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Models that are successful in hadronic spectroscopy, viz. , the nonrelativistic quark model, bag
models, and QCD sum rules, are used to shed light on the Okamoto-Nolen-Schiffer anomaly in nu-

clear physics.

I. INTRODUCTION

The Okamoto-Nolen-Schiffer' (ONS) anomaly is a
long-standing problem in nuclear physics. The anomaly
is the persistent discrepancy between experiment and
theory of binding energy differences of mirror nuclei (of
the same atomic number A and with the exchange of pro-
ton number Z and neutron number N). Explicitly, the
binding energy difference is

AE =M, ) —M, (+5„
where M, & is the atomic mass of the greater charge nu-

cleus and M, & is the same of the lesser charge nucleus,
and 5„=0.782 MeV is the neutron-proton atomic mass
difference. Experimental determinations of AE are 0.764,
3.54, 7.28, and 18.83 MeV for H, ' 0, 'Ca, and Pb,
respectively. For heavy nuclei, hE is greater than the
binding energy of particles -8 MeV. The calculated en-

ergy differences (b,E ),„„,between mirror nuclei (and oth-
er analog states) are —5 —10% smaller than (bE),„v,.
The difference (b,E),„,—(b,E),z„, increases with the
mass number A and amounts to -900 keV for the heavi-
est nucleus considered above.

Nuclear-structure effects, a long list of which may be
found in the review article by Shlomo, are thought indi-
vidually to give small (1—2 %) contributions. As many of
the effects considered give opposite contributions to
(b,E),„„„their total contribution does not resolve the
anomaly. Recently, the role of charge-symmetry-
breaking effects' ' has been reexamined, with the con-
clusions that sizable positive contributions to (bE),h„,
can arise from isospin breaking nuclear forces, especially
those from p-m mixing, and that these contributions are
helpful in partly reducing the discrepancy between exper-
iment and theory.

Henley and Krein (HK) have recently explored the
possibility that the resolution of the ONS anomaly may
be related to the partial restoration of chiral symmetry in
nuclei. Specifically, they study the variation of the
neutron-proton mass difference AM =—M„—M in the nu-
clear medium. Their calculations are based on the
Nambu —Jona-Lasinio model ' for chiral symmetry
breaking and are supplemented by a nonrelativistic quark

model" for the nucleon. They find that the neutron and
proton masses decrease from their free-space values with
increasing nuclear density in such a manner that the vari-
ation of AM is in the right direction to remove the ONS
discrepancy. Their numerical results even overshoot the
values required to remove the anomaly. It is therefore of
great interest to establish the degree to which the HK re-
sults are model dependent and also the degree to which
chiral restoration is effective in reducing the discrepancy
between experiment and theory.

The purpose of this work is to study the behavior of
b M in the medium using different kinds of models for the
nucleon all of which incorporate relativistic kinematics.
The models we have considered are (i) the constituent
quark model with minimal relativity, (ii) the MIT bag
model, (iii) the chiral bag model, and (iv) an approach
based on QCD sum rules. Our results are that hM de-
creases in the medium in all cases except the MIT bag
model in which there is practically no variation with den-
sity. In each case, the decrease of hM occurs due to the
change in the structure of the ground state of matter. We
find, however, that the inclusion of relativistic effects
leads to smaller variations of hM than obtained by HK
who did not consider such effects in their model of the
nucleon.

There exists a very natural concern about using
effective hadron models to calculate the tiny AM-1
MeV. Are such models, which do not have such high
precision, reliable for the calculation of AAP. The answer
is yes. The origin of the small AM is the small isospin
breaking. In any reasonable model of the nucleon, once
one turns off this small perturbation, hM is exactly zero.
With isospin breaking, one can calculate the effect at
least qualitatively since the perturbation is small. In oth-
er words, the smallness of AM is due to the smallness of
the perturbation and one does not always need 1 MeV
precision in the isospin-symmetric sector of the hadron
models. This situation is similar to the calculation of
weak processes involving hadrons.

In Sec. II, we reanalyze the Henley-Krein model by
taking into account relativistic effects. These effects
reduce the too large variation of hM found in the nonre-
lativistic approximation. In Sec. III, we present calcula-
tions of AM using the simple MIT bag model, which does
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not show any variation with density. In Sec. IV, results
from the chiral bag model are given. Here effects due to
the pion cloud are chiefly responsible for the result that
b,M decreases with density. In Sec. V, QCD sum rules
are used to establish a direct relationship between the
variations of hM and the quark condensate in the medi-
um. Section VI is devoted to summary and conclusions.

