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This is an extension of the earlier work of Gardner and Moniz [Phys. Rev. C 36, 2504 (1987)] in

the context of the quark-exchange model, in which effective hadron theories were constructed and

their resulting physical observables were compared to the exact observables defined by the underly-

ing quark model. The earlier U(1) study of the binding energy and form factor of a q'q ' system is

augmented, and it is extended in two different ways. First, the momentum distribution in U(1) color
is now examined as well, since it is an observable which manifests behavior qualitatively distinct

from that of an inert meson description; and, second, the hadronic theory construction is general-

ized to SU(N) color.

I. INTRODUCTION

In the context of electron-scattering experiments at
small energy but large momentum transfers, that is, with
m=O and q sufficient to probe the nucleus at distances
less than a femtometer, it is natural to ask to what dis-
tance scale a hadronic picture of the nucleus may persist.
Phenomenologically, the situation is unclear: heavier and
heavier mesons must be included to describe processes at
higher and higher momentum transfers, and the inclusion
of each new meson requires the introduction of new pa-
rameters associated with the meson-baryon coupling con-
stant and form factor. Moreover, slightly different pa-
rameter sets are required for the best phenomenological
fit to different observables of the same nucleus, and the
known extended size of the mesons and baryons makes
such a picture also intuitively unclear. However, the
large-N limit of quantum chromodynamics (QCD) is a
theory of mesons; this strengthens the notion that this
basis is apt, ' though it is unclear if N =3 is sufficiently
large for the properties of the infinite-color limit to be
germane.

Issues of effective hadron theory convergence can be
addressed in the context of a quark model. The basic log-
ic of this paper and its predecessor (see Ref. I) is (i) to
choose a physically appealing quark model which is nu-
merically exactly solvable for a simple multiquark sys-
tem, (ii) to construct an equivalent hadron theory from
the underlying quark model, and, finally, (iii) to compute
and compare the observables of the quark model with
those of the chosen effective theory upon the inclusion of
successive hadron excited states. An effective hadron
theory is constructed in a projection-operator approach;
it is an "equivalent" theory if solution of the infinite-
coupled-channel problem in the hadronic basis yields ob-
servables identical to those of the quark model. It is to be
emphasized that the choice of a hadronic scheme itself is
somewhat arbitrary, just as it is impossible to define a sin-

gle hadron unambiguously when two hadrons overlap;
however, once the confined coordinates and correspond-
ing confined, or hadron, wave functions are chosen, the
derivation of the effective theory proceeds unambiguous-
ly. Thus, the comparison between the quark and a par-
ticular hadronic language is crisp and is not subject to
uncontrolled ambiguities. The comparison of the quark-
model observables with those of various hadronic
schemes is meant to determine not only if a rapidly con-
vergent hadronic scheme exists, but also if such a descrip-
tion is unique.

The quark model used is the quark-exchange model of
Lenz et al. for a q q system, and, in the face of the
technical difficulties of QCD, it is appealing for such a
study as it is numerically exactly solvable but yet also has
saturating and confining interactions. The quark-
exchange model is a "minimal" dynamical extension of
traditional nonrelativistic potential quark models, which
have been rather successful in reproducing static hadron-
ic properties such as masses and decay widths. The
model is constructed for the general case of SU(N) color.
Only overall color singlet hadron states are ever con-
sidered; color space is thus partitioned into color singlet
states with color singlet hadrons and color singlet states
with color nonsinglet hadrons. This latter set of states
shall henceforth be referred to as the hidden color sector.
In this many-body model, the SU(Ã) interactions are not
specified by confinement, and two parameters are needed.
The first, v„specifies the propagation length of the hid-
den color states relative to the singlet states, and the
second, A, , which depends on the number of colors X and
the overall symmetry of the wave function, determines
the relative contribution of the hidden color sector. This
model is "minimal" as in the color singlet sector it
presumes the Hamiltonian of the isolated hadrons to per-
sist throughout the "interaction region, " the extent of
which is determined by the confinement scale. The hid-
den color sector does not have such a constraint on its in-
teractions, but it may contribute explicitly to the Hamil-
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tonian only in the region determined by v„ the single

dynamical parameter in the model. The U(1) limit, how-

ever, contains just the confining dynamics determined

from isolated hadron spectroscopy. The many-body na-

ture of the potential allows confinement to be enforced

without introducing the long-range van der Waals forces

typical of two-body potential models; thus, the interac-
tions are saturating and conform in this qualitative way

to empirical data.
As noted already, the model yields a surprisingly rich

set of phenomena. In the specific example of a q q sys-
tem, which is technically simplest and yet contains the
qualitative features of more complicated systems, one
finds that the scattering in the system exhibits resonances
at the inelastic hadronic thresholds and that a weak
deuteronlike bound state exists with a binding energy of
only a few percent of the hadron excitation energy scale.
This is true not only in SU(N) color when v, and k are
chosen "reasonably, "but also in the U(1) limit. The U(1)
limit is technically much simpler to treat; it is a con-
venient toy model in which to explore the consequences
of saturating, confining dynamics.

