Soft giant dipole mode of ¹¹Li

A. C. Hayes and D. Strottman

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 23 July 1990)

The low-lying electric dipole distribution for ¹¹Li is examined in detail in a large basis nonspurious shell model which includes up to $3\hbar\omega$ of excitation. A very strong enhancement of the E1 strength between 1 and 4 MeV of excitation is predicted when Woods-Saxon single-particle wave functions are used. The relativistic Coulomb excitation cross section is underestimated. However, an analysis of the contributions to the E1 matrix elements indicates that small changes in the structure of the low-lying states can lead to a significant increase in the predicted E1 strengths, so that excitations normally omitted from shell-model calculations are not necessarily needed to explain the anomalous Coulomb cross section.

Electromagnetic interactions in peripheral relativistic heavy-ion (RHI) collision have proven to be a powerful probe of giant resonances in nuclei, and the measured Coulomb fragmentation cross sections are well understood in terms of the corresponding photoabsorption cross sections. Recent experiments have observed¹ the electromagnetic dissociation cross section for ¹¹Li on ²⁰⁸Pb at incident energies of 0.8 GeV/nucleon to be anomalously large, 20 times larger than for ¹²C. At relativistic energies Coulomb excitation is dominated by electric dipole radiation, and such a large cross section would be explained by the ground-state E1 distribution strength being strongly enhanced at low excitation energies. An estimate of the enhancement needed suggests that a soft giant dipole mode exists in ¹¹Li, in which about 20% of the total ground-state E1 strength lies at 1-2 MeV of excitation. E1 strengths between low-lying nuclear states are normally greatly suppressed compared to singleparticle estimate with most of the dipole sum rule being accounted for by the giant resonance at higher excitation. Low-lying dipole transitions, which are typically $< 10^{-2}$ W.u., then necessarily involve strong cancellations between the different single-particle contributions to the matrix element. However, if the last particle is loosely bound to the core, so that the corresponding singleparticle wave function has a long tail, we might expect to find a low-lying state for which the cancellation is broken and the resulting E1 strongly enhanced.

The purpose of this paper is to investigate the properties of ¹¹Li within a large basis shell model which has been shown to give a consistent description of the neighboring nuclei and, in particular, of low-lying enhanced E1 transitions. The strongest known E1 transition between discrete states has been observed² in ¹¹Be where $B(E1:1/2_1^- \rightarrow 1/2_{g.s.}^+)=0.36$ W.u. The enhancement of the transition has been understood² in terms of the weak binding energy of the last neutron; the $1/2^-$ state lies at 0.32 MeV of excitation while the neutron threshold is at 0.5 MeV. Millener *et al.*² have examined this and other strongly enhanced, low-lying E1 transitions in *p*-shell nuclei and have shown that they can be explained within the shell model if the binding energies of the orbitals involved are taken into account correctly. A recent random-phase approximation (RPA) calculation³ for ¹¹Li found some enhancement of E1 distribution at low energies, but not enough to explain the observed Coulomb excitation cross section. In this work we calculated the Coulomb cross section for ¹¹Li from the distribution of ground-state electric dipole strength predicted from a shell-model calculation which includes up to $3\hbar\omega$ of excitation, and examined in detail the structure of the low-lying E1 states.

In the simplest shell model ¹¹Li is described as a single $p_{3/2}$ proton with the neutrons forming a closed shell. The ground state (g.s.) magnetic moment, $^4 \mu = 3.667 \mu_n$, is close to the Schmidt $p_{3/2}$ value $(3.793\mu_n)$, lending strong support to a shell-model description of the nucleus. However, to obtain a realistic ground-state wave function it is necessary to include $2\hbar\omega$ excitations in the model space. In particular, ground-state correlations play an important role in determining the total dipole strength and the excitation energy of the giant resonance. Also, two-neutron $p^{-2}(sd)^2$ excitations lie low in the theoretical spectrum and can mix strongly into the ground-state wave function. We have used a complete $(0+2)\hbar\omega$ model space for the negative-parity states and a full $1\hbar\omega$ and truncated $3\hbar\omega$ basis for the positive-parity states of ¹¹Li. The truncation of our $3\hbar\omega$ basis was chosen so as to include states which are favored by the two-body interaction and included the configurations with SU(3) symmetries $(\lambda, \mu) = (6, 2), (5, 1), (7, 0), (4, 3), (0, 5)$. For the twobody interaction we used the Cohen-Kurath⁵ (CK) pshell, Chung-Wildenthal⁶ sd-shell, and Millener-Kurath⁷ (MK) particle-hole (ph) interactions. The p-shell and sdshell single-particle energies were taken to be the CK and MK values, and $\hbar\omega$ was set at 13.0 MeV.