II. THE CONSTITUENT QUARK MODEL

—CM "4+DM-'~4, (2.1)

In the nonrelativistic quark model used by Henley and
Klein, the neutron-proton mass difference AM is given by
an expression due to Isgur"

bM=(1 —AM BM —i 0.08—)5M

m =M„=M—
—,'5M, m„=M+ ,'5M—(proton),

rn =Md=M+ —,'5M, m&=M —
—,'5M (neutron) .

(2.7)

The different oscillator energies of the proton and the
neutron contribute to the energy difference of the proton
and neutron the amount

where m =m, m&=3rnm'/p, p =m p, pz=m&A, , and

P, =pR. The Hamiltonian in the rest frame consists
now of two independent three-dimensional harmonic os-
cillators both with the same spring constant E. The
difference between the oscillator energies in the proton
and the neutron comes about because in the proton the
two u quarks are in the p oscillator whereas in the neu-
tron the two d quarks are in the p oscillator, i.e. ,

where

M =(Md +M„)/2 and 5M =Md —M„. (2.2)

Ez E„=——,'[co (p)+co&(p) co (n )
—co&—(n )]

=v'3K/4M 5M = AM 5M (2.8)

Md (M„) is the constituent quark mass of the d(u)
quark. The coefficients A, B, C, D, and 5M are deter-
mined from fits to AM = 1.3 MeV and M =333 MeV for
nucleons in free space using harmonic oscillator poten-
tials. In Ref. 8, the spring constant EC for quarks bound
by harmonic forces is assumed to be independent of nu-
clear density, and therefore A, B, C, and D are simple
functions involving K. With E=(219.6 MeV), the nu-
merical values of the other coefticients are

2 =v'3E/4—=2815 MeV, B=7.63X10 MeV
(2.3)

C=0. 146 MeV, D =136 MeV

As the variation of the electric (CM' ) and magnetic
(DM ) terms with M is insignificant, we shall focus
our attention on the parts coming from quark mass
difFerences and strong interactions in AM. When the
constituent quark masses vary from M =333 MeV down
to 280 MeV, the main variation of bM is given by the
variation of the terms proportional to A and B 5M itse. lf
varies little with density.

We discuss now the origin of these terms. As the term
AM is the most important, we take this first. In
both the proton and the neutron, we have two identical
quarks, which we label 1 and 2, and denote their masses
by m. Quark number 3 is the u (d ) quark in the neutron
(proton) with mass m '. The total rest mass is

p =2m +m '. The nonrelativistic Hamiltonian is

Ho = (pi+ pP+, p~+ —g(r; —r, )' (2.4)
i&j

where ~ z
=+3K/m z. If we include the rest masses

of the quarks in the nonrelativistic Hamiltonian Eq. (4),
the net neutron-proton mass difference becomes

b,M=(Md —M„)(1—AM ) .

Now the factor AM can also be written as

(2.9)

AM =T M3 (2.10)

where T3 is the nonrelativistic kinetic energy for the
third quark

whence

1

2m
(2.1 1)

2

0 0 =2m'T& =—2AM
P3

r2
(2.12)

For M =333 MeV, (O~p&/M ~0) =0.93, which is uncom-
fortably close to one. The situation becomes worse if we
keep the string tension K constant and decrease the con-
stituent mass M. For example, for M =290 MeV,
(0~p&/M ~0) = 1. 14 so that the nonrelativistic velocity is

greater than that of light. One is then concerned about
the degree to which a strong variation of bM with the
constituent mass is an artifact of the nonrelativistic mod-
el. Relativistic corrections to variations of b,M with nu-

clear density must be of some importance.
We estimate now the importance of relativistic correc-

tions by using minimal relativity in the sense that we use
the Hamiltonian

Introducing the Jacobi coordinates

m m'R= —(r, +r~)+ r3
p

one can rewrite Eq. (2.4) as

1p= —,'(r, —r2), A, = &- (r, +r2 —2r~),v'6
(2.5)

3

Hrc= g Qm, +p, +—g(r, —r )

i =1 i&j
(2.13)

2

HN~= pm, + g +—g (r; —r )

i i&j
(2.14)

for the nucleons and take the expectation value of H„be-
tween the eigenstates of the nonrelativistic approximation

Ho= p + ,'Jc.p + pz+ —,'EA—, + P, , (2.6)
Since
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1 1 mpi= &-p, + &-p~+ —P
2 6 p

1 1 m
pa = —~- pp+ ~- p~+ —P

2 6 p
(2.15)

neutron-proton mass difference to first order in perturba-
tion theory will be

bM=(n~Hg~n &
—(p~ag~p&,

n m+p n —p m+p- p
2 m.—p~+v6 p —

—,
' AM 5M (2.16)

expectation values can be calculated by using eigenfunc-
tions of HN„ in the momentum representation where the
total momentum P is quantized to zero. Then the

where the last term is calculated to first order in
(Md —M„). The expectation value in the ground state of
the neutron is

8„=(n x v m, '+p', n)i=1

f f dk2dk2 "p "p

m&3(v v )p A,

p A.

k2 kq k kq

3

k2 kq k kq
M + +

2 6 V'3

' 3/2

+ M„&ye~E, (y) .
&3m.