The original paper of Gardner and Moniz examined
effective hadron theory convergence in the U(1) limit to
the binding energy, elastic form factor, and low-energy
scattering parameters of a q q system.

' They concluded
that it is possible to find hadronic schemes which repro-
duce all of the above quark-model observables. At least
two different successful hadronic schemes exist, and,
moreover, the two that were found are qualitatively quite
different. In the augmented study of the U(1) case here,
these differences are illustrated analytically, via asymp-
totic analysis of the effective potentials and effective
charge operators. The earlier U(1) color work is also ex-
tended to SU(N) interactions. In this model, the inclusion
of color nonsinglet forces makes any N ) 1 case qualita-
tively different from the U(1) limit. To this purpose, the
N =2 and 3 cases are not dissimilar, and the choice of the
color hidden forces is tailored to the expectation that
N =2, 3 is small in comparison to an infinite number of
colors. One can examine the binding energy, low-energy
scattering parameters, and elastic form factor as in Ref.
1, but technical limitations in the SU(N) color case
prevent an exhaustive study in N=3. Thus, the N=2
case is considered as well. In light of the success of the
earlier U(1) study in producing hadronic schemes which
fit the studied quark-model observables and in anticipa-
tion of some success in a similar study in N=2, 3, it is
reasonable to seek out other observables which could be
more sensitive to the underlying dynamics. The quark
momentum distribution is certainly a candidate; this ob-
servable is distinct from the observables studied earlier in
that it has qualitatively different behavior from an inert
meson description, or package model. This observable is
readily studied in the U(1) limit; it is of interest, then, to
see whether this additional observable poses a more
stringent test for the successful hadronic schemes previ-
ously considered. Consequently, it is sensible to examine
the U(1) limit in some detail before continuing to the full
SU(N) problem. For clarity, some of the earlier results of
Gardner and Moniz are included. '

II. THE QUARK-EXCHANGE MODEL

(lb)

where r, = r; —r, and the superscript C operators which
act purely in color SU(N) space are

PI = ~(1, 1)I(2,2)I )0((1,1)I(2,2)I ~0

= [I ) (I I (2a)

and

P ~
= ~(2, 1)~(1,2)1)0((2,1)I(1,2)1 ~0

(2b)

The projectors in Eq. (1) are orthogonal and complete in
the space of overall color singlets. I may be 0 or 1. The 0
subscript denotes the color singlet state constructed from
color singlet clusters, and the 1 subscript denotes a sum
over the color singlet states constructed from the possible
combinations of color nonsinglet clusters. A potential
which satisfies the necessary requirements is

V= V2PO+ Vi Po+ [—,
'

( Vi + V2 )+ Wi ]Pi

+[ i( V, + V2)+ W~]P, ,

where V, =u(1, 1)+u(2, 2), V2=v(2, 1)+v(1,2), and the
v(i, j) are overall confining potentials between quark i and
antiquark j. The hidden color potentials 8'& and 8'2 are
essentially arbitrary: one merely requires that the com-
binations —,'( V, + Vz)+ W, and —,'( V&+ V2)+ W2 are
confining. The 8', 's are not constrained by isolated had-
ron spectroscopy. Equation (3) is saturating by ansatz;
the projection operators act to insure that, in the color
singlet sector, only noninteracting qq pairs exist away
from the rearrangrnent surface, the surface in
configuration space where the quark content changes, or,
equivalently, where the q-q "strings" flip [i.e., the surface
defined by vanishing arguments in the 0 functions of Eq.
(1)]. In this model, at any point in color and
configuration space, the quarks are clustered into qq
pairs; however, only in the color singlet sector are the qq
pairs constrained to be noninteracting. Thus, the only
dynamics in the color singlet sector comes from the ex-
change of quarks along the rearrangment surface; this
physics is maximized in s-wave processes, which are what
I shall consider.

The quark-exchange model is a nontrivial, yet tract-
able, realization of a saturating and confining quark
theory. The model has been reviewed extensively in Ref.
2; interested readers may find further details there.