In large $(0+2)\hbar\omega$ shell-model calculations it is difficult to determine the mixing of the $2\hbar\omega$ configurations into the ground state. Indeed, one of remaining questions in shell-model theory is how to treat 2p-2h and 1p-1h excitations which can couple to the $0\hbar\omega$ state through the ph interaction that transforms as the SU(3) tensor $(\lambda,\mu)=(2,0)$. The problems which arise are described, for example, in Ref. 8. However, it is essential to include the (2,0) excitations to ensure reasonable E1 and E2 distributions; e.g., they are responsible for the increase of the energy of the giant dipole resonance and the reduction in the total E1 strength over the simple $(0 \rightarrow 1)\hbar\omega$ model. To handle the (2,0) excitations we adopted the procedure proposed in a study⁸ of the giant dipole resonances built on the g.s. and $0^+(6.05 \text{ MeV})$ state of ¹⁶O. In this method the strength of the (2,0) interaction is treated as a parameter; i.e., $V(2,0) = \epsilon V_{MK}(2,0)$, where $V_{\rm MK}$ is the full MK strength and $0 \le \epsilon \le 1$. When $\epsilon \ne 0$ the spectrum is restored using Ellis's⁹ method for eliminating unlinked diagrams for shell-model calculations, i.e., a constant Δ was added to the unperturbed $0\hbar\omega$ matrix element prior to diagonalizing the Hamiltonian to ensure that the g.s. binding energy returns to its $\epsilon = 0$ value. In the present calculations we used $\epsilon = 0.75$, since this gives the best description of the 16 O g.s. E1 distribution. While this is but one prescription for determining the $0\hbar\omega$ and $2\hbar\omega$ mixing in large shell-model calculations, it is nonetheless physically reasonable. For example, the calculated⁸ dipole distribution and E1-E1 two-photon decav rate of the 4p-4h $0^+(6.05 \text{ MeV})$ state in ¹⁶O show strong sensitivity to the interaction used, and require the same value of ϵ (=0.75) as for the ¹⁶O g.s.

Another important consideration in any structure calculation is the problem of spurious center-of-mass excitations. In an SU(3) harmonic-oscillator (HO) basis such as used here, these are eliminated exactly. However, our main aim in this work was to determine the dipole distribution for ¹¹Li, for which we need to use more realistic single-particle wave functions. Replacing E1 singleparticle matrix elements obtained using oscillator functions with those obtained using more realistic functions unavoidably introduces some spurious contributions.

Diagonalization of the shell-model Hamiltonian in the $(0+2)\hbar\omega$ space yielded a $3/2^-$ ground state which is dominated by the $p_{3/2}$ proton configuration, with 2p-2h configurations making up 25% of the wave function. The predicted magnetic moment is $\mu = 3.62\mu_n$, which is in good agreement with the observed⁴ value. The $p_{1/2}$ spinorbit partner of the ground state is strongly mixed with the first $2\hbar\omega 1/2^-$ state, and two $1/2^-$ states are predicted at 3.61 MeV and 5.0 MeV containing 39% and 41% of the $0\hbar\omega$ strength, respectively. The lowest dominantly $2\hbar\omega$ $3/2^-$ state lies at 2.64 MeV, while the pure $2\hbar\omega$ states start with the $5/2^{-}$ (5.86 MeV), $7/2^{-}$ (4.6 MeV), and $9/2^-$ (7.43 MeV). The low-lying positive-parity states are dominated by $p^{-1}(sd)$ neutron excitations, and $3\hbar\omega$ configurations typically make up < 10% of the wave functions of states below 10 MeV. We adjusted the MK p-sd intershell spacing slightly so as to reproduce accurately the $1/2_{g.s.}^+$ $-1/2_1^-$ splitting in ¹¹Be. This then leads

 $\langle J_f T_f M_T || E 1 || J_i T_i M_T \rangle$

to $3/2_1^+$, $5/2_1^+$, and $1/2_1^+$ states in ¹¹Li at 1.45 MeV, 2.8 MeV, and 3.3 MeV, respectively. We note that our excitation spectrum and percentage of $2\hbar\omega$ and $3\hbar\omega$ configurations predicted in the wave functions of the states in ¹¹Li differ from those obtained by Sagawa *et al.*¹⁰ These differences arise from the fact that (a) we have taken the Millener-Kurath approach⁷ and used HO (as opposed to Hartree-Fock) wave functions to evaluate the two-body ph matrix elements from the MK potential and (b) we have treated (2,0) excitations differently.

