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A single integrodifferential equation in two variables, valid for A nucleons interacting by pure
Wigner forces, which has previously only been solved in the extreme and uncoupled adiabatic ap-
proximations, is now solved exactly for three- and four-nucleon systems. The results are in good
agreement with the values obtained for the binding energies by means of an empirical interpolation
formula. This validates all our previous conclusions, in particular that the omission of higher tthan
two) order correlations in our four-body equation only produces a rather small underbinding. The
integrodifferential equation approach is here also extended to spin-dependent forces of the MalAiet-

Tjon type, resulting in two coupled integrodifferential equations in two variables. The exact solu-
tion and the interpolated adiabatic approximation are again in good agreement. The inclusion of
the hypercentral part of the two-body interaction in the definition of the Faddeev-type components
again leads to substantial improvement for fully local potentials, acting in all partial waves.

I. INTRODUCTION

In this first paper of a series of applications of the new-

ly developed integrodifferential equation approach
(IDEA) to A-body bound-state problems, ' we consider
the ground state of A =3 and 4 nuclei with nuclear
forces of the MalQiet-Tjon type and a few Gaussian-type
forces. It has been previously shown that the IDEA is
exact for three bosons interacting in S states and reduces
to the integrodifferential form of the Faddeev equation in
coordinate space. Otherwise, the IDEA has been shown
to take all the two-body correlations into account exact-
ly even for A ~ 4. Because of the restriction to two-body
correlations, the IDEA does not increase rapidly in com-
plexity with A and can even be successfully applied to
16-fermion bound systems. Even for A ~ 4 the
integrodifferential equations of the IDEA remain two-
variable equations. The only significant increase in com-
plexity is the step from A =3 to 4, when the integral ker-
nel also includes disconnected pairs, e.g. , the pairs (1,2)
and (3,4). On the other hand, the adiabatic approxima-
tions to the integrodifferential equation reduce it to two
one-variable equations, which improve in accuracy with
increasing A. For larger nuclei the major diSculty is the
calculation of the weight functions which occur in the
integrodifferential equation from the nuclear structure.
For A =3 and 4 this is no problem at all, but the accura-
cy of the extreme and uncoupled adiabatic approxima-
tions, which provide upper and lower bounds to the exact
binding energy of our equation, is reduced. This em-
phasizes the need of an exact solution of the two-variable
integrodifferential equations in this case. Another advan-
tage of such a solution is that in this way we can in prin-
ciple compare not only the binding energies, but also the

bound-state wave functions, of the two adiabatic approxi-
mations, with the exact ones. This will, however, be left
for the next paper. In addition, we show that the in-
clusion of the hypercentral component of the two-body
local potential, operating in all orbitals in the IDEA,
takes the effect of the higher partial waves largely into ac-
count without requiring the solution of a coupled system
of integrodifferential equations.

The main purpose of this work is to compare the adia-
batic approximations for the wave functions and the
binding energies to the results obtained from the exact
solution of the two-variable equations for three- and
four-nucleon systems, to compare those results with cal-
culations by means of other methods, and to investigate
the advantage of incorporating the hypercentral potential
in the definition of the Faddeev components of the wave
functions.

Another purpose is to demonstrate in particular the ex-
cellence of the approximation which includes only two-
particle correlations for four-nucleon systems. Finally,
we wish to draw attention to the usefulness of Faddeev-
type integrodifferential equations in two variables for A
nucleon systems with A ~4.

In the next paper we will study explicitly the
configuration space Faddeev-type amplitudes for three-
and four-nucleon systems in the spirit of the three-body
graphical studies of Payne and co-workers and
demonstrate the surprising accuracy of the wave func-
tions calculated in the adiabatic approximations. In this
paper we brie Ay sketch the formalism of the
integrodifferential equations for A particles in Sec. II, fol-
lowed by more details for the cases A =3 and 4 in Sec.
III. The results of our calculations and comparisons with
other works are given in Sec. IV. These sections are sup-
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The A-body wave function of the Schrodinger equation
can be written as

%(x)= g f(r;, ,x),
i &j(A

(2.1)

where the P(r,",x} represent Faddeev-type components
and are defined by

(T E)g(r;, ,—x)= —V(r,, ) g itj(rki, x) .
k&I(A

(2.2)

Here I represents all the coordinates and r;, =r; —r if r;
is the coordinate of particle i. The hyperradius is given
by r =2/A g rj. Assuming that the expansion in the
so-called potential harmonics (PH} introduced by Fabre
de la Ripelle is not only extremely accurate for three-
body bound systems, as shown by Erens, ' but also for
the A-body wave function, we can use the ansatz'"

P(r, ,x) =H(L "«(x)F(r,",r ), (2.3)

where the harmonic polynomial H(L l(x}, which defines
m

the ground state of a system of fermions, can be extracted
from a sum of harmonic oscillator Slater determinants,
where L = QL (2nL+lL ), in terms of the radial (nL }
and orbital (IL ) quantum numbers of the individual har-
monic oscillator occupied states. "'" This is a conse-
quence of the hypercentral nature of a sum of harmonic
oscillator potentials, providing a direct relationship be-
tween individual harmonic oscillator states and harmonic
polynomials.

Inserting Eq. (2.3) into Eq. (2.2), we obtain

( T E)H(L l(x)F(—r,",r )

plemented by some details of the spin-isospin states and
the wave function symmetries in Appendix A, the projec-
tion on the r; space in Appendix B, the numerical calcu-
lations in Appendix C, and finally the adiabatic approxi-
mation for the coupled channels in Appendix D. Con-
clusions and an outlook on future work are given in Sec.
V.