Here I shall consider a q q system with harmonic
confinement in three space dimensions. The q 's are not
required to be antiquarks but merely objects distinguish-
able from quarks. The formulation of the model relies on
the introduction of projection operators which sirnultane-
ously act in color and configuration space. For the q q
system, for quarks 1,2 and antiquarks 1,2 with positions
r„one convenient choice of projectors is

(la)
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Now for harmonic confinement, the isolated meson
Hamiltonian is

1 6+—'pea r
2p

(4)

r, =
—,'(r, +rz+r, +r4),

x= —,'(r, +r2) —
—,'(r3+r4)

y= —,'(r, +r, )
—

—,'(r2+r4),

z= —,'(r, +r4) —
—,'(ri+r3),

(5a)

(Sc)

(5d)

where p= —,'m and r is the relative coordinate. Introduc-
ing center of mass and relative coordinates,

(12a)

the hidden color interactions leads to nonvanishing in-
teractions for large N and has studied a quark-exchange
model whose hidden color interactions have the ap-
propriate large-N behavior. * His model, though, has
no bound state for X & 1, so that I have chosen to study
the color dynamics used in Ref. 2, since they adroit a
richer set of observables.

Solutions to Eqs. (10) and (11) can be classified with
respect to their symmetry under y, z exchange. Con-
sideration can thus be restricted to the y ~z triangle in
the (y, z) scattering plane. Thus, hsUizi(y, z) can be bro-
ken into singlet, 0, and hidden color singlet, 1, com-
ponents

h, (y, z) = —a,' —a,'+4z',
and using units %=2m =ho= 1 (so that co=4), one ob-
tains the Hamiltonian

Lf (x, y, z) = —6„—b,»
—b,,+ V(x, y, z ),

h, (y,z)= —a —a, +4v, (z +y ),
where

'Ii(y, z) = ~II,(y, z) ~0) ++,(y, z) ~1) .

(12b)

where

This choice of W; preserves the angular-momentum
decoupling. The constant v, =(1+u, )/2 specifies the
physical extent of the color nonsinglet sector relative to
the color singlet one, and calculations will be made for
varyir[g v, in order to gauge the sensitivity of the results
to the strength of the hidden color interactions. For
low-energy observables, I shall consider the s-wave Ham-
iltonian

h (y, z, = a,' a,'+4[z'P, +—y'P—,
+v, (y +z')(P, +P, )], (10)

where the x dependence has been dropped, because that
coordinate decouples. In the U(1) limit, this merely be-
comes

h (y, z) = —a —a, +4[z O(y —z)+y 8(z —y)] .

Masutani has pointed out that this particular choice of

V'(x, y, z)=2[2x +y +z (y z—)PO —(z y—)PO—

+ VV, (x, y, z)P, + 8'z(x, y, z)P, ] .

In the color singlet sector, the dependence on the
confined variable x factorizes, and the y, z orbital angular
momenta decouple, as a consequence of the harmonic
confinement.

As the requirements that —,
'

( V, + V2 ) + W, and

—,'(V, + V2)+ W2 are confining pose an insufficient con-
straint, the actual choice of the 8' s is motivated by con-
venience. Following Ref. 2, one presumes that the color
singlet and nonsinglet interactions have the same har-
monic form and chooses pure q

—
q and q

—
q interactions

to find

&»'i = ~2=u, (r i&+r-', —,)=2u, (y'+z')

with u, an arbitrary constant, so that

V(x,y, z)=4[x +z Po+y Po+v, (y +z )(P, +P, )] .

Using the transformation properties of the ~I) to ~I)
basis under SU(N), one finds the boundary conditions at

y =z=t
%,(t, t)

4,(t, t)

a„+,(t, t)

a„e,(t, t)
CX+S

(13a)

(13b)

The isolated hadron Hamiltonian has bound-state ener-
gies E„=4(=,'+2n ), so that the numerical results can be
organized roughly according to whether or not v,
exceeds the value of 0.5, the value for which the hidden

where a=i/N, P=(1—a )', s is the symmetry of the
wave function under y, z exchange, and the normal
derivative a„—:a —a, is evaluated at y =z =t. The com-
ponents of Eq. (12) are coupled by virtue of the boundary
condition on z =y. In the U(1) limit, only the symmetric
state, that is, with a„Wt, t)=0, has a bound state, and
that is the state whose observables shall be considered.
The SU(N) problem is distinct, then, from the U(1) not
only in the explicit addition of the hidden color sector
but also in the novel boundary condition along the diago-
nal which couples the singlet and hidden color singlet
components of the wave function. With the additional
requirements of regularity in +0 and 4, as y, z ~0 and of
confinement in 0& and scattered-wave boundary condi-
tions in %o as y, z~ ~, the problem in both U(1) and
SU(N) is fully specified, and one can use Green's theorem
to find an integral equation for 4(y, z). The scattering
phase shifts and bound-state energies, as well as the form
factors and bound-state momentum distributions, can
then be calculated; see Ref. 2 for details.

