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Recent K N interaction models are used to construct microscopic momentum-space optical
potentials including complete Fermi averaging, three-body dynamics, nonlocalities, and the

exclusion principle.
nucleus (A* hypernuclei and kaonic atoms).

I. INTRODUCTION

The low-energy antikaon-nucleon (KN) interaction
possesses interesting complexities from being part of the
(KN, T, A7) coupled-channels system, and interesting
uncertainties and controversies from the scattering and
reaction data being so hard to obtain. Supplementary in-
sight into this system is provided by kaonic atoms where
the strong interaction modifies what would otherwise be
a pure Coulomb state. While measurements of the strong
interaction shift of the 15 level in kaonic hydrogen! would
appear to provide valuable direct information on the
strong interaction, the difficulties of that experiment has
also led to controversy, 2 with a good number of theo-
rists and experimentalists questioning the results. Con-
sequently, it is logical to look to heavier kaonic atoms
where the identification of levels is more reliable than for
hydrogen; yet one then has to deal with a challenging
many-body problem to interpret the data.3=7

While as of yet no strong bound state of an antikaon
with a nucleus has been observed, since the K is known
to form a bound state of sorts with individual nucleons [a
A*(1405) resonance®~!1] it seems possible that nuclear
states exist in which a nucleon is replaced by a A* (a A*
hypernucleus), or in which a K retains its identity and
is bound to the entire nucleus. It is unknown whether
the nuclear environment causes these nuclear states to be
narrow (as it may for £ hypernuclei!?13), or causes them
to be so broad as to have no discernible experimental
signal.

In related work, Schnick and Landaul#:1® recently up-
dated the Alberg et al.” potentials for s-wave interactions
in the (KN, 7, Ar) system, and found a number of pos-
sible solutions. One of these potentials actually provided
agreement with both the scattering data and the strong
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Bound states are found with K orbits internal to and external to the

interaction shift of kaonic hydrogen. While this may be
the resolution of a long-standing puzzle, if the hydro-
gen experiment is incorrect then this particular potential
would also be. In follow-up work,'® the nuclear states of
various K N interaction models were studied, and it was
found that whereas not all potential models supported
the A*, some contained multiple resonances at low ener-
gies.

In the present paper several of these elementary mod-
els are used to construct an optical potential, and the
atomic and strong K-nucleus bound states are studied.
These momentum-space optical potentials include com-
plete Fermi averaging, a three-body model for the energy
dependence, dynamic and kinematic nonlocalities, and
exclusion principle effects. Since the experimental strong
interaction shifts in carbon are probably more reliable
than those in hydrogen,'® this is an important further
test of the elementary interactions, and since the optical
potential we use has a sounder theoretical basis than is
common for this field,'® we believe this is a meaningful
test.

II. BOUND STATES IN MOMENTUM SPACE

Conventional theoretical bound states live forever and
occur when the T matrix has a pole at a negative real
energy. While actual experimental bound states decay in
time, and are thus resonant or Gamow states, they still
appear as poles of the 7" matrix — only now at some
complex energy. The real part of the pole’s energy is
identified with the binding energy E}, and the imaginary
part with the level’s width T

I'=2ImE . (1)
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In our calculation we take the T" matrix as the solution
of the partial wave Lippmann-Schwinger equation,

Ti(k', k; E) = Vi(k', k, E)

2 [* ,
+;/ dpp*Vi(k',p, E)Ge(p)Ti(p, k; E) .
0

(2)
Here G is the relativistic Green’s function
1
Ge(p) =
E-[\Vp*+ mg + /P2 + m% — (mp + my))
(3)

with E the kinetic energy in the channel under consid-
eration. The Lippmann-Schwinger equation (2) has the
formal (operator) solution,