We first calculated the electric dipole distribution using HO single-particle wave functions. The giant resonance, which is somewhat fragmented, is predicted to lie between 15 and 20 MeV, and < 2% of the total E1 strength lies below 5 MeV of excitation. Thus, it is clear that if the loose binding of the last neutron is not taken into account, no soft E1 mode is predicted; a similar result was found² for ¹¹Be. This result is not unexpected, since the isovector ph interaction pushes most of the available E1strength up in energy so that the different $p \rightarrow (sd)$ amplitudes add constructively in the resonance region, exhausting a large fraction of the sum rule. In the case of low-lying E1 transitions the $p \rightarrow 1s$ and $p \rightarrow d$ amplitudes are generally opposite in sign and cancel strongly. There are also $0s \rightarrow p$ contributions to the E1 matrix elements, but for ¹¹Li and the neighboring nuclei these contributions are relatively small at low excitation energies.

We examined in detail the $3/2^+_1 \rightarrow 3/2^-_{g.s.}$ transition since, with the use of Woods-Saxon (WS) functions, it was found to be a main contributor to the anomalous Coulomb excitation cross section. For the sake of simplicity we restrict our discussion to a $(0 \rightarrow 1)\hbar\omega$ model; adding the $2\hbar\omega$ and $3\hbar\omega$ configurations does not alter the situation greatly. In standard calculations the E1 matrix elements are expressed in terms of the one-body density matrix elements (OBDME's), which contain the nuclear structure information, and the single-particle matrix elements (SPME's). The dominant structure of the $3/2_1^+$ state is similar to the $1/2_{g.s.}^+$ of ¹¹Be, and involves a neutron excitation from the p shell to the $1s_{1/2}$ level, so that the $p \rightarrow 1s$ OBDME's are large. On the other hand, the use of HO SPME's for the destructive $p \rightarrow d$ amplitudes cause the $p \rightarrow d$ and $p \rightarrow 1s$ amplitudes to be comparable, yielding a small total B(E1) value (see Table I).

To include binding energies in evaluating the E1 matrix elements we note that it is the one-neutron and/or -proton separation energies which are significant in shell-model calculations of one-body operators. Following Ref. 2 we express the E1 matrix elements in terms of a summation over the A-1 core states as

$$= (-)^{J_{1}+J_{2}-\Delta J} \sum_{J_{c}T_{c}} \sum_{j_{1}j_{2}} U(J_{f}j_{1}J_{i}j_{2};J_{c}\Delta J) \langle J_{f}T_{f}|||a_{j_{1}}^{\dagger}||J_{c}T_{c}\rangle(-)^{T_{c}+(1/2)-T_{i}} \frac{\hat{T}_{c}}{\hat{T}_{i}} \langle J_{c}T_{c}|||\tilde{a}_{j_{2}}|||J_{i}T_{i}\rangle \\ \times \sum_{m_{t}(m_{t}'M_{T})} \langle T_{c}M_{T_{c}}\frac{1}{2}m_{t}|T_{f}M_{T_{f}}\rangle \langle T_{c}M_{T_{c}}\frac{1}{2}m_{t}'|T_{i}M_{T_{i}}\rangle \frac{\hat{j}_{1}}{\Delta \hat{j}} \langle j_{i}\frac{1}{2}||E1||j_{2}\frac{1}{2}\rangle .$$

$$(1)$$

The usual shell-model OBDME's have been replaced by a sum over the parentage coefficients to all physical nonspurious states $|A-1;J_c\rangle$. To calculate the E1 matrix elements using Woods-Saxon (WS) wave functions we followed Millener's prescription² in which the SPME's in Eq. (1) are evaluated for the binding energy relative to each core state $|J_c\rangle$. We obtained a spectrum for ¹⁰Li by diagonalizing the Cohen-Kurath⁴ interaction in a $0\hbar\omega$ basis. Since the calculated excitation of the $3/2_1^+$ state of ¹¹Li is 1.45 MeV, it lies above neutron threshold; however, we have treated it as bound and examined the sensitivity of the predicted transition strength to the assumed binding. Evaluating the SPME's in Eq. (1) with WS wave functions led to a very enhanced E1 transition, B(E1)=0.66 W.u., which is a factor of 18 larger than the HO result. In this calculation we assumed that the $3/2_1^+$ state was bound by 0.2 MeV, but similar results were found for binding energies of 0.5 and 0.02 MeV. The main reason for the strong enhancement is the large increase of the $p \rightarrow 1s$ SPME relative to the $p \rightarrow d$ SPME,