Some physical insight into the behavior of the SU(N)
scattering phase shifts and bound-state energies with v,
can be gleaned if one considers the eigenstates of the hid-
den color Hamiltonian, Eq. (12b), alone. The bound-state
energies in the absence of any coupling to the color sing-
let sector are

=4v, [3+2(m +m')] .
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color ground state is at elastic threshold. For v, ~0.5,
the hidden color ground state generates an attraction, re-
gardless of X or s. For v, »0.5, the interaction with the
hidden color ground state is purely repulsive, and for
sufficiently large v, the bound state is destroyed. For
v, ~ 0.5, the interaction between the U(1) bound state and
the hidden color wave function is extremely sensitive to
N and s, and it is here that the phase shifts and scattering
lengths have their most dramatic behavior. Consequent-
ly, it is upon this region in v, parameter space that I shall
concentrate.

The bound-state form factor in SU(N) is

F(q) =Fo(q)+F, (q), (14a)

FI(q) =2e q f dy f dz jo(qy/2) jo(qz/2)

X [ tt I (y, z) ] (14b)

where the decoupled x oscillator is assumed to be in its
ground state and the sum of the charges of the quarks
and antiquarks is taken to be 1. The hidden color sector
contributes explicitly to the total form factor in the form
of F, (q}. For technical convenience, only the color sing-
let form factor based on color singlet mesons, Fo(q), will
be considered in SU(N) . In this case, the influence of the
hidden color sector is only felt in the boundary condition
imposed on the color singlet sector wave function %'o. It
may be artificial to examine the hadronic convergence of
only a single component, but it does form a necessary
constraint. It is clear that convergence in the total form
factor cannot exist unless there is a convergence in each
of the pieces.

In the U(l) limit, the total form factor is merely Eq.
(14b) with )Ill the color singlet bound-state wave function
%s(y, z). The momentum distribution of the quark model
in this limit is

n(p)=8 f d p(, )
d p( ) d p(, )5( '(p(, )+p(, +p(, )

—2p)

~ I( o(p( )} I+p( ) p( )}I

Including the p( )
contribution

l()Iio(p(„))l =(2m. ) exp( —p(„) /2),
one has

3/2

(15)

2
n (p)= d P(y) d P(z)f 3 3

where

p(y) & p(z)

P(y) ~(z) 2Xe "' " (Ir (p( ), p(, )), (16)

3

2m.

(17)

and

)Ir(y, z) = 0's(y, z) .
1

4~yz
Following Ref. 2, the second moment of this distribution

H and V are given in Eq. (6) in the limit of U(1) color
with s waves only. The second line of Eq. (18) follows for
the bound-state wave function 4'z,' c.z is the binding ener-

gy and 12 is the zero point energy. From Eq. (15), one
can show that, for s waves,

&p') =
—,'(&p('„) )+&@2(,) )+&p(', ) )) . (19)

Noting that the left-hand side of Eq. (18) is identically
zero for the q q bound state and using Eq. (19}yields

&P )quark I TiEB

= 1.4800 (20)

as c.z = —0. 160. It is useful to compare this result with
the second moment of the momentum distribution of the

q q system at asymptotic separations. Ify is infinite,

+4~ +4z

Vz. Then

n;„)(p)=8f d'p) d'p2& "(p)+p2 2p)lko(p))l'l())o(p2)l'

—3f2e —p (21)

where Po(p)l is as before. This is identical to the
momentum distribution of a single isolated hadron. The
above expression finally yields & p )„,) = —', . Thus,

&p } „,„k is less than the isolated meson value; this is a
consequence of the existence of the q q bound state and
the virial theorem. The harmonic confinement in this
model implies that & T) =

& V), and since the q q state
considered is bound relative to the asymptotic qq states,
&p ) must decrease as well. In an inert meson descrip-
tion, one can show that the second moment is necessarily
a sum of the & p ) of the inert meson and that of the wave
function of the relative motion; thus, the total &p ) is
necessarily increased over that of the isolated hadron it-
self. The decrease of &p ) observed, then, cannot be pro-
duced in any package model; rather, it arises from the ex-
change dynamics and the virial theorem at the quark lev-
el.

