model of Eqs.
(20)—(22) (long-dashed lines), and with the Nb, interac-
tion as given by our model included to all orders (dotted
lines). The first-order results of the Ferreira et al. model
are qualitatively similar to those of Ref. 4, although small
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differences appear due to our use of a different parame-
trization of the delta propagator [Eq. (2)] and of the
deuteron wave function. In particular, Ferreira et al.
neglected the D-state component of the deuteron in their
evaluation of Figs. 1(a) and 1(b), while we have performed
all our calculations including the D-state component of
the deuteron.

The first-order results of our model follow the same
trend as the Ferreira et al. model, although they are
somewhat stronger as a consequence of our use of form
factors in Eqs. (20}-(22). The biggest difference, howev-
er, is observed in the results when the Nh interaction is
included to all orders which have different shape and
make the theoretical predictions to move further away
from the data. This clearly shows that the first-order ap-
proach of Ferreira et al. is not adequate as has already
been pointed out by Alexandrou ad Blankleider.

It is important to mention that our results when we in-
clude the NA interaction to all orders show a much

100

X g ( Vaa + Vad rd Vga }raF (25)

where the kernel V&z. + V&d~d Vd& is stronger when the
cutoff parameter A is large. Thus, since the higher-order
effects of the residual interaction are given by
f ra( Vaa + Va„rdVda ), they will also be stronger when
the cutoff parameter A increases.

stronger effect than the ones reported by Alexandrou and
Blanklieder (as seen, for example, in our Fig. 2 for
T =228 MeV). The reason for this difference is that we
have chosen the cutoff form factor of the six pion-nucleon
channels as g (p, )=1/(1+p,. /A ) with A=1 GeV/c,

I

while the corresponding form factor of Ref. 8 for the
dominant P33 channel has a cutoff parameter A=200
MeV/c. We have checked that changing our A to 200
MeV/c indeed gives results very similar to those of Alex-
androu and Blankleider. One can understand this strong
dependence of the higher-order Nh effects on the ~N
form factor by noticing that Eq. (16) can be rewritten as

Fa~ =(1+f ra) Vad +(1+f"ra)
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FIG. 2. The effects of the residual NA interaction in the m.d
elastic differential cross section. The solid lines are the results
without Xh interaction, the short-dashed lines are the first-
order results within the Ferreira et al. model given by Eqs.
(10)—(12), the long-dashed lines are the first-order results within
the separable model given by Eqs. (20)—(22), and the dotted lines
are the results of including the Xh interaction to all orders
within the separable model of Eqs. (20)—(22). The experimental
data are from Ottermann et al. (Ref. 12).
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FIG. 3. The effects of the residual Xb, interaction in the ~d
elastic vector analyzing power iT». The curves are labeled as
in Fig. 2. The data are from Ottermann et al. (Ref. 13} and
from Smith et al. (Ref. 14). At 228 MeV the data used corre-
sponds to 238 MeV.
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from Mathie et a1. (Ref. 9).

FIG. 6. The efFects of the residual Nb interaction in the md

breakup difFerential cross section at T =294 MeV and two
pion-proton angle pairs as a function of the proton momentum.
The labeling of the figures is the same as in Fig. 2. The data are
from List et al. (Ref. 10).
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B. md breakup

We show in Figs. 4 and 5 the results for the differential
cross section of the md breakup reaction at 228 MeV
measured recently by Mathie et al. where we have con-
sidered only four pion-proton angle pairs. As one sees,
the effects of the residual interaction are stronger in the
region of low proton momentum which is dominated by
the neutron-proton final-state interaction, that is, by Fig.
1(c) in the lowest-order case. There is no clear improve-
ment in the description of the data as a result of includ-
ing the residual interaction whether in lowest order or to
all orders. One also sees large effects from the residual
interaction in the high-momentum part for 8 =42.9'
which corresponds to a 4++ formation in the final state
and, therefore, are produced in lowest order by Fig. 1(b).
Again, the effects are in the opposite direction of what
the data requires. At the two cross sections with
8 =12.5', the theoretical predictions are shifted from the
data and this situation does not change by including the
residual interaction. The origin of this shift is very hard
to understand theoretically since the position of the
quasifree peak is basically determined by the deuteron
wave function and the momentum of the outgoing neu-
tron which is completely determined by the kinematics of
this experiment. This shift is not observed at 294 MeV at
very similar angles as shown in Figs. 6 and 7.

We show in Figs. 6 and 7 the corresponding results for
the differential cross sections at T„=294MeV measured
by List et al. , ' where we consider again only four pion-
proton angle pairs. As one sees, the effects of the residual
interaction are somewhat smaller in this case and again
no obvious improvement in the description of the data is
obtained. In the region of the neutron-proton final-state
interaction, at low proton momentum the ordering of the
curves is approximately the same as in the elastic case for
similar pion angles, which is of course a consequence of
the similarity between Figs. 1(a) and 1(c).

V. CONCLUSIONS

We have studied the effects of a residual interaction of
the type proposed by Ferreira et al. in the ~d elastic and
breakup reactions. We have found that this interaction
can produce large effects in both reactions, but its in-
clusion through the use of first-order perturbation theory
is not justified. In the case of tht: breakup channel, the
effects of the residual interaction are stronger in the re-
gion of the neutron-proton final-state interaction but no
obvious improvement in the description of the data is ob-
tained.

This work was supported by the German Federal Min-
istry for Research and Technology (BMFT) under Con-
tract No. 06 OH 754.

APPENDIX A: THE ZERO-WIDTH APPROXIMATION

Qs„ra(s;)
X

s, —s„+i+s„Iz(s; )

where s, and p; are defined by Eqs. (3) and (4), and

~r
I a(s; ) = tg 6(s; )

(Al)

(A2)

is the (energy-dependent) delta width. The zero-width
approximation is obtained if, in the denominator of the
propagator (A 1), the width of the delta is neglected. In
this approximation the delta propagator becomes

The delta propagator rz(k; ) which is given in terms of
the p33 phase shift by Eqs. (2)—(4) can be rewritten in the
form

4+s,
rq(k; )=

~g~(p )p

ra(k;)=
4+s, Qs„r,(s, )

~g&(p,. )p,. s; s„+le

4&s,&s„r,(s,. ) 1

ega(p; )p; (~S —Qm; +k; +Qs„+k,) &S —Qm; +k; —Qs„+k,+ie
(A3)

where we have used Eq. (3) in the last step and m; is the
mass of the nucleon. The propagator (A3) is that of a
two-bod~ problem with two stable particles of masses m;
and Qs„,respectively. Let us now consider the one-
channel Lippmann-Schwinger equation for the XA sys-
tem

fL(k;, k )= VL(k, , k )

p,'g a(p,')&S qe"' —1
(A5)

I

example, of reducing a set of coupled channel equations
into a one-channel problem). Using the propagator (A3)
into Eq. (A4) implies that the on-shell Nb, amplitude is of
the form

2
dpi+ Vl (k;,q;)ra(q;)fL(q, , k,'),

0 2';
(A4)

where

[S—(m, +Qs„)][S—(m, —Qs„)]
4S

(A6)

where the potential is in general complex (as a result, for and p„is given by Eq. (4) with s,. =s„.
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