II. INTEGRODIFFERENTIAL EQUATION
APPROACH FOR A PARTICLES

T+ Vo(r } EF(—r, , r)"A (A —1)

= —[V(r,j ) —Vo(r)] g F(rki, r) .
k«&1( A

(2.7)

We specifica11y denote this equation by IDEA, ' '" while
Eq. (2.5) valid for S-state projected potentials only has
been denoted by SIDE.' In the exact Faddeev equation
(2.6) the motions, where the spectator particle is in an
1&0 orbital, are included, but in our modified equation
(2.7) the spectator particle is always in an S state. The
most important feature of Eq. (2.7) is that we isolate in
the right-hand side that part of the interaction which
generates the correlations. The reason for this is that for
realistic interactions the potential energy originating
from the hypercentral part Vo(r ) of the nuclear potential
just balances the kinetic energy in such a way that all
binding is due to the residual part of the potentials, gen-
erating the correlations.

To solve Eq. (2.7), we write the total wave function as

neglected, since the spectator particle remains in an S
state. For A =4 a further cluster decomposition of the
wave function then leads to the exact Faddeev-
Yakubovsky integrodifferential equations, which take all
the higher-order correlations' into account. If we pro-
ject Eq. (2.5) on the r,. space, it generates the
integrodifferential equation applicable to S-state project-
ed potentials, which for A =3 reduces to the exact Fad-
deev three-body equation, since F(r;,pk ) can be written
as F(rv, r) in this case.4 If we have to deal with a local
potential which operates in all orbitals, F(r;, ,p„) has to
be expanded into components associated with an interact-
ing pair in a definite orbital state, while the spectator rel-
ative orbitals also have to be taken into account. This re-
sults in a relatively large system of coupled
integrodifferential equations, especia11y for realistic
forces.

It has been shown previously ' that by extracting the
first term Vo(r) of the PH expansion, which takes the
most important part of the interaction into account, we
obtain the modified equation

= —V(r~)H(L )(x} g F(rki, r} .
k&l(A

(2.4) y=r ~ 'i~ g P(2r /'r l, r), "—
i&j» A

(2.8)

For bosons when all particles, except possibly the pair
(ij ), are in S states, we have L =0 and Eq. (2.4) reduces
to'4

where D=3(A —1}. Setting z=2r; /r 1 and project-—
ing Eq. (2.7) on the r," space, we obtain the equation for
P(z, r ) (Refs. 1 and 14):

(T E)F(r;~,r)= ——V(r,j ) g F(rki, r),
k&/(A

(2.5)

which is of the same form as the Faddeev equation for
three bodies (pk represents the Jacobi coordinate of the
spectator particle},

( T E)F(r;,p„)—
= —V(r, }g F(r&,p„) (.I, rn )An, (2.6)

1&m(3

except that in Eq. (2.5) the coupling between the orbitals
1%0 of the spectator particle and the interacting pair is

a' &o«0+1) 4 1 a+
ar r r IVO(z ) az

X ( 1 —z ) IVO(z )
az

+ Vo(r) —E P(z, r)A(A —1}

= —[V(r, ) —Vo(r)]II(z, r), (2 9)

where Il(z, r)= gk I (r,, ~F(rkr, r)) is the projection of
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(2.10)

where

&
F(ri,&, r ) on the r,. space and can be written as" '

+j
11(z,r )=P(z, r )+ f~p~(z, z')P(z', r )dz',—1

and

(f» —1)
f(p)(z, z')= IV(z') g P»(z)P»(z')

h
(2.11)

I2( A —2)Pk( —
—,
' )+ [( A —2)( A —3)/2]Pk( —1)]f Pk(1)

(2.12)

while the Pk(z) are polynomials with the weight function
8'p(z ), and %„ is a normalization constant:

h»= f [P»(z)] Wp(z)dz . (2.13)

For A bosons in S states, the weight function is given by

I

f&p~(z, z', —1)P(z', r )dz'
—1

2 I (A+ I/2)
1 —zv'~ r(X—1)

X f [ —(z+z')] v'1+z'P(z', r )dz' .—1

(2.18)

IV (z ) = (1—z ) (1+z )~, (2.14)

Wp(z) =(1—z) (1+z)~p(z),

a=L +(D —5)/2 —n,
(2.15)

where p(z) is a polynomial of degree n which has all its
zeros outside the range —1&z ~ 1. The method for the
calculation of the weight function for fermions is given in
Refs. 13—15 where the associated polynomials are also
defined.

The calculation of the projection function cannot in
general be performed analytically, except for bosons in S
states. "' ' It has the general structure

f(p)(z, z') =2( A —2)f(p)(z, z', —
—,
'

)

(A —2)(A —3)f (
g 1) (2.16)

where f~p~(z, z', —
—,') is the projection function for con-

nected pairs and f(p)(z, z', —1) the one for disconnected
pairs (which only occur for A ~4). For bosons in S
states, they are given in Ref. 16. In that case we have

+]
f(p}(z z cos25)P(z 1 )dz—1

r(x+,') 1

v'~ I (A, ) cosP cos5 sing sin5
b

X f [(u —a)(b —u)] 'P(2u —l, r)u du, (2.17)
a

where cosg=&(1+z)/2, sinP=V(1 —z)/2, A, =D/2 —2,
and 6=2+/3 or ~/3 for connected pairs. The limits a
and b are given by a =cos(/+5) and b =cos(P —5). For
disconnected pairs we have 5=m/2 and cos(n/2)=0.
Therefore, we have to take the limit of Eq. (2.15) for
5~m. /2, which leads to

where a=(D —5)/2 and P= —,
' are associated with the

Jacobi polynomials P»'~(z ) to which P»(z ) in Eqs.
(2.11)—(2.13) reduces in this case. When the interacting
pair is in an orbital state I, we have P=l+ —,'. The
integrodiff'erential equation of the IDEA (2.9) reduces to
the one for S-state projected two-body potentials when
we set Vp(r)=0.