The quark-model results introduced in this section will
serve as the "experiment" for the observables calculated
from the effective hadron theories to follow.

III. U(1) HADRONIZATION

A. Schemes

Here I shall discuss the hadronization of the U(1)
theory. Many of the fundamenta1 considerations dis-
cussed here follow for the SU(N) case as well.

can be calculated straightforwardly using virial theorem
arguments. Consider the commutator of the dilatation
operator with the Hamiltonian. That is, for any l%),

&'Irl[x. p( )+y.p( )+z.p(, ),H]l)P)

=2 [&vip'„, +p,'„+p'„,—vie)]
=2([2& (Iig lp('„)+p(' )+p(', )

I)pg ) —(12+E~)] . (18)
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(22)

(23)

can thus be rewritten

E = g ( ql
l P„(P„h„„,P )P

n, m

(24)

(25)

Here pq is the quark-model charge operator. Now
P

l V~ & defines an efFective hadronic wave function
P„pqP an effective hadronic charge operator

[pq ]„, and P„hU~, ~P an effective coupled-channel
Hamiltonian [hU~i~]„. The m subscript corresponds to
a hadron in its mth internal state. Self-consistency of the
hadronic operator and wave-function expansion is impli-
cit. (One could consider different expansions for the
operators and wave functions using projectors P and P,
say, but this is unnatural as (P„ lP &&6„, in general. )

The channel wave function ly & is formally defined as an
integral over the projector times the quark-model wave
function. In practice, however, Eq. (24) is rewritten as

n, m

(26j

and solved as a coupled-channel problem for the energy
and channel wave functions to a given level of truncation.
If the confined and channel wave functions contain all the
boundary conditions of the original quark model, a sum

To construct an equivalent hadronic theory, it is neces-

sary to identify a confined variable which will be associat-
ed with the hadron internal degrees of freedom. Project-
ing out these internal degrees of freedom leads to a
description of the original quark model in terms of resid-
ual interactions between hadrons. These are a function of
the channel variable, which specifies the relative hadron
separation. This entire procedure is necessarily non-
unique: no unique definition of a hadron exists when two
hadrons overlap as one cannot identify which hadron
should contain which quark, nor does a unique prescrip-
tion exist for the channel variable.

Given a choice of confined and channel variables, one
must then establish a machinery for separation of the de-
grees of freedom associated with each of the coordinates.
This is most readily accomplished in a projection-
operator formalism. After a choice of the confined coor-
dinate, a complete set of hadron internal wave functions
can be defined. The confined coordinate definition may
depend implicitly on the channel coordinate, and the
internal wave functions may have this dependence as
well. It is essential to choose confined wave functions
that map to the isolated hadron spectrum at infinite sepa-
ration; there exists no further constraint on their
definition. The projection operator constructed from
these wave functions finally defines the hadronic scheme.
If the confined basis is complete and orthonormal, one
can construct a projector P„which satisfies Q„P„=l,
P„P =o„P„.The observables of the U(1) quark model,
such as the bound-state energy and form factor

over all the terms in the hadronic expansion —and solu-
tion of the infinite coupled-channel problem —will yield
the quark-model binding energy and form factor. Ulti-
mately, though, one is not interested in whether or not
the hadronic expansion is precisely equivalent to the
quark-level description, but, rather, whether or not the
expansion can approximately reproduce the quark-model
results after the inclusion of just a few terms.

As shown in Ref. 1, incorporation of the quark-
exchange dynamics in the hadronization scheme is cru-
cial. Thus, rather than merely picking either y or z as the
confined coordinate, only confined coordinates which de-

pend on the dynamics will be considered. For y and z
coordinates, the quark-model potential acts in z for y )z
and in y for z )y [see Eq. (11)]. One choice, then, which
recognizes the quark-model rearrangement, is to use z as
the confined coordinate for y)z and y for z)y. With
this confined coordinate definition, confined wave func-
tions can be defined which incorporate the dynamics by
measure of the imposed rearrangement surface boundary
conditions. The definition of a hadron is modified at
finite separation from its free value; this modification is
arbitrary as such a definition is unclear when hadrons
overlap. As one specific choice, consider the confined
wave functions y„(z;y) for y ~ z such that

(
—8,'+ 4z')y„(z;y) =e„(y)y„(z;y), (27)

where B,g„(z;y)l, «=0, and the y„(z;y), which are
real, satisfy

f dz cp„(z;y)y (z;y) =5„,„.
0

For y~~, y„(z;y)~P„(z), where the P„(z) are the
eigenstates of the isolated hadron Hamiltonian—d /dz +4z . One would like to embed the exact con-
dition at z =y and I shall consider such a choice below;
however, for these coordinates, the normal derivative at
z =y couples the confined and channel wave functions.
Thus, for technical convenience, only a constraint on the
z derivative is made at z =y. The wave function should
vary slowly in the y direction for a weakly bound state:
this is the physical basis for the approximation made.
Thus, this particular hadronic expansion Vn, m does not
converge to the quark-model wave function; however,
contingent on the viability of the above physical approxi-
mation, a few-channel truncation may be a reasonable
representation of its observables.