(2.17}

bM=(Md —M„)(2—+1+2AM i ), (2.18)

and in the relevant range of M, hM varies very little
with M.]

Here y=(Q —', M„) /4A, v =m co and vz=mzcoz.
The corresponding expression for

3

6, =(p~ g Qm, '+p', ~p &

i=1
is obtained from G„by interchanging M„and Md in all

factors entering Eq. (2.17}.
In the upper panel of Fig. 1, we show the variation of

b,M from the nonrelativistic approximation Eq. (2.9)
(dashed line) and the expression in Eq. (2.16), which con-
tains corrections from minimal relativity (solid line). At
this level, hM contains only the part involving the quark
mass difference and the oscillator energy difference. In
order to have the same normalization for b,M for free
particles (with M=333 MeV), we use 5M =6 MeV in Eq.
(2.9) and 5M =4.76 MeV in Eq. (2.16). It is clear that the
variation is much smaller when we use Eq. (2.16)
(minimal relativity) than when we use Eq. (2.9) (the non-
relativistic approximation). We believe that the variation
would be even more reduced if we included relativistic
corrections to the wave function. Sizable variations of
AM with nucleon mass are very dif5cult to obtain from
kinetic terms of the Hamiltonian.

[We note in passing that if for Eq. (2.14) we
naively adopted a "relativistic" version, namely
R =+M +2MT3 —M, where

T, = AM-'" = (olp310 & nM,
Eq. (2.16) would take the form

3.5

30

1.0

0.5—

0.0
330 320 310

M (Mev)
300 290

FIG. 1. Upper panel: 6M=M„—M~ (involving the quark
mass difference and the oscillator energy difference) versus the
average constituent quark mass M. The solid line shows the re-
sult from Eq. (2.16) which includes relativistic corrections
(5M=4. 76 MeV). The dashed line is the result of the nonrela-
tivistic approximation Eq. (2.9), with 5M=6 MeV. Lower
panel: Full mass difference from Eq. (2.1). Solid line is the re-
sult including minimal relativity corrections. Dashed line is
from the nonrelativistic approximation.
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As the numerical results of Henley and Krein
overshoot the required decrease of hM in the medium,
the relativistic corrections are welcome. There is an ad-
ditional variation of hM in Eq. (2.1) due to the termBM, which originates from the first-order chro-
mornagnetic interaction. It might, however, be that this
is an artifact of the nonrelativistic model. In bag-type
relativistic models, the chromomagnetic neutron-proton
mass difference is very small and independent of the bag
radius for a fixed a, .

It might nevertheless be worth mentioning that if we
correct the first two terms of Eq. (2.1) by using minimal
relativity, and retain all other terms, then we would have
to use 5M =4.2 MeV (with M =333 MeV) to obtain the
empirical mass difference of 1.3 MeV. The lower panel of
Fig. 1 compares results of this approach (solid line) to the
nonrelativistic results (dashed line) of Eq. (2.1) (5M —=6.2
MeV and M=333 MeV). When the constituent quark
mass varies in the range 333-290 MeV, the decrease of
hM is -0.5 MeV using minimal relativity, which is to be
compared with the decrease of —1 MeV from the nonre-
lativistic approximation.

We have shown that the relativistic corrections are im-
portant when one wants to compute variations of the
neutron-proton mass difference as a function of the con-
stituent quark masses. It should also be mentioned that
Eq. (2.1) for the neutron-proton mass difference implicitly
assumes that the string constant E for the quark interac-
tion does not change when the constituent mass changes
due to a decrease of the quark condensate in the medium.
The mean-square radius +(r ) for nucleons is therefore
bigger for bound nucleons than for free nucleons. For ex-
ample, when m changes from 333 to 290 MeV, +(r )
changes by the factor ( ',~ )'~ =—1.07. In medium swelling
of the nucleon is implicit when Eq. (2.1) is applied to ex-
plore hM in medium. We turn now to other models that
have been used in baryon spectroscopy to see if a
sufficient variation of hM can be obtained in order to ex-
plain the ONS anomaly, at least qualitatively.