1 1
1—VGEV_V1—GEV (4)

and so T has poles for energies which satisfy

T =

J

V & (f|t]) = Ak, ¥, (pl,ph, - - -

where tK¥ is the elementary T matrix, ¥, is the nu-
clear ground state wave function, the p; and p; are the
momenta of the nucleons in the initial and final nuclear
states, and k’ and k are the K'’s initial and final mo-
menta. The momenta and wave functions are all in the
the K-nucleus (K A) center of momentum (c.m.), and for
simplicity of notation we here ignore differences between
neutrons and protons. If ¢ is a two-body operator, (6)
becomes the explicit integrall”

V(K',k, E)
-4 / & (p - a,K|tFY (W) |p,k) F(p — a,p) ,

(7)

where F is the nuclear wave function overlap

Fp' =p-q,p)

=/d3pzd3pa-..dapA‘I’Z(p*q,pz,-.-,pA),

X‘I’o(p)p27-~~apA)6 <sz+k) ) (8)

i=2
q is the momentum transferred to the K
q=k'-k 9)

and the delta function in (8) is the c.m. constraint.
Although simple looking, implementation of (7) re-

PN W)k, ¥o(p1,p2, ..

det(1 — VGE) =det(1-GgV)=0. (5)

The linear equations representing these operator rela-
tions are obtained by replacing the integrals in (2) and
in the representation of (5) by discrete sums over grid
points. This is described in some detail in Ref. 15 even
for the exceptional Coulomb potential.

III. THEORETICAL OPTICAL POTENTIAL

We start with a KN potential or 7' matrix and use
it to construct the theoretical optical potential that de-
scribes the multiple scattering of a K from the nucleons
in a nucleus. We work in momentum space in order to
avoid many of the approximations which lessen the va-
lidity of the optical potential, and deduce a “potential”
quite different from the simple phenomenological ones
used in fitting kaonic atom data.}® We calculate a first
order optical potential in impulse approximation,

,Pa)) (6)

f

quires the calculation of a 3D integral for each value of
(k, k") on the grid used to solve the Lippmann-Schwinger
equation (5), as well as another angular integration for
the partial wave projection:

(10)

These 1000’s of evaluations of integrals have often been
avoided by an optimal factored approximation

V(K k,E) ~ A(po — q,k'| "N (w) |po, k)

1
M(k',lc,E):/ V(k',k, E)Pi(cos 8)d cos Oy .
-1

X/dspf(p—q,p) (11)
~ (po — ¢, K'[t5N¥ (W) [po, k) F(q) ,  (12)
po=-—x+51a. (13)

This approximation assumes tXV is a slowly enough
varying function of energy to be factored outside of the
integral, with pg being the nucleon momentum which op-
timizes the approximation.'® Recent advances in comput-
ing power has permitted us to evaluate (7) and solve (5)
exactly.

A. Fermi integration

We calculate the nuclear overlap function F by assum-
ing explicit forms for the nuclear wave functions, fitting
the corresponding form factor to data, and then using
the wave function to calculate . We assume '2C has
neutrons and protons in {2(1s),4(1ps/2)} orbitals, and
use the |J, M) basis:
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61 =11/2,1/2) = Noe~(@/2P? yy x| (14)
b2 =11/2,—-1/2) = Noe~(*1DP” v o x| (15)
¢3=13/2,3/2) = Nyape™ " /DP v, x+ | (16)
$a=13/2,1/2) = Niape™ /P (\/1/3Y11 x™ + /2/3Y10x*) (17)
b5 =13/2,—1/2) = Nyape= (@ /DP’(\/2]3Y10 x~ + V/1/3Yi-1 xV) , (18)
b6 =13/2,—3/2) = Niape= /2Py, _| = . (19)

The total wave function ¥(p;,ps,...,pz) for the Z protons is the antisymmetric combination

é1(p1) d2(p1) --- dz(p1)

1 | $1(p2) d2(p2) -~ b2(p2)

‘I’(PI,P%---,PZ):\/_; (20)

b1(p2) $2(p7) -+~ 62(p2)

This determinantal form for ¥ simplifies the integration in (8) since the orthogonality of the eigenfunctions eliminates

the cross terms resulting in

2 1
ZF(p,p) = %e-(aﬁlz)(p Y g~(a2/2)P?

