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Neutron polarization in polarized He targets
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Simple formulas for the neutron and proton polarizations in polarized He targets are derived as-

suming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4)

large momentum transfers; (5) factorizability of 'He SU(4) response-function components. Numeri-

cal results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is

found that this simple model predicts the polarization of neutrons in a fully polarized 'He target to
be 87%, while protons should have a slight residual polarization of —2.7%. Numerical studies

show that this model works very well for quasielastic electron scattering.

INTRODUCTION

Because of the Pauli principle, H and He nuclei have
magnetic moments nearly equal to those of (free) protons
and neutrons, respectively. This is easily understood in
the context of the weak binding of these nuclides. The
angular momentum barrier suppresses the influence of
higher partial waves of the nucleon-nucleon force. If we
assume only s waves between each pair of nucleons, the
"like" nucleons in He and H (protons and neutrons, re-
spectively) are restricted by the Pauli principle to be in a
spin-singlet state. Thus their magnetic moments cancel,
leaving only the magnetic moment of the "unlike" parti-
cle. This dominance was indicated long ago in the semi-
nal calculations of Mallet and Tjon' and confirmed by the
benchmark calculations of Ref. 2 and others: the 'So and

S,- D& partial waves of a nucleon-nucleon force typical-

ly generate all but 100—300 keV of the binding energy of
He.

This result can also be obtained by considering the
symmetry properties of various components of the wave
function. The SU(4)-orbital decomposition of a typical
wave function yields a tiny amount of (positive parity} P
state components (which we will always ignore}, roughly
10% D-state components generated by the tensor force,
and several s-wave components. The dominant part of
the latter is the space-symmetric S state, which conse-
quently has a completely antisym metric spin-isospin
wave function because of the Pauli principle and leads to
no net magnetic moment for the "like" nucleons because
they are constrained to be spin singlet. Differences be-
tween the T=0 and 1 forces generate a small (1—2%)

S'-state wave-function component which reflects (spin-
isospin)-space correlations. The S' and D states generate
small contributions to the total trinucleon magnetic mo-
ment from the like particles, which can then exist in rela-
tive p waves. In addition to the impulse approximation
mechanism considered above, meson-exchange currents
(two-body operators) also generate relatively small (pri-
marily isovector) contributions to the magnetic moments.

A synopsis of representative results (in nuclear magne-
tons) from a recent calculation is listed in Table I, and
these numbers are further broken down according to
their origin. The S'- and D-wave-function components
serve to decrease the magnitude of the impulse approxi-
mation result, but this is compensated by the pion-
exchange currents. Overall agreement is rather good, al-
though the small disagreement in the H case indicates a
remaining problem with both isoscalar and isovector
parts of the magnetic moment.

Because the magnetic moment of any system is defined
as the expectation value of the magnetic moment opera-
tor with respect to that state of the system with the
highest magnetic quantum number (i.e., a "fully polar-
ized" nucleus), it is clear that a polarized He nucleus au-
tomatically provides a highly polarized neutron which is
rather loosely bound. In order to estimate how large this
polarization may be and what mechanisms might lead to
depolarization, we generate below a "figure of merit" for
this quantity which is simple and quantitative, but depen-
dent upon a number of approximations. After specifying
these approximations, we will calculate both the neutron
and proton polarizations using a wide variety of nuclear
force models, including three-nucleon forces in some
cases.
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TABLE I. Experimental magnetic moments (in units of nuclear magnetons) of the trinucleons He

and 'H compared to the free-nucleon magnetic moment (neutron and proton, respectively) and typical
impulse approximation, pion-exchange current, and (a synopsis oP total theoretical results from a re-

cent calculation (Ref. 5).