III. THK MIT BAG MODEL

There is some evidence for the property that the elec-
trornagnetic mean-square radius of a nucleon increases
when the nuclear density increases. ' In the literature,
this feature is termed the swelling of the nucleon. We
can simulate this effect in the MIT bag model' ' by al-
lowing the bag radius R to change from its canonical
value. The dynamical reason for this behavior can be a
decrease of the vacuum pressure, i.e., a decrease of the
bag constant B relevant for the calculation of the nucleon
mass in the nuclear rnediurn compared to a similar calcu-
lation in vacuum. One may then inquire how the
neutron-proton mass difference varies when Q ( r )z (or
equivalently R) changes due to effects induced by the nu-
clear medium. The mass difference (md —m„) of the
current quarks would be rejected in the mass difFerence
for the neutron and proton partly through a kinetic term
and partly through a term proportional to the quark
gluon coupling constant a, . The energy of each quark
with mass m is

E&(m, R )=—+x +(mR ) —=
1 2 2 co(mR )

R
(3.1)

where the eigenmodes x =x(mR } are solutions of the
equation

X
tanx =

1 —mR —+x +(mR )

Expansion of the kinetic part of AM gives

E&(m, R ) =E&(O,R )+m de(y )

v=o
+ 0 ~ ~

(3.2}

(3.3)

where V =mR. Note that the first-order correction does
not depend on R. Thus, to first order in isospin breaking
the bag radius of the neutron and the proton are the
same, R„=R . Therefore, AM from the kinetic energy
difference reads

5K:Eg(m—d, R )
—Eg(m„, R )

with

= (md —rn„) de(y )

dv y=0
(3.4)

des(y ) 0.5

dy 0 x(0)—1
(3.5)

To first order in 5m, we find that the chromomagnetic
energy 5E&& = (

——', ) X 0.047a, which is also independent
of R. Thus the MIT bag result of the neutron-proton
mass difference from the strong interaction is

bM=5K+5E&& =(md rn„)(0—.48 —0.031a, ) . (3.6)

IV. THE CHIRAL BAG MODEL

The chiral bag model' ' is a more realistic model of
the nucleon than the original MIT bag model as it gives
partially conserved axial currents (PCAC) and thereby
takes into account the pionic degrees of freedom in nu-
clei. The pion-nucleon coupling constant is calculable as
the effects of the pionic cloud on the energy of the free
nucleon. The pionic contribution will be different for the
neutron and the proton due to the isospin breaking of the

As there is no R dependence in this expression (neglect-
ing a variation of a, as a function of R in the small
second term), it is clearly impossible to induce a substan-
tial variation of bM in this model by nucleon swelling
only. The results shown in Table I substantiate this con-
clusion clearly. These results were calculated using a
zero point energy constant Zo = 1.869, the quark-gluon
coupling constant a, =2.2, m„=3 MeV, and md =7.4
MeV.

The magnitude of AM which has the correct value due
to hadronic interactions in free space, ' is seen to be rela-
tively insensitive to the nucleon size. We note in passing
that Eq. (3.6) is valid over a wide range of R. The dy-
namics leading to the ONS effect must therefore be more
complicated than provided by the MIT bag model with
changing radii. We therefore turn now to the MIT bag
model in its chiral version. "
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TABLE I. Variation of masses in the MIT bag model with

increasing nucleon size.
m =auu —bdd —css

g 1/4

(MeV)

145
100

Mp
(MeV)

937.80
647.39

M„
(MeV)

939.62
649.22

R
(frn)

0.99
1.43

hM
(MeV)

1.82
1.83

-0.711uu —0.703dd —0.008ss . (4.6)

g:„=&2c '
( IF. I'+ I G. I'&+

3
( IFd I'+

I Gd I')

The neutral pion coupling to the proton and neutron be-
cornes

n -N coupling induced by the u-d quark mass difference.
We first describe how this comes about before we esti-
mate how this isospin breaking influences the neutron-
proton mass difference in nuclei.

We initially consider the perturbative approach using
the big-bag model. For simplicity, we present the argu-
rnents using free-quark wave functions inside the bag. To
get numerically reasonable pion-nucleon coupling con-
stants, we shall later use the cloudy bag' where the pion
is permitted to penetrate inside the bag. The isovector
axial current to lowest order in the pion field is

A„=~ r„r5—ee(R r)+f„a„~— (4.1)

where m is the static pion field normalized so that

(1+pr )ego o' r
8mM r2

(4.2)

g =-', c[IFI'+ IGI']„, .

The constant C is given by

e"" MR 3
1C=

2+2pR+p R f 1+I

(4.3)

(4.4)

where X is a function of pR that is very close to 0.5 for
all values of R that interest us here.