For fermions defined by a harmonic polynomial of
minimal degree L, the weight function is of the form

III. INTEGRODIFFERENTIAL EQUATIONS
FOR THREE- AND FOUR-NUCLEON SYSTEMS

In this first paper we consider only central spin-
dependent nucleon-nucleon forces of either Gaussian or
Yukawa type like the MalAiet-Tjon potentials. The ex-
tension to tensor forces will be given in a subsequent pa-
per. We consider the ground states of the three- and
four-nucleon systems. The solution of the single
integrodifferential equation given in Sec. II [Eq. (2.9)] de-
scribes a state completely symmetrical in space, but the
exchange part of the nuclear potential generates states
which mix spin-isospin and space symmetry to form
mixed symmetry states. These states must be included in
the wave function, leading to a system of coupled
integrodifferential equations.

To describe the trinucleon ground state for pairs in an
even state, we have to include one completely symmetri-
cal (S) state and one mixed symmetry (S') state. In the
case of a tensor force component in the nuclear force, it
must be completed by one even and one odd state. How-
ever, this will not be considered in this paper.

For four nucleons, once again neglecting the odd part
of the nucleon-nucleon force, we again have two com-
ponents, a fully symmetric and a mixed symmetric one.

We now proceed to give the details of the wave func-
tion and the coupled system of two-variable equations for
three and four nucleons.

For even states, the even part of the central but spin-
dependent nucleon-nucleon potential is given by

V'(rJ, a, r) = Vi+(rv )Pjl++ V3+(r i)P3j+ . (3.1)

The projection operators P;
+ and P,-'.+ act on triplet- and

singlet-even states, respectively. For three nucleons the
representation of the space-even states is given by (see
Appendix A)

(r;J~g,+, (x,s, t)) =r '
Ypp(a);, )[~ A )Pp(z, r)

+~ A, ', )P,'(z, r)],
(3.2)

in terms of the coordinates z and r, and the fully (S) and
mixed (S') symmetric components P and P . The pro-
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jection of the total wave function on the r," space be-

comes (see Appendix B)

(r, ~%+(x,s, t)) =r '
Yoo(co j~)[~A )110(z,r)

+~A, ', &ll,'(z, r)], (3.3)

where V' ' stands for V' '(r&(1+z )/2) and the Laplacian
V0 iS given by

Xo(XO+ 1)
2

where +
~
— (1—z )IVO(z)

r~ Woz c}z Bz
' (3.8)

II (, )=P (z,r)+, f P ( ', r)dz'
[3( 1 z2)]1/2 z

and

2+
)It (zr)=Pt ,(zr) —

, z, rz 1 Pt (z', r)dz
[3(1—z )]'i

(3.4}

with Xo=(D —3)/2, while the weight function IVo(z) is

given by Eq. (2.14}. The hypercentral potential Vo(r) is
as mentioned before given by [D =3( A —1)]

( Vl++ V3+ )dII
Vo(r ) =

(3.5)

The coupled integrodifferential equations for the IDEA
are now given (see Appendix B) by

$2

17l 2

@1++@3+ —Vo(r ) IIO(z, r }

1

8[(D—3)/2, —', ]

X I (1—u ) [ V~+(ru )+ V +(ru )]u du,
0

(3.9)

where 8 is the beta function. Setting Vo(r ) equal to zero,
we revert to the SIDE for three nucleons, which has been
derived in Ref. 3.

For four nucleons we have
@1+ @3+

g2

pp1 2

@1+ V3+
11 (z, r)

2

@1++@3+

2

(3.6)

(3.7)

(r;, ~'(Il+(x, s, t)) =r Yoo(co,j )[~ A )II()(z, r)

+
~ A, ',. )P() (z, r)], (3.10)

while the projection of the total wave function 4 on the
r,t space is given by (see Appendix B)

(r; ~%+(x,s, t)) =r Yoo(co;J )[~ A )IIo(z, r)

+
~
A &11s(z,r)] . (3.11)

We obtain, in the same way as for three nucleons,

and

+1
II (z, r)=P (z, r)+ [4f, , (z,z', ,')+f, , (z,z', —1)—]P—(z',r)dz'—1

(3.12)

IIo (z, r)=Po (z, r)+ f [—2f~o~(z, z', —
—,')+f(0)(z,z', —1)]PO (z', r)dz' .—1

(3.13}

The kernels f(0)(z,z', —
—,
'

) and f(0)(z,z', —1) refer to connected and disconnected pairs (ij ) and (k, 1 ), respectively, and
are given by Eqs. (2.17) and (2.18).

For four nucleons we derive (see Appendix B) the same set of coupled equations [Eqs. (3.6) and (3.7)] as in the three-
nucleon case, but now with the new projection functions IIO(z, r ) and IIO (z, r ) defined above in Eqs. (3.12) and (3.13).