thus breaking the strong cancellation between the two contributions. The $1s_{1/2}$ parentage is strongest to the 1⁺ g.s. and $2^+_1(0.956 \text{ MeV})$ state of ${}^{10}\text{Li}$, while the $d_{5/2}$ strength is concentrated in the ${}^{10}\text{Li}(3^+_1, 3.4 \text{ MeV})$ state. Thus, the $d_{5/2}$ orbital is about 2 MeV more bound than the $s_{1/2}$ orbital. We carried out similar calculations for the E1 transitions to all $1/2^+$, $3/2^+$, and $5/2^+$ excited states of ¹¹Li below 5.0 MeV of excitation, and found the dipole distribution to be strongly enhanced for several states. Since HO wave functions give a reasonable description of the normal giant resonance in p-shell nuclei, we have used HO SPME's to calculate the E1strength above 5.0 MeV. The predicted dipole distribution is shown in Figs. 1 and 2, where the large enhancement of the low-lying E1 strength in the WS calculation is apparent. It can also be seen that including the g.s. correlations and $3\hbar\omega$ states increases the energy of the giant resonance and reduces the total E1 strength, while keeping the energy-weighted sum rule constant.

It should be noted that in using WS wave functions to

· 11+ ·

	Core states ¹⁰ Li		SPME	
$j_1 j_2$	J_n (E_x in MeV)	OBDME ^a	WS ^b	HO ^c
$1s_{1/2}p_{1/2}$	1_{gs}^{+}	-0.5426	-1.909	-0.7911
	$2_1^{+}(0.956)$	-0.2106	-1.622	
	$2^+_2(3.52)$	0.0618	-1.294	
1 <i>s</i> _{1/2} <i>p</i> _{3/2}	1_{g}^{+}	-0.0954	-2.70	-1.12
	1^{+}_{2}	-0.0521	-1.734	
	2_{1}^{+}	-0.1813	-2.294	
	2^+_2	-0.1577	-1.831	
	2^+_3	0.0492	-1.508	
<i>d</i> _{5/2} <i>p</i> _{3/2}	$1_{g.s}^{+}$	0.0122	3.533	2.373
	1^{+}_{2}	-0.0139	2.768	
	2^{+}_{1}	-0.0028	3.208	
	2^+_2	-0.0796	2.852	
	$3_1^+(3.39)$	-0.3108	2.864	
$d_{3/2}p_{3/2}$	$1_{g,s_{1}}^{+}$	-0.0871	-1.178	-0.7911
	21	-0.0107	-1.0584	
	2^+_2	0.0122	-0.9467	
	01+(5.75)	0.1052	-0.8971	
<i>d</i> _{3/2} <i>p</i> _{1/2}	$1_{e,s}^{+}$	-0.0236	2.634	1.7687
	21	-0.0784	2.391	
	2^+_2	-0.0343	2.126	
	2_{3}^{+}	0.0179	1.907	
$v_{1/2} 0 s_{1/2}$	20.0	-0.054	-1.041	-0.968
02/2051/2	20.0	0.114	1.472	1.370

^aThe OBDME's are larger than the normal shell-model values by a factor $(A/A-1)^{Q_1+Q_2/2}$, as required when using a relative coordinate system (Ref. 2). Small contributions form higher lying states in ¹⁰Li are included in the OBDME for the highest J_c .

 $ba_0 = 0.65 \text{ fm}, r_0 = 1.4 \text{ fm}, r_c = 1.6 \text{ fm}, V_{so} = 0.$

 ${}^{c}b_0 = 1.76 \text{ fm}$, and $b_{rel} = (A/A - 1)^{1/2} b_0$ (Ref. 2).