When isospin is broken through the difference of u and
d quark masses, the continuity of axial currents through
the bag surface leads to isospin breaking in the coupling
of pion to nucleons. As in the isospin symmetric case, we
use as wave functions

outside the nucleon. Above, M is the nucleon mass and p
is the pion mass. The pion-nucleon coupling constant is
fixed by PCAC constraint of the conserved axial current
through the surface. In the isospin-symmetric limit
where the quarks have the same mass, the quark wave
functions 4(r ) =[iF(r),G(r)a r]' inside the bag are the
same for u and d quarks. The neutral pion-nucleon cou-
pling constant is

and

= [-', ( IF. I'+ I G. I'&+-,'( IFd I'+
I Gd I')], (4.7)

g, =&2C ——
( IF. I'+ I G. I'& — ( IFd I'+

I Gd I')

= —[-,'( IF.I'+ I G. I'&+ -', ( IFd I'+
I Gd I'&] (4.8)

2

hM" = —CN (4.10)

where C is a slowly varying fonction of R

Here F and G are the upper and lower components tak-
en at the surface. These formulae are instructive since
they show that if the pions couple to the nucleon at some
surface, then g 0 ) lg 0 I. The reason is purely quan-

tum mechanical: the u quark is lighter than the d quark
and will therefore be more spread out in space than the d
quark. Hence

F„+G„&Fd+Gd . (4.9)

It is of course implicit in our argument that the "radius
of the bag" is nearly identical for the proton and neutron.
The particle (proton) that contains the most of the light-
est flavor will be coupled the strongest to the neutral
pion. We remark that this simple result is quite con-
sistent with the result of the other approaches even
quantitatively.

This isospin breaking for pion coupling now has an
influence on the mass difference of the neutron and the
proton which is of interest if the sizes of nucleon increase
in nuclei. Pionic contributions to the proton and to the
neutron mass are now unequal. It is instructive to see
how this works in the limit of large bags where perturba-
tive arguments hold and where the pionic contribution to
the nucleon mass is equivalent to calculating self-energy
diagrams for the nucleons.

With nucleons and 6 as intermediate states, the pionic
contribution to the nucleon mass in the isospin sym-
rnetric limit is

1
Ipt &= —[2lututd) &

—Iutu)dt &
—Iu)utdt &]

6 C= 567
e " (1+pR)(2+2pR+p, R ) .

2400wM
(4.11)

—[2Idtdt~i &
—ldtdi~t &

—Idgdt~t &]
1

v'6

(4.5)

p 1a+=du, m =ud, and ~ = —(uu —dd) .v'2

In AMN, two-thirds of the contribution comes from the
self-energy of charged pions and one third comes from
the neutral pion. The contribution to the neutron-proton
mass difference due to the pionic interaction will there-
fore be positive

If one takes into account the small s quark mixing for the
neutral pion, one has '

happ n nnCgo go
np 3 R3

(4.12)
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and it decreases with increasing R (or charge radius) of
the nucleon. It is instructive to substitute the value of C
from Eq. (4.11) when R —1 fm, whence

C
AM =—gp 1—

np 3 m pp

2
gm. nn 1

2 R 3
77 pp

8 GeV-'
R

2
g ~onn1—

2
g ~ppp

(4.13)

As bag models give typically g 0 /g 0 -0.99, an orderann n pp
of magnitude estimate is

0. 1 GeV

R
(4. 14)

so that, for R =5 GeV ', AM„—1 MeV. The order of
magnitude so obtained is therefore relevant when one
discusses the ONS anomaly. This discussion has been
rather qualitative; its aim has been to show that in chiral
models there is a contribution to AM coming from the
broken isospin invariance in the pion-nucleon coupling.

We now turn to a quantitative analysis by calculating
the properties of the neutron and the proton in the chiral
bag model. Our calculations will be quite similar to those
in Ref. 20 except that we use a mass of the d quark which
is 3.6 MeV larger than the mass of the u quark and modi-
fy the chiral boundary condition to allow for the broken
isospin symmetry. The parameters we use are
B' =0.125 GeV for the bag pressure, Z0=0. 612 for the
zero-point energy, a, =3 for the strong coupling con-
stant, m„=0 and md=3. 6 MeV. We summarize the
properties obtained using this solution that are of interest
to us in Table II.

The hadronic mass difference between a neutron and
proton in free space is 1.8 MeV as it should be (the
Coulomb energy difference' amounts to ——0.5 MeV).
The model is clearly not giving ridiculous results when
compared to well-known data. How well the model does
in its determination of isospin breaking in the pion cou-
pling we cannot say, but isospin breaking at the 1% level
as above is not in conflict with any experimental data.