+4/3 leal e_(af/z )(pl)2e ~(a3/2)P* P’ Yl*o(I;I)P Ylo(ﬁ) + Pl Y1*1 (I;')P Yu (f’) + Pl Yl*_l (I;I)p Yio (f’)] )

Z

(21)

3
1L (%) [Zoage—agp’2/2e—a§p’/2 +2/3Z103a?p - p/]e—af/2p—q2e—a?p’2/2 ’ (22)

where we allow different sizes ag and a; for the s and p shells. In Cartesian coordinates (in which the integration is

most straight forward), F takes the form

1

Fp,p)==
(', p) 7 Jr
pi +p;
CiEpi—qz'/2='T,

where Zy and Z; are the number of protons in the 1s and
1p shells (2 and 4 for carbon).

Equation (23) provides an algebraic form for the over-
lap function. Since Eq. (12) determines the correspond-
ing form factor to be

1

F(q) = 7ot 71

[ Zoe~ %09’ /4

2.2
+7 (1 - 5’%) e*"fq’/“} . (25)

we determined the parameters (ag, 1) = (1.526,1.626)
fm by fitting F to fits to electron scattering data.!® We
assume neutrons and protons have the same matter dis-
tribution, namely the charge form factor with the nucleon
form factor removed?!:?2:

Fch(‘l) —

Fmat(Q)z f(q) = rc

n(9)(1+¢2/18.2 fm=2)2 . (26)

3 3 3
70 (222 ) e GG et 13z, (354 ) 07 DG - g A HEHGHD metnd
i=1

N
(23)
(24)

B. Three-body energy

The t in the optical potential describes a K scatter-
ing from a nucleon which in turn is interacting with the
other nucleons in the nucleus. We assume the “impulse
approximation” to ignore the binding effects which would
otherwise require solution of the A+1 body problem, but
choose the KN subenergy w to be the “3-body energy”
w3p In order to include binding effects in a simpler way.
As shown in Fig. 1, in the K A c.m., the nucleus is viewed
as an active nucleon of momentum p + p; external to a
passive core of momentum

P=-k-p-pg- (27)

The subenergy is then the magnitude of the difference of
the four-momentums of the kaon+nucleus and core:

wip = (k + ki — P)* . (28)
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FIG. 1. The three-body model of the optical potential,
a K of momentum k interacting with a nucleon bound to a
passive core of momentum P.

To follow this model properly would require solving a
full three-body problem including the effect of the core-
nucleon potential Von. We avoid that by replacing
p?/2m + Von with its expectation value Ep, an effective
core-nucleon binding energy,

Ep =< p2/2m+ Ven >, (29)

w%B ~ [EK(IC()) + EA(ko) - EA_l(P) - EB]2 - P?.
(30)

When the KN T matrix is averaged over the nu-
cleon’s internal momentum, the subenergy varies over
the range —oo < w3zp < Kinc — Ep, where Kjpc is the
incident kinetic energy of the kaon (negative for bound
states). Thus the subtractions in (30) make the effective
K N Kkinetic energy predominantly negative.2° For single-
channel scattering, this means the elementary 7" matrix
(and thus the first-order optical potential) become real
at low energy — which makes good physical sense since
it means the absorption arising from nucleon knockout
ceases when there is not enough energy to knock out a
nucleon. For the present calculation, we describe bound
processes which never have enough energy for nucleon
knockout, in which case absorption arises from shadows
in the KN T matrix of the open 7 and Aw channels.
Consequently, even though the elementary t’s are eval-
uated at negative kinetic energies, they have imaginary
parts that cause all nuclear bound states to be unstable.