The normalization of the wave function can be obtained by projecting 4 on the r,- space as described in Ref. 3. In
the presence of mixed symmetry states the result obtained is given by

((11~%)= [Yo(D —3)] f dr f 2 (1—z)' ' (1+z)' [Po(z, r)IIO(z, r)+Pa (z, r)IIo (z, r)]dz,
0 —1

(3.14)

for A =3 or 4 nucleons.
The coupled integrodifferential equations in two variables have been solved numerically (for the details see Appendix

C), and the results are given in Sec. IV. In addition, we have also solved them in the extreme and uncoupled adiabatic
approximations (EAA and UAA), which have been applied previously for three- and four-nucleon systems interacting



2326 OEHM, SOFIANOS, FIEDELDEY, AND FABRE de la RIPELLE 42

by means of the spin-independent Ma16iet-Tjon V forces. For our coupled system of integrodifferential equations, the
adiabatic approximations are generalized in Appendix D. We again start by writing (P =P or P )

P(z, r ) =P~(z, r )u&(r ),
and obtain in the EAA the coupled system

(1—z }Wo(z) +Uq(r) Pq(z, r)=
mr' Wo z dz dz

Vl++ @3+ pl+ V3+

(3.15)

(3.16)
462 1 d 2 d y 1+ @3+ pl+ + V3+

(1—z )Wo(z) +Uq(r) P„(z,r)= Ilq(z, r)+
2 2

—V (r) II (z r),

to determine the eigenpotential Uz(r ), while the binding energy is determined from

d
m dp2

Xo(Xo+ 1)
2

A(A —1)
2

Vo(r}—U&(r)+E u&(r)=0. (3.17)

These equations are solved numerically in the usual way described in Ref. 14.

—~UAA+0 2(gEAA gUAA) (4.1)

and compared our results with those obtained by other
methods.

In this paper we calculate the binding energies by
means of an exact solution of the single two-variable
integrodifferential equation [Eq. (2.9)] applicable for this
case where no S' state occurs, both for the S-wave pro-
jected MT-V potential (SIDE) and the IDEA [inclusion

IV. CALCULATIONS AND RESULTS

In two previous papers' ' we have calculated the
binding energy for A =3 and 4 nucleons using the MT-V
and other spin-independent nucleon-nucleon forces. The
two-variable integrodifferential equation was not solved
exactly in that case, but only in the EAA and UAA. To
estimate the correct binding energy, we used the interpo-
lation formula

of Vo(r)]. In the latter case one should of course com-
pare with calculations where the MT-V has been treated
as a true potential, acting in all partial waves. In Table I
we compare the results of the EAA, UAA, and the inter-
polated values Ez with the binding energies calculated by
means of the two-variable integrodifferential equation E,„
and by other methods. For the four-nucleon system the
corresponding data are given in Table II.

It is seen from Table I that the interpolated values Ez
of the adiabatic approximations are quite close to the
ones found by the exact two-variable solution E,„ in the
case of the SIDE. The discrepancy can be larger (up to
0.06 MeV) in the case of the IDEA.

From Table II we see that for four nucleons agreement
is very good in the case of the SIDE and only slightly less
for the IDEA (a discrepancy of up to 0.17 MeV can then
occur, but it is in general far less).

These results therefore confirm those previously ob-

TABLE I. Three-nucleon binding energies (in MeV) calculated with Wigner forces for the exact solution of the integrodifferential
equation (E,„), the adiabatic approximation (E "",E""",and Ez), and other methods, i.e., Faddeev (S-projected or fully local po-
tential), hyperspherical harmonic expansion method (HHEM), equivalent two-body method (ETBM), and Green s function Monte
Carlo method (GFMC). See. Ref. 15.

Potential
SIDE

EEAA EUAA I

Other
methods
Faddeev

MT-V (Ref. 10)
MT-V (Ref. 17)
MT-V (Ref. 18)
S3 (Ref. 19)
S4 (Ref. 22)

7.88
7.83
8.34
6.90
7.18

7.55
7.49
7.99
6.26
6.88

7.61 7.59
7.56 7.54 7.541 (Ref. 6)
8.06 8.04
6.39 6.41 6.40 (Ref. 20)
6.94 6.93

IDEA
EEAA EUAA I E,„ HHEM

Other methods
ETBM Faddeev GFMC

MT-V (Ref. 10)
MT-V (Ref. 17)
MT-V (Ref. 18)
S3 (Ref. 19)
S4 (Ref. 22)

8.07
8.03
8.57
7.24
7.37

7.70
7.65
8.17
6.56
7.01

7.78 7.73 7.783 (Ref. 10) 7.778 (Ref. 21)
7.73 7.68
8.25 8.19
6.69 6.67 6.695 (Ref. 10) 6.677 (Ref. 21)
7.08 7.08 7.05 (Ref. 10) 7.04 (Ref. 21)

7.736 (Ref. 17)
8.253 (Ref. 23) 8.26+0.01 (Ref. 18)
6.696 (Ref. 17)
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TABLE II. As in Table I, but for the four-nucleon binding energies.