'He
H

p (expt)

—2.12
2.98

—1.91
2.79

Pimp

—1.76
2.54

—0.35
D.35

—2.11
2.89

MODEL CALCULATIONS and thus

The amount of polarization of a nucleon in polarized
He can be most easily estimated using an extremely sim-

ple and graphic model, which is physically motivated. It
is clear that the estimate depends on the details of how
we pose the problem although hopefully not in a sensitive
way. We ask the question: If a nucleon is simply pulled
out of the He target without disturbing its spin, what is
the degree of polarization of the spin of that nucleon?
The answer to the posed question is determined by the
quantities

P' '=( Hem=+ —'lP' —'l Hem=+ —')
n, p 2 n~p 2

n

p( —
) —gn

where

(5 =[P(S')+2P(D)]/3,

(6a)

(6b)

(6c)

and

P(+)/2 —)

p
(7a)

and the normalization condition (5b) has been used to
eliminate P(S). In addition,

where

p(k) 1 —r3(i) 1+a,(i)
2 2

P'-'/2 =-'+ a'
p 2

(2a) where

p(k) 1 + r3(i) 1+(r, (i)
2 2

(2b)

Pn= p( —)
n

(3)

and

Pp

'P(+ )/2
p

P'-'/2
P

(4)

where Tr(p)=1 in both cases. What makes the calcula-
tions of the P's tractable is that the various pieces of the
operators P are the generators of SU(4), which is used to
classify the basis states of the wave function
(S,S',D, . . . ). They are also the magnetic moment
operators in the impulse approximation. The results
(neglecting the tiny P-state components, as noted above)
are well known

(m =
2 l(r, lm =

—,
' ) =P(S)+P(S') P(D), —

& I~, I & =1=P(S)+P(S')+P(D),

(
3

m= —,
' z rr, iiir, (i) m= —,'j

i=1

(5b)

= —[P(S)——,'P (S')+—,'P(D)], (5c}

P P
The isospin factor in P„(P) counts the number of neu-
trons (protons) which are aligned (+) or antialigned ( —

)

with the He spin. Clearly, P„'+'+P„''=X,Z, where
N = 1 is the number of neutrons and Z =2 is the number
of protons. This information can be put into the form of
separate density matrices for neutrons and protons:

'p(+) 0n

b, '= [P(D) P(S')]/6 —. (7c)

These results have a very simple and physical interpre-
tation. If the forces between all pairs of nucleons were
identical (spin and isospin independent), we would have
P (S')=P (D)=0=b.=6'. The neutron would then be
completely polarized and the protons completely unpo-
larized, as we discussed above. In a realistic He nucleus,
however, the neutron is somewhat depolarized and the
protons gain a slight downward (negative} polarization.
The larger value of P(D) compared to P(S') makes it
dominant in both cases. The numerically important neg-
ative contribution of P(D) in Eq. (5a) arises because the
orbital D wave allows the concomitant S =

—,
' spin com-

ponent to point downward while preserving m =
—,', this is

not possible with S waves.
The quantities 6 and 6' can be evaluated easily for any

model. We note that wave-function probabilities are not
experimental observables, because of the problems in
defining uniquely the relativistic corrections to the in-
teraction operators. Consequently, this model can only
be an approximation (although it might be a very good
one). Values of 6 and (5' for a wide variety of nuclear
force models are shown in Figs. 1 and 2. Each point on
the plot is a theoretical calculation for a model plotted
versus the binding energy of He for that model. Many
observables plotted in this way show a very strong depen-
dence on binding, although these do not. Most of the
models with binding in excess of 7 MeV include a three-
body force. The primary exception is the lowest point,
corresponding to one of the Bonn potentials, which has a
weaker tensor force, and therefore a smaller P (D). Ques-
tions about the adequacy of particular nuclear forces
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and proton fractions of the quasifree scattering from He.
The effective neutron and proton polarizations in He are
p„(=0.865) and p (= —0.027) in terms of the fits in

Figs. 1 and 2. We can now compare this model to the
quasielastic electron scattering model of Blankleider and
Woloshyn (BW)," which also assumes no final-state in-

teractions and no meson-exchange currents, but does not
assume that the density matrix is independent of the
external interaction. Indeed, one way of testing the quali-

ty of our model is to calculate numerically A~( He) from
Eq. (10) and from their model and form the ratio. Devia-
tions from 1.0 indicate the inherent difference due to our
factorizability approximation.