C. Covariant momenta

__The t in the optical potential must be evaluated in the
KA cm.. There is a good deal of technology involved
in finding the best way to relate the ¢’s in the different
frames, and we refer the interested readers to Refs. 18
for details. We generalize the on-energy-shell Lorentz
invariance of probability to off shell scattering by relating
tXN in the kaon-nucleus c.m. to ¢ in the KN c.m. via

(K, p'| tFN () [k, p) = 7 (k'] {(w) ) (31)

Ep (k) Ep(£) En (k) En(K') 11/2
Ep(k)Ep(K')En(p)En(p')
where v arises from conservation of probability. The ini-

tial and final KN c.m. momenta x and ’ are related
to those in the KA c.m. via the “magic-vector angle

=1 (32)

transformation”
QK
=Q- —— K, 33
=2 KK + Vo) (33)
2 .2
2Q =k — pg — —m"s_ TNK, sin= (p" + k)2,  (34)
K = (Ko, K) = (Ex(k) + En(p),k + p) (35)

with equivalent definitions for «'. Egs. (33)-(35) are
unique prescriptions if covariance is demanded in an on-
mass-shell theory.

The off-energy-shell KN T matrix (k|#(w) |&) in (31)
is obtained by solving coupled Lippmann-Schwinger inte-
gral equations for the (KN, X, Ar) coupled channels.!®
In this way we maintain an important internal consis-
tency by using the same form for the Green’s function
in the two- and many-body problems. Since the on-shell
KN t’s have been fit to the scattering and reaction data,
examining bound state data provides a supplementary
test; the scattering data are sensitive to the KN wave
function in the large r region, while the bound states are
sensitive to smaller r values.

D. Exclusion principle

The exclusion principle forbids a recoiling nucleon from
entering into a state already occupied by another nucleon
— and thus has no effect upon a K or A* (unless the
quarks’ bags dissolve in a nucleus). While some exclusion
is present in the overlap function F Eq. (8) derived from
a determinantal wave function, we also incorporate it in
the elementary X~ by including an operator Q into the
KN Lippmann-Schwinger equation which permits only
unoccupied intermediate nucleon states:

(K| (w) k) = (r'| 7 |i)

('] 5 |p) Q(p) (Plt(w) Ix)
+,/d3p w— w(p) + i€

(36)

Since @ depends on the nuclear wavefunctions, we are
including nonlinear nuclear density dependences into the
optical potential.

Although it would be better to determine @ from de-
terminantal wave functions, we keep the computation
simpler by using the Fermi gas model

Q(p)={0 P < pr

1if pv > pF (37)

where py is the momentum of the nucleon relative to
the nuclear c.m.. We relate py to the KN relative mo-
mentum & and the K N total momentum K (and remove
some of the harshness of this model) by taking an average
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over scattering angle (standard for nuclear structure)

0 if xK + k< pF
Q(K, x) = 1 ) . if [xK — k| > pr
o otherwise |,
(38)
/3
_ my _ 372 \'
= = () (39)

When searching for nuclear states, we assume the K or-
bits deep within the nucleus, in which case the appro-
priate r for p is for the nuclear interior, and thus obtain
pr = 260 MeV/c. When searching for the atomic states,
we assume the K is in a Bohr-like orbit, in which case the
appropriate r for p is the one in which there is maximum
overlap of the Coulomb wave function and the nuclear
density, and thus obtain pr = 140 MeV/c.

IV. ATOMIC RESULTS

To set the scale, in Fig. 2 we show the relative sizes of
the Bohr radii

he o
=—n
Zapc?

Rp (40)
of the 15 level in kaonic hydrogen, the 2P levels in kaonic
‘He and 12_9, and the radius of the carbon nucleus itself.
Since the K in carbon is closest to the nucleus yet still
far outside of it, we expect this level to be shifted most

J

6, T)5P = (40 £ 60,0 + 230), (264 + 76,544 + 356),
H

(Positive € means the strong interaction shifts the
Coulomb level towards the more bound.) A significant
off-shell sensitivity was found, with r2, the only poten-
tial to agree with the positive sign of €, also agreeing with
its magnitude.

Since the 2P orbit in carbon has a greater nuclear over-
lap than the 1S level in hydrogen, if we were in the pei-
turbative regime we might expect it to have a greaier
sensitivity to the elementary interaction. Yet since the
carbon potential is strongly absorptive and attractive,
its shift is subject to Krell-Seki oscillations,®* and so its
relative size and sign is hard to know offhand.