Potential
SIDE

EEAA EUAA I

Other
methods

E,„Faddeev- Yakubovsky

MT-V (Ref. 10)
MT-V (Ref. 17)
MT-V (Ref. 18)

S3 (Ref. 19)
S4 (Ref. 22)

29.98 28.46 28.57 28.56
28.91 28.38 28.48 28.47
30.19 29.63 29.74 29.74
26.18 25.26 25.44 25.38
28.09 27.66 27.75 27.74

25.5 (Ref. 20)

IDEA
EEAA EUAA E,„ HHEM

Other methods
ETBM ATMS GFMC

MT-V (Ref. 10)
MT-V (Ref. 17)
MT-V (Ref. 18)
S, (Ref. 19)
S4 (Ref. 22)

29.97 29.28 29.42 29.46
29.91 29.20 29.34 29.37
31.22 30.48 30.63 30.68
28.09 26.63 26.92 27.09
29.33 28.55 28.71 28.80

26.0 (Ref. 25)
27.9 (Ref. 25)

26.47 (Ref. 27)
28.18 (Ref. 27)

31.36 (Ref. 23) 31.3+0.2 (Ref. 24)

tained in the adiabatic approximation only and all the
conclusions we have drawn from them. ' '

We now consider the spin-dependent MT-I/III force
and solve the two-variable integrodifferential equation
both in the SIDE and IDEA, and compare the results
with those obtained in the EAA, UAA, and with the in-
terpolated binding energy EI. The results for three and
four nucleons are given in Tables III and IV, respectively.
Once again we find a surprisingly small discrepancy of
only about 0.03 MeV between EI and E,„,demonstrating
the accuracy of the interpolation formula for Ei. For
four nucleons the difference is only about 0.28 MeV.
which is also an excellent result.

The excellent agreement between El and E,„provides
convincing support for a major point made in our previ-
ous work, ' ' namely, that the redefinition of the Fad-
deev components by inclusion of the hypercentral com-
ponent of the two-body local potential into the
integrodifferential equation takes the effect of the higher
partial waves largely into account, obviating to a large
extent the need for solving a system of coupled
integrodifferential equations, when the two-body poten-
tial is a true local potential acting in all partial waves.
The results of Table II confirm another important but re-
lated point; namely, at least for spin-independent local
potentials, the effect of the omission of particle correla-
tions of order higher than 2, implied in the use of our
two-variable integrodifferential equation, is small. This

becomes clear if we compare the binding energy of 30.68
MeV obtained by the exact solution of the two-variable
equation for the MT-V potential, with the parameters of
Zabolitzky, ' to the results obtained by means of the
essentially exact GFMC method and to the ATMS
method of 31.36 MeV. The difference of 0.68 MeV
amounts to only 2%, which is surprisingly small and
shows how little the higher-order correlations actually
contribute to the binding energy in this case.

For the MT-I/III force which generates a mixed sym-
metry (S') component in the three- and four-nucleon
wave functions, we recover for the SIDE the binding en-
ergy of the triton of 8.536 MeV obtained by Payne et al. 6

Unfortunately, there appear to be no calculations avail-
able for the MT-I/III treated as a local potential (and not
as an S-wave projected potential) for comparison pur-
poses. The IDEA, however, does produce a significant
improvement of 0.3 MeV over the SIDE, which is consid-
erably more than the improvement of about 0.15 MeV
found from Table I for the MT-V potential. For He,
though, the increase in the binding energy for the MT-
I/III potential, by going from the SIDE to the IDEA, is
about 1.3 MeV, which is somewhat more than the about
0.9 MeV increase achieved for the MT-V. In the case of
the MT-I/III potential, we have again found no four-
nucleon results in the literature for the fully local poten-
tial to compare ours with. For S-wave projected poten-
tials the binding energy of "He has been calculated by

TABLE III. Three-nucleon binding energies (in MeV) for the MT-I/III and S3 potentials.

Potential

MT-I/III
Sl

EEAA

8.99

EUAA

8.46 8.57

SIDE

8.54

Faddeev

8.536 (Ref. 6}

Other
GFMC

Potential

MT-I/III
S3

EAA EUAA

8.76 8.89

IDEA
E,„

8.86
8.75

Faddeev

8.76 (Ref. 29)

Other
GFMC

8.73+0.10 Ref. 32)
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TABLE IV. As in Table III, but for the four-nucleon binding energies.

SIDE
Potential

MT-I/III

S,

EEAA

30.45

EUAA

29.91

E

30.02 29.74

27.93

Others

30.36 (Ref. 26)
29.6 (Ref. 27)

Potential EEAA EUAA E
IDEA

E,„ Others

MT-I/III
S3

31.78 30.99 31.14 31.02
30.37

Sofianos et al. for the MT-I/III in the Unitary Pole Ap-
proximation (UPA) and by Tjon using the Hilbert-
Schmidt expansion to solve the Faddeev-Yakubovsky
equation. The underbinding of 0.62 MeV, which we ob-
tain in the SIDE compared to Ref. 27, is clearly due to
the omission of higher-order correlations in our calcula-
tions. Finally, we should point out that in the case of the
interpolated binding energies, El of the triton and He
are in nearly perfect agreement with the exact binding en-
ergies obtained by the numerical solution of the coupled
two-variable integrodifferential equations.

For comparison purposes, we also consider the S3
force regarded as a spin-dependent force. ' For three nu-
cleons, the binding energy is also given in Table III for
the SIDE and IDEA. The latter is compared to the value
obtained by Friar in the case of S3 force acting in all
partial waves (fully local potential), by solving the system
of 34 coupled two-variable Faddeev equations, and to the
essentially exact Green's function Monte Carlo calcula-
tions by Carlson. The IDEA with only two coupled
integrodifferential equations for the mixed symmetry
states S and S', but including Vo(r), practically repro-
duces the exact results of Friar and Carlson. To be pre-
cise our binding energy in this case is 8.75 MeV, while
Friar obtained a value of 8.76 MeV and Carlson a value
of 8.73+0. 10 MeV. The IDEA is even better in this case
than for the MT-V potential where there is a difference of
0.06 MeV betv .en the results of the IDEA and the exact
solution of the coupled Faddeev equations by Friar. '

This may be due to the fact that the S3 potential, which
consists of a sum of Gaussians, Gnite at the origin, gen-
erates a solution which converges exponentially in terms
of the number E of harmonics occurring in the expansion
of the wave function in contrast to a potential like the
MT-V. The latter exhibits a r singularity at the origin,
which leads to a lower convergence of the order of I(

(see Ref. 32). We should always keep in mind that our
IDEA has been derived by summing up all potential har-
monics occurring in the expansion of the wave functions,
and that the faster the convergence of the expansion, the
smaller is the contribution of the nonpotential harmonics,
describing the N-body correlations with N & 2, neglected
in the IDEA, which only contains two-body correlations.