We study now how the masses change when we de-
crease the bag pressure so that the mean square radius of
the proton increases. If we decrease B from B' =0.125
to 0.1 GeV, (r )~ increases by about 24%%uo. The masses

V. QCD SUM RULES

The QCD sum rules are another relativistic
formulation —of fundamental origin —that can be used
to analyze how baryon masses change in the medium. In
this approach, the neutron-proton mass difference may be
related to the variation of the quark and the gluon con-
densates in the medium. We are not aware that isospin
breaking in the baryon sector has been analyzed before,
but it is clear that we can use the result of calculations
due to SUf(3) breaking. In fact, the neutron (proton)
composite operator is obtained from the " (X+) opera-
tor by a simple substitution s ~d;

4-=e,b, [{s'(x)Cs (x ) )ysu'(x )

+ t (s'(x )Cy5s (x ) )u '(x ) ]~4„,
4z=e,b, [(u '(x )Cu (x ))y,s'(x )

(5.1)

+ t{u'(x )Cy&u "(x ) )s'(x )]~%'~,

where C denotes the charge-conjugation operator and t is
a mixing strength of the two independent operators hav-
ing the same quantum number as the baryons under con-
sideration. Thus we can use the sum rules for " and X
with the replacement m, ~md (m„=0) to calculate bM.

The QCD sum rule is based on the use of the operator-
product expansion (OPE) of the correlation function for
4 above

of the nucleons then decrease to Mn =754. 10 MeV,
M =752.42 MeV and g~ =1.19. We see that we have
obtained a small decrease in bM (of 0.12 MeV) and g„
from their values in free space.

The results of this section are that AM and g~ decrease
for nucleons bound in nuclei. This decrease is somewhat
smaller than that obtained using the constituent quark
model with minimal relativity (see Sec. II) and can at
most explain a fraction of the ONS anomaly. It is of
course conceivable that the bag model underestimates the
charge symmetry breaking of the m-N system and that a
swelling of the nucleons is indeed an important dynami-
cal mechanism for the decrease of AM in the medium.

We turn now to a completely different approach—
QCD sum rules —that shows the same qualitative varia-
tion of bM as did the models in Secs. II and IV, when the
nuclear density increases.

TABLE II. Observables in the chiral bag model with

md =3.6 MeV and rn„=0.

II ~(q )—:i J d x e '~'T[+(x ) 4(0)~]

= g C„(q )6„, (5.2)

Particle

Mass (MeV)
( r2 ) 1/2 (fm)

Magnetic moment
(Nuc. magnetons)

g o/4~

g (n p)
g + /4m

Neutron

939.15
—0.07

2.51

14.37

1.26
14.29

Proton

937.16
0.9

—1.80

14.21

where a and P are spinor indices. The short-range part
of the correlation is surnrnarized in the Wilson
coefficients C„, while the long-range part is summarized
in the local composite operators 8„. It is assumed that
in vacuum the expectation values of 6„ is nonvanishing,
viz. , {0~6„~0)WO. In medium, one should take the
ground-state expectation value instead. Then all the
medium (finite density) corrections are controlled by the
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density dependence of the expectation values of the com-
posite operators. An alternate approach is to rearrange
the OPE in the medium to an expansion that contains
medium-dependent Wilson coefficients. ' The former
approach is more convenient in the low-density and/or
low-temperature regime.

In taking expectation values in a medium, the choice of
a specific frame, e.g. , the rest frame of matter, gives rise
to noncovariant condensates. For example, in the OPE
one obtains the condensate

+(—', a —r —aMor )(md —m„}], (5.8}

where

Ref. 28) up to first order in symmetry breaking. For
t = —1 and neglecting continuum contribution for simpli-
city,

MohM= [ —(r + —', aMO)ay
a~4

(:u u ~:)= —
—,
' g r, (:u r'u:),

5
(5.3)

a = —(2m) (qq ) =(2m) (250 MeV)3,

b—:m. ((a, /~)G') =m. (330 MeV)

N, po(u u ) & — X0.16X(200 MeV)
Nf Nf

(5.5)

and amounts to -20% of the scalar condensate at the
nuclear matter equilibrium density of pp=0. 16 fm
Since the relevant densities lie below po and the nonco-
variant condensates always appear associated with the
scalar condensate, we will not explicitly consider the non-
covariant condensate but will regard the scalar conden-
sate as effectively including both effects.