We have taken each elementary interaction determined
by Ref. 15, built an optical potential with it, added in
the Coulomb potential, and calculated exactly the en-
ergy of the 2P level in kaonic carbon. In Figs. 3 and 4
we show the predicted shifts and widths along with the
experimental data of Backenstoss et al.?3

6, T)a? = (=590 £ 80,173 £ 150) eV . (42)
c

Helium-4 2p

Carbon-12 2p

Nucleus
o

FIG. 2. The relative sizes of the Bohr orbits for a K~ in
120, H, and *He, and for the carbon nucleus.

by the nuclear force (it is) — but wonder if it is close
enough to the nucleus to probe the small r KN inter-
action. If this latter (off-energy shell) sensitivity exists,
the strong interaction shift will differ for various models
of the elementary interaction, and kaonic atoms can be
used to distinguish among them.

A. Sign of shift

The previous study!® took a number of elementary po-
tentials, calculated exactly the 1S energy of kaonic hy-
drogen, and compared these results to the experimental
shift and width!

(200 + 60,80%322%) eV . (41)

o—onift Width ...

1500

T'1eV1

500

E, [MeV]  E, [MeV]

FIG. 3. The strong interaction shift and width of the 2P
level of kaonic '*>C as a function of the effective nucleon bind-
ing energy Ep in the model of Fig. 1. The two curves are cal-
culated with optical potentials based on AHW (solid curve)
and nrl (dashed curve) elementary interactions. The data are
from Backenstoss et al.?®
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FIG. 4. The same as Fig. 2 only here for optical potentials
based on the elementary interactions rl (dashed curve) and
r2 (solid curve).

We note that the ezperimental shift and width in carbon
are much larger in magnitude than those of hydrogen
(with the latter results questioned by many), Eq. (41),
with the negative shift in carbon (to the less bound) of
opposite sign to that in hydrogen. We next note that the
potentials shown in Figs. 3 and 4 predict a negative shift
towards the less bound — even r2 which agreed with the
data in hydrogen by predicting a shift towards the more
bound. To explain this we refer to Fig. 5 which shows
the k™ p scattering amplitude for models 71 and r2 (the
“r” denotes relativistic kinematics). We see that r1’s am-
plitude displays a conventional A* resonance near 1400
MeV: Imf peaks and Ref changes sign. In contrast,
r2’s amplitude does not manifest a resonance signal: its
real part does not change sign and is positive at the k= p

4
g 2 12
&
— e
— m
-2 2 "
1300 1400 1500 1600
Energy [MeV]
FIG. 5. Real and imaginary parts (solid and dotted

curves) of the K ~p elastic scattering amplitude for the rela-
tivistic potentials r2 and r1. Arrows point to threshold ener-
gies.

threshold at 1432 MeV (it does however contain a res-
onance in the X channel). Consequently, r2 predicted
a posttive shift for kaonic hydrogen whereas rl1 and the
other models predicted a negative shift.

When these elementary amplitudes are used in the op-
tical potential, they are evaluated at the three-body en-
ergy (30), which means the nucleon’s Fermi motion and
recoil cause them to be evaluated at energies considerably
below threshold. This in turn means all amplitudes have
the same (positive) sign for their real parts, and thus all
predict the same (negative) sign for the shift. Yet this
also means that although all real parts of the optical po-
tentials are attractive, they all shift the Coulomb bound
state towards the less bound. This is not a contradiction
but rather the property of strongly-absorptive potentials
we referred to earlier as the Krell-Seki oscillation. On
a more microscopic level it is explained by the existence
of an odd number of strongly bound states within the
nucleus® — a possibility we explore in Sec. V.