We note that all our binding energies in Tables I and II
are smaller than the corresponding binding energies ob-
tained by means of converged Faddeev calculations.

Green's function Monte Carlo, Faddeev-Yakubovsky, or
ATMS methods, which are essentially exact or very accu-
rate. This is not surprising since although the set of HH
basis functions occurring in the expansion employed for
the derivation of our two-variable integrodifferential
equations starting from Eq. (2.2) is complete and orthog-
onal for the partition (i.e., the set of Jacobi coordinates' )

under consideration, by projecting on the subset of poten-
tial harmonics, associated with one particle pair only, we
neglected N-body correlations with N) 2. We therefore
omit that part of the Hilbert space spanned by the basis
which is associated with many-particle correlations and is
orthogonal to the potential basis. This is taken into ac-
count by means of additional coupled equations, generat-
ing an increase in binding energy, when fully local poten-
tials (not S-wave projected ones' ) are treated exactly.
Only when very accurate solutions are not available, as
for the S3 and S4 potentials if A =4, do we obtain a
larger binding energy than the ones published in the
literature. Otherwise, our binding energies as compared
to essentially exact ones always leave some room for the
contribution corning from N-particle correlations with
N) 2.

V. CONCLUSIONS AND OUTLOOK

The most important conclusions to be drawn Sre in the
first place that the interpolated binding energies obtained
from the extreme and uncoupled adiabatic approxima-
tions are in very good agreement with those calculated by
exactly solving the two-variable integrodifferential equa-
tion both in the SIDE (S-wave projected potential) and
the IDEA (fully local potential) for the MT-V potential.
This implies that all conclusions drawn from the values
of El in Refs. 14 and 15 are valid.

In particular, the binding energies obtained in the
IDEA are a significant improvement over those calculat-
ed in the SIDE and reflect the fact that the IDEA takes a
large part of the increase in binding energy into account,
produced by the higher partial waves in the system of
coupled integrodifferential equations, by means of a sin-
gle integrodifferential equation. The IDEA for the MT-V
potential indeed produces an underbinding of less than
0.7 MeV compared to the essentially exact GFMC result
for He.

In this paper we have also treated the MT-I/III force,
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requiring the solution of a system of two coupled
integrodifferential equations in two variables for the fully
and mixed symmetric S and S' components, both for the
triton and He. The results obtained are qualitatively the
same as for the MT-V potential. The interpolated bind-
ing energies (from the adiabatic approximation) are in
nearly perfect agreement with the exact results for the
two-variable equations.

In the SIDE our coupled equations are exact for the
three-body case and constitute only a different coordinate
space formulation, as compared to the one usually em-

ployed by Payne et al. , of the three-nucleon Faddeev
equation in coordinate space, and as expected we recover
the result of Ref. 6. To our knowledge there are no cal-
culations available in the literature which treat the MT-
I/III as a fully local potential either for the three- or
four-nucleon systems, and we can therefore make no
comparisons with our results for the IDEA. For the
spin-dependent S3 force, however, the IDEA with two
coupled equations for the mixed symmetry states S and
S' reproduces within 0.01 MeV, the exact result of
Friar using the S3 force as a fully local potential in the
set of Faddeev equations coupling not only the mixed
symmetry states S and S', but also different partial waves.
For the SIDE and He calculations by Sofianos et al.,
using the MT-I/III potential as an S-wave projected po-
tential, are available. However, they treat the MT-I/III
in the UPA and therefore may have underestimated the
exact four-nucleon binding energy. Comparison of these
SIDE binding energies from Table II show that omission
of higher-order correlations in the SIDE could produce
an underbinding of the order of 0.7 MeV. The inclusion
of the hypercentral potential in the IDEA (assuming a
fully local MT-I/III potential) results in a significant in-
crease of 1.3 MeV in the binding energy. It might be that
even greater improvements are possible for realistic
nucleon-nucleon forces by means of the IDEA.

This paper is only the first one in a series of papers on
the triton and He ground states. In the second one we
will present graphical studies of the three- and four-
nucleon ground-state wave functions with the MalAiet-
Tjon forces for the SIDE and IDEA, and compare the ex-
act wave functions with those obtained in the adiabatic
approximations. In the third paper of the series realistic
nucleon-nucleon forces will be treated.

ACKNOWLEDGMENTS

One of us (H.E.) is most grateful to the Deutsche
Forschungsgemeinschaft for the award of a guest profes-
sorship at the University of Bonn, and to Prof. W. San-
dhas and his collaborators at the Physikalisches Institut
of this University for their warm hospitality.