On the phenomenological side of the sum rule, one
commonly assumes a specific form for the spectral func-

tion p ~(s). For example,

p i(s)=F[yg"+M&) i5(s —M~)+ continuum . (5.6)

This is then used in the dispersion relation in the medi-
31,32

2n ag(
ReII ~(co, p=0) = f z

ds —subtractions .
s "(s —co~)

(5.7)

Here we take a nucleon having three-momentum p=0
and deep Euclidean energy co =i col (~1 ))1). After
Borel transformation of Eqs. (5.2) and (5.7), one gets an
expression for the mass as a function of the condensates
and the Borel parameter ~. For light hadrons, it is
known that the quark condensate, rather than the gluon
condensate, is most effective in determining physical
properties. We can now examine hadronic properties as-
sociated with reasonable changes of the quark condensate
in the medium.

Before presenting results of detailed calculations using
the Borel-transformed version of the sum rule, we first
present some qualitative arguments for the variation of
AM. At zero density, a simple formula for AM can be
obtained by expanding the mass formula for X and:- (see

where I z's are the independent y matrices and the sym-
bol: denotes normal ordering with respect to the pertur-
bative vacuum. In the rest frame of nuclear matter,
I =1 as well as yo on the right-hand side give rise to the
condensates ( qq ) and ( q q ), respectively. For

~ ( qq ),
the relevant range of variation is

(230 MeV) &
~
(uu )

~
&(250 MeV) (5.4)

The condensate ( q q ), which is actually the quark num-
ber density, is also restricted:

and

bM= —4.79y (qq) ~'i —1.56(md —m„) . (5.9)

In deriving Eq. (5.9), we have used a simple scaling rela-
tion, viz. , every mass scale, except for (md —m„), is pro-
portional to (qq )". This dependence may be justified us-

ing the finite-energy sum rule. By using the standard
value (md —m„)=4 MeV, and, taking y = —0.0067
which we will justify later, one gets 1.5 MeV for AM at
zero density. Equation (5.9) shows that the neutron-
proton mass difference is chiefly governed by the isospin
breaking of the condensate. The above relation holds
also at finite density provided we restrict ourselves to
densities where the noncovariant condensates are small.

These considerations suggest a decrease of AM with
density if the density dependence of y is small compared
to that of (qq). We emphasize that Eq. (5.9) is valid
only when the quark condensate is suSciently large, viz. ,
at rather low densities. Close to the critical density of
chiral restoration, effects of the higher-order condensates
become important.

Some remarks on the electromagnetic contribution to
the mass difference in the present approach are in order.
For dimensional reasons, electromagnetic effects modify
only the first term of the above formula to lowest order in
isospin symmetry breaking. This leads to the replace-
ment

(
—4.79y)i(qq ) ~' ~( —4. 79y —const Xe )i(qq ) ~'

As AM should be positive, this term cannot be negative.
Therefore, our arguments below are not affected when we
neglect electromagnetic effects.

To predict hM in the medium, we need the density
dependences of y and the quark condensate as inputs.
Since lattice QCD results for these quantities are not yet
available, we will estimate their behavior using the SU(2)
Nambu —Jona-Lasinio {NJL) model. The NJL Lagrangian
1S

y:—(dd ) /(uu ) —1 .

The quantity y provides a measure of isospin breaking in
the condensates and is expected to be negative. Mo and 7

are the nucleon mass in the chiral limit and the Borel
mass, respectively. These are determined by the stability
condition BMO(r)/Br=0. By using the solution in Eq.
(5.8), one gets
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FIG. 2. The nonperturbative part of the quark condensate
Q—= !(qq)!'~' and the symmetry-breaking parameter y in the
SU(2) Nambu-Jona-Lasinio model as a function of the nuclear
density with po=0. 16 fm

0.0
—0.220
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—0.200

FIG. 4. M„and 6M=M„—M~ in the QCD sum rules ap-
proach as a function of Q=!(qq )!'~'.

(uu ) = i Tr[—SF(p;M„) SF(p;m„—)],
(dd ) = i Tr[SF(p—;Md ) SF(p;md )]—,

(5.11)

X=/(iy r) m}g+—G[(gf) +(PiysrP) ], (5.10)

for which the nonperturbative part of the quark conden-
sate is given by

where SF(p;X) is the quark propagator in the medium

with mass X.
In Fig. 2, we show the density dependence of y and the

average condensate in the medium. The numerical re-
sults were obtained using the following parameters:
A=663 MeV and GA =1.93, m„=3 MeV and md=7
MeV. With these values one obtains

((uu ) + (dd ) )/2=251 MeV

and

950

900

850
0.90 100 1 10

Borel Mass w (Gev)

FIG. 3. The proton and neutron masses as a function of the
Borel mass ~. The solid lines (dashed lines) refer to the neutron
(proton). Q—:(qq )!' is 250 MeV for curve I and 230 MeV
for curve II.