B. Model Dependence

Returning to Figs. 3, we note the complex shifts pro-
duced by optical potentials based on the two-body inter-
actions with nonrelativistic kinematics, AHW (Ref. 7)
and nrl (Ref. 15’s update of AHW), and in Fig. 4 with
potentials based on the relativistic interactions rl and
r2. The agreement for the r2-based optical potential is
important since r2 is the only interaction to also agree
with the kaonic hydrogen experiments (which future ex-
periments may well prove to be in error). The curves
show the dependence of the shift on the effective, nucleon
binding energy Fp of Eq. (30). For Eg & 25 MeV all
potentials agree reasonably well with the shift €. In gen-
eral there is also somewhat too small a width predicted,
a trend also found by Alberg et al.” in their coordinate-
space study.

Not shown here are the predictions for optical poten-
tials constructed from the elementary, nonrelativistic in-
teractions nr2 and nr3. Their agreements with the car-
bon data are significantly poorer, and so we eliminate
them as viable elementary interactions. This is inter-
esting since it shows that even though nr2 was the best
nonrelativistic fit to the low energy two-body scattering
data, the nuclear bound state energy is an independent
and rigorous test. Potential nr3, on the other hand, did
not show a definite resonance signal in any channel, in
which case it is satisfying to see the carbon data rule it
out.

V. HYPERNUCLEAR RESULTS

By searching for complex energies which are solutions
of Eq. (5), det[l — GEU(E)] = 0, we have studied if
the optical potentials describing kaonic carbon also sup-
port deeply bound, nuclear states (hypernuclei in which
a nucleon converts to a A* or a K binds to the nucleus).
The search requires numerous evaluations of the deter-
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1.0 ]

0.5

Det( 1-GV)!

FIG. 6. The magnitude of the det(1 — GV) as a function
of the complex energy for an optical potential using the r2
interaction in factored approximation. The point N marks
the nuclear bound state, C the Coulomb states, and P the
potential poles.

minant of a complex matrix, each evaluation requiring
the optical potential matrix on a large grid, with each
matrix element requiring a four-dimensional integration
over the solution of a coupled-channels integral equation.
Further, in order to know in which direction to search,
numerous evaluations of the gradient of det[l — GgU(E)]
are required.

The difficulty of this study is evidenced by the plot
in Fig. 6 of det[l — GgEU(FE)] vs complex energy for an
r2-based optical potential in factored approximation. A
hypernuclear state occurs as the zero of the determinant,
and is seen as the broad dip near (—50 — 10z) MeV. The
atomic, Bohr-like states are all squeezed into the steep
hole near the origin. The spikes (and the zeros between
them) are poles in the determinant arising from poles
in the optical potential itself [which in turn originate
from a pole in the KN t matrix at a KN c.m. energy
of (—52,—39) MeV, Ref. 10]. These spikes are sharp
enough for the gradient not to be well defined near them,
which foils our search routine.

A. Binding energies

K C hypernuclear binding energies are given in Table I
for optical potentials constructed with full Fermi averag-
ing (7) and in factored approximation (12). Also listed in
the last column are the pole positions for the elementary

K~ p amplitude. We see that for both potentials the full
integration makes the S-wave states some 20% less bound
and narrower. Further, for the r2-based optical potential,
the nuclear environment narrows the width of the ele-
mentary state by a factor of 4, but increases its binding
only slightly. For the AHW-based potential, the nuclear
environment broadens the width by nearly a factor of 2,
and increases its binding by a factor of 4. We suspect the
different behaviors arise from having a strongly absorp-
tive optical potential — which is known to be sensitive
to even small changes, and from having two elementary
interactions with widely differing ranges!®:

B3 (r2, AHW) = (0.092,0.180) fm (43)

Also given in Table I are energies of the first P-wave hy-
pernuclear state (the finite nuclear size induces P waves
from the elementary s waves). We see that the P wave
states are less bound, and that one of them which existed
in the factored approximation no longer exists with full
Fermi averaging (possibly it is shifted to a region we did
not explore).