The truncated Afnan-Birrell (UPA) wave function'
used in Ref. 11 had Ps =1.54% and PD=8. 37% al-

though the original wave function had Ps =1.6% and

PD =9.1%. We find, therefore, 6=0.061 and
b, '=0.0114. Figure 3 shows the ratio of our model (with
the values of b and b,

' corresponding to Ref. 11) to the
Blankleider-Woloshyn neutron asymmetry for electron
scattering of 0.88- and 3.0-6eV electrons. The ratio is
only weakly dependent on the electron energies and on
the momentum transfers, but is slightly larger than 1.0
( -5%). The same quantity for the protons in Fig. 4 is a
somewhat stronger function of the electron kinematic
variables, and is larger than 1.0 for most of the range of
momentum transfers. We note that the deviations from
1.0 are not much larger than the truncation of the
Afnan-Birrell D-state wave-function components
( —10%) actually used in Ref. 11. These deviations from
1.0 are consistent with those found ( -5%}in the calcula-
tions used in Ref. 13.

SUMMARY

We have constructed a simple model for the polariza-
tion of the neutrons and protons in polarized He. The
model works well if one assumes that final-state interac-
tions and meson-exchange currents are unimportant at
the quasielastic peak.
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APPENDIX

In order to be reasonably specific about reaction mech-
anisms, we assume that we are treating inelastic electron
scattering, although details are not very important in our
approach. We further assume that we are treating quasi-
elastic final-state configurations. This set of kinematics
reduces the influence of both final-state interactions and
meson-exchange currents, which we assume are
sufficiently small to ignore. We also assume that momen-
tum transfers are fairly high, so that the quasielastic ener-

gy (-q l2m) of a nucleon ejected with a momentum
transfer q completely dominates the energies of any im-
portant final states of the residual (two-particle) system.
In that situation, only the process in Fig. 5(a} contributes
significantly, where it is understood that we will take the

t.2-

E =3GeV

t.O—
E=0.88 GeV

1.2— E=0.88 GeV

0.8—
).0

F ~3GeV

06 & t I t & I ) ) I ) t I s s I s s

0.8—
0.2 0.6 I.O

Q (GeV/c)

l.4

FIG. 3. Ratio of predictions for the neutron asymmetry of
our model [Eq. (10)] (with the BW values of 5 and 5') to that of
the complete BW calculation, plotted versus square of momen-
tum transfer for two incident electron energies.

I I I I I I I I I I I I ~ I I I ~06
0.2 0.6 1.0

Q (GeV/c}e

FIG. 4. The proton asymmetry ratio, as in Fig. 3.
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imaginary part indicated by the dashed line.
The "cats ears" or correlation-interchange diagram of

Fig. 5(a) decreases rapidly for momentum transfers larger
than the correlation length (i.e., the average distance be-
tween nucleons). For the single neutron in He, of
course, only Fig. 5(a) exists. Our previously listed ap-
proximations prevent mesons from dripping off the
struck nucleon to the residual nucleus and altering the
nucleon spin states (labeled with Greek letters). The
latter situation could occur either at or between the
currents J corresponding, respectively, to meson-
exchange currents or final-state interactions.

Cutting the graph in Fig. 5(a) along the dotted line, we
obtain for the transition probability, assuming that the
neutron is struck,

T"- g &Oxr~Jr'~ppn'&&ppn'~J' ~Ox &5(E„E,)—,

(a)

(Al)

where we have labeled the He spin projection by x, the
final neutron spin by P, and the spin-changing (p, ~A, ) in-

teraction "current" by J ". We further assume that the
elementary amplitudes factorize, so that the details of the
currents can be removed from the matrix element:

FIG. 5. Processes which contribute to the two-photon ampli-
tude for 'He, whose imaginary part is the transition probability
for (virtual) photon absorption.

T"- g T ~Tarp" (q),

where

(A2)
where

p".,= &ox ~P &P„~ox& . (A5)

p r(q)= g &Ox[P„")ppn &&ppn(P„(ox &5(E~ Eo), —
ppn

(A3)

Moreover, the projection operators are diagonal:

p~p =5rp
n n n (A6)

p r(q) =~(q)p"r, (A4)

and the spin projection operators [Eq. (2)] have been in-
serted to enforce the spin conditions. We further assume
that most of the energy is transferred to the neutron so
that closure can be performed on the protons, and that
the response of the neutron to the momentum injected
into the He is factorizable; that is, all components of the
wave function respond in proportion to their size:

Thus

T"- g IT.&l'"(q)&oxlP lox &,
aP

(A7)

where the last factor is also Eq. (1) and determines the
spin orientation of the neutron a in a 3He nucleus that
has an orientation x. It is possible that a derivation of
this result can be found which is less restrictive and
makes fewer assumptions.
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