APPENDIX A: SPIN-ISOSPIN
AND WAVE FUNCTION SYMMETRIES

For the spin case, the particles (ij ) are coupled to the
particle k to give the total spin o =

—,
' either when they are

in the triplet (symmetric s) state or in the singlet (an-
tisymmetric a ) state. These states are denoted by

la )"—:Icr, [21]"), n =s or a, (A 1)

and similarly for the isospin. Then the following sym-
metries can be constructed:

completely antisymmetric; (A2)

antisymmetric with respect to (ij ); (A3)

symmetric with respect to (ij }; (A4)

completely symmetric . (A5)

[22]X [22]=[4]+[22]+[1111].

With the definition

IS)"=—IS,[22]"), n =s or a,

(A6)

(A7)

for the spin and a corresponding one for the isospin, we
may construct, similarly to the three-nucleon case, the
following states:

I A )—:
I A;ST; [1111])

—(Is)'I»' —Is &'I»'),
2

completely antisymmetric; (A8)

Four-body system

The spin-isospin states Ig;ST;[f]„) for the case
S= T=O are given by the direct product of the two irre-
ducible representations

Three-body system

We may construct the spin-isospin states for three nu-
cleons, Ig;ur;[f ]„),of specific symmetry [f]„,from the
direct product of the [21]-spin and [21]-isospin states. antisymmetric with respect to (ij ); (A9}
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Is )—:Is;sT; [22]')

1

v'2 (Is &'Ir &
—Is &'Ir &'),

symmetric with respect to (ij); (Alo)

Is &
—= Is;sr;[4] &

—(Is &'Ir &'+ Is &'Ir &'),
2

completely symmetric . (Al 1}

Wave functions for the three- and four-nucleon systems

For pure central interactions the three-body Faddeev
components can be written as

(rJIPJ (x,s, t))=, [I A )Po(z, r)
T

+
I A,', )P (z, r)],

(r; If„+,(x,s, t)) = IA )I (z, r)

—
—,'IA )Io (z, r)

+ IS,.', )I,'(z, r)
2

'
(Bl)

(r,, Il(,+„(x,s, t))=, , IA )Io(z, r)—5/2

—
—,'I A,', )Is'(z, r)

p;, (x;u, r) =
I
A )t(r; (x)+ I A,,

' )gs (x)

+ Is,', )y,", '(x)+ Is) li,",(x), (A12) 2
IS,', )I (z, r)

PJ(x;tr, r)=
I
A )P(x)+I A,

' )li„(x) . (A13)

However, the states
I A/;) and I

A'k ) are also required.
They can be easily expressed in terms of the (ij ) states via
the usual recoupling procedure. The result is

IA„', )=——IA,', )+ Is,.', ),1, &3

(A14)

Is,', & .
1, 3

The four-body Faddeev components are treated in the
same way. Keeping only the even states, we have

where the spatial partial waves have the parity opposite
to the one of the associated spin-isospin states in an ex-
change of the nucleons i and j. Considering only the
space-even states with respect to the pair (ij ), we have

with

1 z+
Io(z,r)=, Po(z', r)dz', n =S or S',

[3( 1 z2)]1/2 g

z~ =
—,
'

I
—z+[3(1—z )]'

Y1+—Y3+
+ 11'(..),

2

g2 Y1+ Y3+
V +E P (z, r)= H (z, r)

(83}

Therefore, by projecting the Faddeev equation on the
spin-isospin states ( A

I
and ( A J I, we get the result for

the SIDE:

Y1++Y3+
V+E P (zr)= II(zr)

m

g; (x;S,T)=I A )P; (x)+IA &li„(x) . (A15)
1 3+I'+V s „) (B4}

The additional spin-isospin states for the
(ki ), (jk ), (li ), (jl ), and (kl }configurations are given by

where we have made use of the matrix elements

A„', )=IA,', &,

IA,', &=IA„', &= ——IA,,'&+ Is„'&, (A16}

(AIP,,'+IA ) =(A,', IP„'.+IA,.', )

=(AIP,,'+IA, ', &= —(AIP,", IA,', &=-,' .

Is,', & .

APPENDIX B: PROJECTION ON THE r;J- SPACE

Three-body system

The functions IIO(z, r) and IIO (z, r) are defined in Eqs.
(3.4) and (3.5), respectively. Introducing the hypercentral
potential Vo(r ) in the same way as in the boson case (see
Sec. II), the coupled equations for the IDEA are finally
obtained [Eqs. (3.6) and (3.7)].

Assuming a nucleon-nucleon potential of the form
given in Eq. (3.1) and considering only the space-even
states as in Eq. (A13), we project the three-body Faddeev
components for the configurations (ij, k ), ( ki,j ), and
(jk, i ) on the r," space:

Four-body system

As in the three-body case we consider only the fully
and mixed symmetric spatial states; i.e., we start with Eq.
(A15). Projection on the r;,. space yields'
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(r,, ly,+, (x,s, t))=,[l A )P,'(z, r }+I A, )Pp (z, r)],
(86)

(r, lg„+ (x,s, t)) =
4 [l A )Ip(z, r, yN)s

r 4

+lA„' )Ip (z, r, yN)],

where the kernels Ip(z, r, yN ) are given by

+1
Ip(z, r, q&)= f~p)(z z', cos2qr~)Pp(z', r}dz',

—
1

and yz takes the values 2m. /3 and m/2 for connected
pairs like (ij,ki ) and disconnected pairs like (ij,kl ), re-
spectively. Inserting the results of Eq. (A16) into Eq.
(86), we obtain for the total four-body wave function,
projected on the r;, space, the identity

(r,"lg,+ (x,s,"t))= (l A )[Pp(z, r)+4I, (z, r)+Id(z, r)]+l A )[Pp (z, r) 2I, —(z, r)+Id (z, r)])I .
r

(88)

The indices c and d indicate connected and disconnected
pairs, respectively. Using the fact that Eq. (85) remains
valid in the four-body case, we finally arrive at the same
set of coupled equations as for the three-body system, i.e.,
Eq. (84), the only difference being that now the functions

Ilp(z, r ) and lip (z, r }are given by Eqs. (3.12) and (3.13).