An alternative scheme may be defined that incorpo-
rates not only the quark rearrangement but also the exact
boundary condition at z =y. Thus, this latter scheme
shall truly be an equivalent hadronic theory. I do this
not merely to see whether a better quantitative descrip-
tion of the observables can be obtained, but, rather, to ex-
amine whether other "reasonable" hadronization
schemes can yield good convergence to the underlying
quark-model observables. Consider a transformation
such that the confined coordinate becomes the normal
coordinate at the rearrangement surface z =y. One sim-
ple choice is that of polar coordinates: for y ~ z, consider
(r, O) such that y = r cosO, z = r sinO. This maps the
quark-level Hamiltonian h (y, z) to
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h (r, B)= —8„——8„—8&+4r sin 8 .
l

(28)

In analogy to Eq. (27) with z=rB, confined wave func-
tions g„(8;r ) are introduced for 8 ( m. /4 such that

bedded in the coordinate definition: for 8)m/4, one
chooses z=r cosO and y =r sin0. These projectors can
now be inserted in the exact matrix element for the ener-

gy to derive a complete set of coupled-channel equations
for each scheme. Defining the channel wave functions,

d—g+4r 8 q)„(8;r)=s„(r)qr„(8;r),1

where d~„(8;r)l i4=0 and

f rd8 g (8;r )y„(8;r ) =5„

(29) g„(y)= 2f dzy„(z;y)Vs(z, y),
0

so that

+s(z,y)= —g [y„(y)g„(z;y)8(y —z)
1

2.
For convenience, the confined wave functions have been
defined with a (rB) potential, which is what r sin 8 be-
comes for z ((y. For large r, q&„(8;r) P„-(rB), so that
the isolated hadron spectrum is recovered in this limit.
Here the Jacobian factor of r can be trivially incorporat-
ed in the confined wave function normalization since it
has no 8 dependence. The (I/rg„ term in h(r, B) sug-
gests the presence of unphysical long-range effective
forces; nevertheless, I shall proceed to study the observ-
ables of this scheme.

The two schemes just described were previously intro-
duced in Ref. 1. I shall refer to the (y, z) and (r, B)
schemes as I and II, respectively. Using the confined
wave functions as above, one can define the following
hadronic projectors. For scheme I,

+y„(z)q „(y;z)8(z —y)]

or, equivalently, in scheme II, defining

y„(r):&2f— rdBq&„(8;r)+s(B,r),
0

so that, for 8 & m /4,

Vs(B, r)= g y„(r)y„(B;r)e ——8

one finally obtains from Eq. (24)

E=-.' X ((x.q. lhq. x. )+(x.q. lhq. x. ) )

n, m

=—&r. lh..lx. )

(32)

(33)

(34)

P„"'(y,z,y', z') = [g&„(z;y)y„(z';y')5(y —y')

X 8(y —z )8(y' —z')

+y„(y;z)y„(y', z')5(z —z')

XB(z —y)8(z' —y')] . (30)

P„'"'(8, r, 8', r') =&rr'y„(8; r )y„(8',r')5( r —r') . (31)

This projector holds for all 0. The rearrangement is em-

The functions y„(y;z) for y E [O,z] follow from the
y„(z;y) with z+-+y. For scheme II,

A symmetric prescription in the hadronic expansion is
necessary and sufficient to yield a Herrnitian effective
Harniltonian. Without symmetrization, the extracted
effective Hamiltonian need not be Hermitian for each lev-
el of truncation. The trouble is that the quark-model
Hamiltonian is itself not self-adjoint in the restricted re-
gion y )z, or in the region z )y. Thus, "hadronization"
with confined wave functions defined within these re-
stricted regions is certain to be troubled; however, a sym-
metric prescription suffices to remedy the problem. In-
tegration by parts with respect to y, in conjunction with
Eq. (27) and the orthonormality condition for the q&„'s

yields

h".'(y)=[ —~,'+e. (y)]5. +V.(y;y)~, V (y;y)