(M„+Md )/2=311 MeV

at zero density. One can see that (i) y = —0.0086 at p =0
and increases as the density increases, and (ii) (qq )! de-
creases with p and approaches zero at high densities, sug-
gesting the partial restoration of chiral symmetry.
Combining these observations with the result in Eq. (5.9)
we can see that hM will decrease in medium.

We give now more quantitative results for the variation
of bM using the Borel-transformed version of the sum
rule. These results represent an improvement over the
mass formula in Eq. (5.9) which is an expansion in terms
of y and the current masses.

In the vacuum, the best fit to the baryon octet is ob-
tained by the parameters (the continuum contribution is
neglected)

m„=md =0 and m, = 170 MeV,
(5.12)

(ss ) —1=—0.33 and t = —1.15 .
(uu )

(These numbers are quoted in the note added in proof of
Ref. 30.) Values of (uu )'~ =0.25 GeV and the gluon
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condensate (a, /vr)(GG) =(0.33 GeV) are commonly
used in the literature.

To illustrate the behavior of M„and M when isospin
is broken (mdWm„) and when the quark condensate
changes, we use the above value of t and y by assuming a
linear current quark mass dependence of the quark con-
densate:

(qq) =(uu & 1 — '
m,

0.33
170 MeV

(5.13)

For (md —m„)=4 MeV, we obtain

y= —7.76X10 ', (5.14)

which is consistent with the result from the NJL model
above. Other independent analyses have yielded

y = —0.007 and y = —0.0063+0.0030. The resulting
neutron-proton mass difference is 1.84 MeV. Here the
optimum Borel parameter ~, , is chosen again by the sta-
bility condition BM„ /Br=0, which is a standard
method when one neglects the continuum contribution.

In Fig. 3, the neutron and proton masses are shown as
a function of the Borel mass ~. One observes that in a
reasonable range of v, AM is positive. The nucleon mass
becomes small associated with the partial restoration of
chiral symmetry as expected. Furthermore, the Borel
masses corresponding to the extremum for neutron and
proton are roughly the same, which allows us to extract
AM using a single Borel parameter. The situation is not
the same if the current quark mass is large, in which case
the optimal Borel parameters for = and X are sufficiently
different to prohibit the use of a single parameter to ex-
tract the mass difference.

In Fig. 4, M„and hM are shown as a function of the
quark condensate. When ~(uu ) ~' decreases from 0.25
to 0.23 GeV, hM decreases from 1.84 to 1.24 MeV, while
M„decreases from 974.8 to 877.5 MeV. A decrease of
the effective mass of the nucleon by 10%%uo is just what is
expected close to nuclear densities. Our sum-rule calcu-
lation seems to give a correct correlation between the nu-
cleon mass and the neutron-proton mass difference. We
obtain nearly identical results with the second set of pa-
rameters given in Ref. 30: ( uu ) ' = —0.22 GeV,
t= —1.32, y= —0.43, m, =200 MeV and (md —m„)
=6.2 MeV.

VI. CONCLUSIONS

In this article we have looked at what some popular
models for hadrons have to say about the variation of the

neutron-proton mass difference hM when these particles
are in a medium of varying density.

For the nonrelativistic quark model and the bag model,
one can obtain a decrease of hM which is associated with
a swelling of nucleons in the medium. We have shown
how the inclusion of corrections due to minimal relativity
decreases the medium dependence of hM in the nonrela-
tivistic quark model. The results so obtained are compa-
tible with what is needed to explain the ONS anomaly.
We suspect, however, that additional relativistic correc-
tions could further diminish the medium dependence of
AM. The chiral bag model as we have treated it also
yields the desired decrease of AM and is associated with
the diminishing bag pressure in the medium. The magni-
tude of the decrease is, however, too small to explain the
whole anomaly.

Of the models we have looked at we find the QCD
sum-rule approach to be the most satisfactory from a fun-
damental point of view. From the expected behavior of
the different quark condensates in the nuclear medium
one arrives at a very natural explanation why AM de-
creases when nuclear densities increase. We are a little
uncomfortable, however, because the theory is still at a
qualitative level. For example, the nucleon masses are
somewhat larger than the empirical masses. Further-
more, the variation of the condensates in medium has to
be injected from another source.

We think nevertheless that the QCD sum rule can shed
new light on the ONS anomaly. The formula (5.9) will
probably overestimate the effects of the nuclear medium.
A more realistic formula for the hadronic part of the
neutron-proton mass difference can be obtained by re-
garding Fig. 4 as

b,M =6.0(M'/M) —4. 2 MeV,

where M' (M) is the nucleon mass in the medium (vacu-
um).
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