APPENDIX C: EXACT SOLUTION
OF THE TWO-VARIABLE

INTEGRODIFFERENTIAL EQUATIONS

pp(z, r) =(1+z}tf(r),
z~ —1

pp(z, r) -(1—z)'f(r),
(do+ 1)

pp(z r) =r ' f(z),r~0

pp(z, r ) =const Xf (z ),

and is a solution of the equation (units iri=m = 1)

(C4)

(C5)

In order to solve the two-variable integrodifferential
equations (2.9), (3.6), and (3.7) exactly without introduc-
ing the adiabatic approximation, we have used an expan-
sion of the Faddeev-type components in terms of Hermite
splines. The resulting equations have then been solved by
the method of orthogonal collocation. However, since
we have mainly followed the treatment of Payne ' in this
respect, we do not give any details here. There remains
only one point to be discussed.

Regularity of the solution requires the following
asymptotic behavior at the boundaries (E=R a /m ):

Pp(z, r ):const Xf(r ),z~ —1

4(a+P) —Xp(Xp+ 1 }
2K +

Br~ Br r

4 q i} a+—(1—z') +[a—P+(a+P —2)z]2 Bz az

A(A —1)
Vp(r ) pp(z r )

=
[ V[rV(1+z ) /'2] —Vp( r ) ] n p(z, r ), (C6)

where m p(z, r ) is defined by

Pp(z, r ) :constX f(r), (C 1) e ""np(z, r)
Ilp(z, r ) =

(1—z) (1+z)~
(C7)

(Xo+ 1)
Pp(z, r) =r f(z),

r~O
(C2)

Pp(z, r ) =e ""f(z) .

e "pp(z, r)
Pp(z, r)=

(1—z) (I+z)~
(C3)

The exponential factor is also extracted from the function
Pp(z, r), because pp(z, r) is expected to behave more
smoothly for large values of the hyperradius r. The new
function pp(z, r ) fulfills the boundary conditions

The fact that the irregular solution with respect to the
coordinate z tends to in6nity at the boundaries while the
regular one is giving a finite, but nonzero value [see Eq.
(Cl)], suggests that Pp(z, r) be replaced by the function
pp(z, r ):

The same statements are valid in the case of coupled
equations for the mixed symmetry states.

As mentioned above, the orthogonal collocation tech-
nique has been used for the computation of the solution
of Eq. (C6). The intervals for the coordinates z and r
have been divided into I, and I„subintervals, respective-
ly. In the three-body case one needs at least I, =12 and
I„=9 partitions to achieve an accuracy of 0.01 MeV,
both for the MT-V and the MT-I/III potentials, while
the values I, = 18 and I„=13 are required for an accuracy
of 0.001 MeV. This means that the numerical accuracy
of the integrodifferential equation written in r-z coordi-
nates is comparable to the one given in r-0 coordinates,
which is used by Payne et al. To be precise, they need
I=17 and I, =15 subintervals for the 8 and r coordi-
nates to achieve an accuracy of 0.001 MeV '. In the
four-nucleon case values of I, =15 and I,=12 are re-
quired for an accuracy of 0.01 MeV.
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APPENDIX D: ADIABATIC APPROXIMATION
FOR THE COUPLED CHANNELS

Introducing the definitions

Xo(Xo+ 1)
2

(D 1)

1(D„+E)+—,1D, P=VII,4

and defining the eigenpotential Uz(r ) via

—1D, +1U„(r) P =VII„,4

r

(D5)

(D6)

and

t}z we finally arrive at the following equation, which deter-
mines the binding energy:

@1+@3+ V1+ V3+
V, )

——@2'
——

) V)2 = p2, =
2

) (D2)

we can write the SIDE for the coupled channels in the
matrix form ((rt=m =1}

(D„+E U&(—r ) }tt~(r ) =0 . (D7)

Explicitely, i.e., not using the matrix notation, the SIDE
for the coupled channels is given by

D~+ —

2 Dz+E4
r

0 'pS '

0

4 pS'
Dr+ 2 Dz+E

r

~12 ~0S
'

y y g$ . (D3)
21 22

4 1 d z d
(1—z )Wo(z) +U&(r) Po&(z, r)S

r2 Wo z dz z

(1—z )Wo(z) +U~(r) Post, (z, r)
dz

(D8}

PQ(z r }=Pop(z r )tt g(r ) (D4)

The basic assumption of the adiabatic approximation is
that the orbital motion can be separated from the radial
motion, which implies that the functions Po(z, r), n =S
or S', be replaced by the ansatz d2

dF

Xo(So+ 1) —Ui, (r )+E tt &(r ) =0 .
r 2 (D9)

@1+ @3+ @1++ @3+
II (z, r)+ II (z, r),

Therefore, the newly defined functions Poz(z, r) should
vary slowly with respect to the variable r, in comparison
to the variable z. Writing Eq. (D3) in a concise form,

Introducing the hypercentral potential Vo(r ) in the usual

way, Eqs. (D8) and (D9) are easily generalized to the case
of the IDEA to obtain Eqs. (3.16) and (3.17}.
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