FIG. 1. The dipole distribution predicted in a $(0\rightarrow 1)\hbar\omega$ model using HO wave functions and in a $(0+2\rightarrow 1+3)\hbar\omega$ model using WS wave functions for states below 5.0 MeV of excitation.

evaluate the E1 matrix elements some inconsistencies have been introduced. We have assumed that the E1transitions are purely isovector, but have allowed different radial dependences for the neutron and proton single-particle wave functions. Also, although we have attempted to minimize spurious center of mass contributions, they cannot be eliminated exactly in a WS basis. Despite these shortcomings our main result clearly represents a physical effect. Indeed, the enhancement of the low-lying dipole strength in ¹¹Li is exactly analogous to the strong enhancement of the $1/2^-_1 \rightarrow 1/2^+_{g.s.}$ and $3/2^+_1 \rightarrow 1/2^-_{g.s.}$ transitions in ¹¹Be and ⁹Be.²

In the equivalent photon method, which is a good approximation at relativistic energies, the Coulomb excitation cross section can be calculated from the photoabsorption cross section as

$$\sigma_C = \sum_{\pi l} \int n_{\pi l}(\omega) \sigma_{\pi l}^{\gamma}(\omega) \frac{d\omega}{\omega} , \qquad (2)$$

where $n_{\pi l}(\omega)$ is the equivalent number of photons for multipolarity πl and energy $\hbar \omega$. Analytic expressions for $n_{\pi l}(\omega)$ have been derived by Bertunali and Baur.¹¹ The magnetic contributions to σ_C are negligible since the

- ¹T. Kobayashi, S. Shimoura, I. Tanihata, K. Katori, K. Matsuta, T. Minamisono, K. Sugimoto, W. Müller, D. L. Olson, T.
- J. M. Symons, and H. Wieman, Phys. Lett. B 232, 51 (1989). ²D. J. Millener, J. W. Olness, E. K. Warburton, and S. S. Han-
- na, Phys. Rev. C 28, 497 (1983).
- ³G. Bertsch and J. Foxwell, Phys. Rev. C 41, 1300 (1990).
- ⁴E. Arnold, J. Bonn, R. Gegenwart, W. Neu, R. Neugart, E.-W. Otten, G. Ulm, K. Wendt, and Isolde Collaboration, Phys. Lett. B **197**, 311 (1987).
- ⁵S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
- ⁶W. Chung, Ph.D. thesis, Michigan State University, 1976.

FIG. 2. The same as for Fig. 1, but with an artificial Gaussian width of 0.5 MeV applied to each state.

operators involve powers of $(1/Mc)^2$. For an assumed minimum impact parameter of 11 fm we obtained Coulomb cross sections of $\sigma_c(E2) = 5.5$ mb and $\sigma_{C}(E1)=0.38$ b. This is to be compared with the observed Coulomb interaction cross section $\sigma_L^C = 1.3 \pm 0.1$ b, or with the recent analysis of Bertsch et al.¹² which yields a Coulomb fragmentation cross section of $\sigma_{-2n}^{C} = 0.65 \pm 0.1$ b. Thus, our calculation underestimates experiment by about a factor of 2. However, this result does not necessarily mean that excitations omitted from standard shell-model calculations are needed to explain the observed cross section. The E1 matrix elements to the low-lying $1/2^+$, $3/2^+$, and $5/2^+$ states are very sensitive to the $1s_{1/2}$ vs $d_{5/2}$ amplitudes in the wave functions, so that a small adjustment of the ph interaction could cause a significant increase in the predicted dipole strengths.

Finally, we emphasize the difference between the normal giant dipole resonance and the soft E1 mode. At high excitation energy the resonance involves constructive interference between the $p \rightarrow d$, $p \rightarrow 1s$, and $0s \rightarrow p$ E1 amplitudes. In contrast, the soft dipole mode arises when the weak binding energy of the last neutron and corresponding long tail of the single-particle wave functions reduces the cancellation between large contributions to the matrix elements. The low-lying strength is very sensitive to the detailed structure of the states involved, and consequently is difficult reproduce accurately within any microscopic model.

- ⁷D. J. Millener and D. Kurath, Nucl. Phys. A255, 315 (1975).
- ⁸A. C. Hayes, J. L. Friar, and D. Strottman, Phys. Rev. C 41, 1727 (1990).
- ⁹P. J. Ellis, in *Windingsurfing the Fermi Sea*, edited by T. T. S. Kuo and J. Speth (Elsevier, Amsterdam, 1987), Vol. II.
- ¹⁰T. Hoshno, H. Sagawa, and A. Arima, Nucl. Phys. A506, 217 (1990); and H. Sagawa, private communication.
- ¹¹C. A. Bertulani and G. Baur, Phys. Rep. 163, 299 (1988).
- ¹²G. Bertsch, H. Esbensen, and A. Sustich, Phys. Rev. C 42, (1990).