B. Model dependence

The dependence of the hypernuclear energies upon the
effective nucleon binding energy E'p is similar in the fac-
tored approximation (11) and full integration (7), as well
as similar for the different input potentials. As we see
in Fig. 7, the complex hypernuclear binding energy Fj,
varies relatively slowly with Fg — as least when com-
pared to the atomic binding energy dependence in Fig. 3.
Although the KN T matrix is a rapidly varying func-
tion of energy near threshold, the momentum dependent
terms in the three-body energy (30) shift the effective
KN subenergy down to a region below threshold, and
here T is a smooth function of energy.

The dependence of Ej, upon pp is similar for factored
and nonfactored approximations. Whereas the inclusion
of exclusion into the elementary amplitudes has little ef-
fect for atomic states, there is more sensitivity for hy-
pernuclear states. Since increasing pr blocks out more
of the final states available to the recoiling nucleon, this
reduces the strength of the K N T matrix [and especially
that of the imaginary part since it arises from the in-
termediate state in (36)]. However, since the potential
is too strong for there to be a simple relation between
binding energy and potential strength, it is hard to pre-
dict how this reduction affects the hypernuclear binding

TABLE I. Complex binding ensrgies in MeV for K *2C.
KN Potential Input E, (1=0) E,(=1) Eg-,
r2 (full) —46 —9.1 not found
r2 (factored) —53 —11i -9. =21 —52 —39i
AHW (full) —61 —42i —10 —31i
AHW (factored) —67 —54i —-17 =371 —14 —25i1
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0 L K - Carbon Hypernuclear Energy ]
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EB (MeV)
FIG. 7. The real and imaginary parts (solid and dashed

curves) of the A* hypernuclear binding energy Ey as a func-
tion of the effective nucleon binding energy Ep. The optical
potential uses the r2 elementary interaction in nonfactored
approximation.

energy. In general, the dependence is less than the Ep
dependence shown in Fig. 7.

VI. SUMMARY AND CONCLUSIONS

In this, the last of a three-paper series, we have embed-
ded the elementary coupled-channels KN interactions
deduced in paper 1 (Refs. 14 and 15) into a many-body
environment. This extends the testing of the interac-
tions from scattering, reactions, and kaonic hydrogen,
into kaonic carbon. Here we also tested if the strong
bound states found to exist with the elementary interac-
tions in paper 2 (Ref. 10) continue to exist in the nuclear
environment, and if so, how they are modified. Our stud-
ies are conducted with an optical potential including full
Fermi averaging, an important consideration for an in-
teraction with a strong energy dependence.

We find that several elementary interactions predict a
strong interaction shift of the 2P level in kaonic carbon
in agreement with experiment (to the less bound). In
particular, the interaction r2 (the only one to predict the

experimental shift to the more bound in hydrogen) gen-
erates an optical potential in agreement with kaonic car-
bon. The predicted widths in carbon are smaller than ex-
periment, and we suspect agreement may require a more
accurate, coupled-channels optical potential.

A single strong bound state (A* hypernuclei) for both
S and P waves in carbon was found for each elementary
interaction. This is not too surprising since strong states
exist in the coupled-channels elementary interaction —
yet since in the nuclear case there is strong absorption,
and since our optical potential is a single channel model,
their discovery was not certain. The existence and energy
levels of these states provide further insight into the na-
ture of the Aj(1405) resonance. The hypernuclear state
exists for a number of models and optical potential pa-
rameters, although its binding energy of course varies.
For our best model, r2 with full Fermi averaging, the
state is bound by 46 MeV with a width of 18 MeV. Its
best experimental signal may be a peaking of energy in
one of the A* decay channels.

Our general conclusion is that the theoretical optical
potential appears to be a reasonably sensitive testing
ground for models of elementary interactions, both po-
tential and quark models. Further nuclei should clearly
be investigated. A needed extension to the present work
is a coupled-channels optical potential which would in-
clude the structure of nuclei in which one of the nucleons
has turned into either a A or a ¥, and would thus relate
a number of hypernuclear species.
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FIG. 1. The three-body model of the optical potential,
a K of momentum k interacting with a nucleon bound to a
passive core of momentum P.