+ f'dzIB y„(z;y)B y (z;y)+ , [y„(z;y—)By (z;y) —y (z;y)B y„(z;y)]l
0

+ f dz[y„(z;y)B y (z;y) —
q& (z;y)B y„(z;y)]B

0
(35)

where the energy has been defined relative to Eo( ~ ) =6 and 8 acts to the right. Similarly, for scheme II, with Eq. (29),

—a2+ s„(r)—so( ~ )— 1

+ f rdB 4r (sin 8—8 )y„g +d„y d„p„
0

+ (p &„y„p„d„y )+—,'(y B„p—„q&„"r)„y ) + rd—8(q) d„y„q)„Q„q) )(j„, —(36)
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and

Voo (y)=Eo(y) Eo( ~ )+go(y 'y)&«&0(y;y)

+ f dz [B«qo(z;y) ]

VII'(r) =so(r) —eo( ~ )— 1

2T

(37)

+ I rd8[4r (sin 8—0 )pro+(B„yo) ] .

where the p„(6;r) arguments have been suppressed and,
as before, the energy is defined relative to Eo(ac)=6.
Long-range effective forces apparently occur as a 1/(2r )

term in the n =m potentials; though, the r dependence of
the y„'s is not yet manifest.

To lowest order of truncation in either scheme, one
finds a local effective Hamiltonian. Using the notation

h „(y)=—8 + V „(y),
one has

The stiff' repulsion seen in Voo(y) as y~0 and its
attraction at large y follow from qualitative argu-
ments. Consider the confined wave-function energy
Eo(y) —

Eo( ~ ), which dominates the behavior at small y
and is still significant at large y. The imposition of the

B,go(z;y)~, «=-0 boundary condition will increase the
curvature of the wave function relative to Po(z) at small y
and, hence, Eo(y})6. For large y, the boundary condi-
tion lowers the curvature of the wave function so that
eo(y) (6. The same argument follows for Eo(r) —eo(~ ),
though the explicit 1/r term in scheme II's effective po-
tentials and y„(B;r)'s dependence on r at large r makes

any qualitative conclusion unclear.
Analytic limiting forms can be calculated in both

schemes as the channel variable becomes very large or
very small. In scheme I as y ~0,

g„(z;y)-&2/y sin
(2n + 1)m.z

2y

(38) so that

The confined wave functions are calculated numerical-

ly via an expansion on a sine basis, chosen so as to be-
come the exact eigenfunctions as the channel variable
goes to zero. The final numerical results for V „ through
truncation n =m =1 are shown in Fig. 1. The channel
potentials (n =rn) are reminiscent of those found in
meson-nucleon phenomenologies; they are of short range
and exhibit a "hard-core" repulsion and intermediate-
range attraction in the diagonal terms. Voo(r) is qualita-
tively similar to Voo(y); however, it is of much longer
range, though the numerical falloff as r~oo is not
O(r ) as Eq. (37) naively indicates. V» is similar in

form to V00 in either scheme but has its minimum at
larger r. This "pushing out" in r must be due, in part, to
the larger hadron rrns radius upon excitation.

V00
3 1 —6,

3 4 y2

(1) (1) 1 9 (2)
01 2 ~ 10V 01V

8y 8y 2y

V —(3m. —=) —6 .11 4 2

Now in scheme II,

y„(0;r ) —&8/(m. r )sin[2(2n + 1)8]

as r~O. Thus,

V (r)- —6 V (r)- —6
15 143

00 4 2 & 11

(39)

(40)

6

voo

so that V»(r) and V»(y) are much stiffer than Voo(r)
and Voo(y) as the channel variable goes to zero, whereas
VoI'(r) and Vo&'(r) are finite in this limit. The VIt limit
is trivial in either scheme as, in general,

V(1) —V(1) g V(2)
10 01 r 01

The formal solution for the y„(z;y)'s in scheme I for
all y has the form

E„(y)
g„(z;y) =X„(y)ze ' 4 — + —,', —', , 2z

FIG. 1. Effective hadron potentials in U(1) color through
n =m = l. The scale in r is set by ( {r') i'» =

—,
' &3, the isolated

hadron ground-state radius, and in V by cu =4. Here
Vo] (y) = Vo, '(y)+ Vo', '{y}B». (a) (y, z) scheme [Eq. (35)], {b}{r,8}
scheme [Eq. (36).]

where 4(a, b, z) is a conffuent hypergeometric function
and X„(y) is a normalization to be determined. As

y ~ oo, —E„(y)/8+ —,
' ~ n, so that @(a—, b, z}'s recursion

relations in a and its a~O, large-z asymptotics can be
used to yield an expression for y„(z;y) for large z and y.
The boundary condition at z =y yields E„(y) at large y,
and the normalization is calculated using the Wronskian
of Eq. (27) and its y derivative. Now the integral~

~

~

~

~

dz(B P„) is peaked about z =y for large y, so that an

asymptotic series can be obtained, to yield, in leading or-
der,
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Voo(y) — 6—4&2/cry e

(41)

whereas, for scheme II,

cq — 0. 108, c~ — 0. 150 . (44)

Voo + O(r )
24r4

v'6
+O(r ),

3r2

V" I — +O(r ')-
3p'

v'6

y(1 j
01

y(2)
01

(42)

sr4

The large-r potential forms are not attractive; only terms
in the potential that rely on the form of y„near O=n/4.
in this symmetric case can be expected to be so. The
O(1/r ) terms cancel identically for the diagonal poten-
tials V00 and V», making them of shorter range than the
channel couplings and supporting the numerical results
shown in Fig. 1(b). The Vz~'(r) calculation, except for an
exponentially damped piece, is exact for large r. For the
other results it is necessary to expand the sin L9 term in a
power series in 1/r; the order of the next higher term in
the expansion is indicated.

The qualitative similarity of the n =m potentials in
schemes I and II is striking, though the observables in
each scheme could very well turn out to be qualitatively
different. The most marked difference between them at
this point is the large-r behavior of the channel couplings;
the power-law falloff of the couplings in scheme II is nov-
el as such behavior was excluded from the underlying
quark model by ansatz. These long-range potentials are
unphysical: spin-independent hadron-hadron forces of
range O(r ') or longer are ruled out by pionic atom
data. However, it is interesting to pursue the conse-
quences of this scheme precisely because its behavior is
qualitatively different from that of scheme I.

Low-energy scattering parameters were calculated in
Ref. i for both of these schemes, and the binding energies
with truncation were calculated as well. For scheme I,

8"'=—O. O879,

E'"=—0. i i8,
~(2'= —o. i 29,

(43)

V (y) —8 ——&2/3y e
29

7 —2'
11 3

The integrals in the off-diagonal terms are not surface
peaked, so that the large-y forms of those potentials are
not readily calculable.

The large-r behavior of all of scheme II's effective po-
tentials can be calculated analytically upon the replace-
ment q&„(6;r)~P„(r8). Unlike the previous (y, z) case,
the asymptotic limits of the confined wave functions de-
pend on the channel variable; this is an additional source
of the long-range behavior of the potentials. As r~ ~,
then

The superscript denotes the truncation, and the quark-
model binding energy is cz = —0. 160. The large lower-
ing of the energy in the (r, 8) case upon the addition of
the next channel is a consequence of the long-range chan-
nel couplings and yields markedly good agreement with
the quark-model binding energy. The stiffer repulsion of
Voo(r) as r~o is manifested in a comparison of the
effective ranges, and this stiffer repulsion yields poorer,
though not poor, agreement with the quark-model phase
shifts.

The binding energy with successive truncation in the
(y, z) scheme does show convergence to the exact quark-
model energy, even though it is not guaranteed to con-
verge Vn, m. This agreement is surprising as the hadroni-
zation scheme does not incorporate the exact quark-
model boundary condition at z =y. The amount by
which this hadronization violates the normal derivative
constraint is

a„e(z,y),

+y„(y;y)B p„(y)], (45)

where 0. is the level of truncation in the hadronic expan-
sion. This boundary function has been explicitly calculat-
ed for the 0 =2 truncation. In comparison with the func-
tion

B. Form factor

The bound-state form factor at high momentum
transfer is a sensitive probe of short-range structure. As
indicated in the beginning of Sec. IIIA, it is natural to
calculate the hadronic form factor using both the
effective wave functions and effective charge operators of
a given scheme.

For scheme I, the effective charge operator may be
constructed from the P,p P prescription shown in Eq.

e $0(z),

which satisfies the Schrodinger equation, Eq. (11), in y & z
but no boundary condition at z =y, the o =2 calculation
shows no suppression of the normal derivative as calcu-
lated from Eq. (45). The observables which result from a
few-channel truncation of this hadronic expansion are in
good agreement with the quark-model observables and, in
fact, become better and better representations of the ob-
servables studied with increasing truncation level; this is
at odds with the size of the boundary function calculated
and is not fully understood.

Before continuing, it is important to clarify the nature
of the excitations included in a higher-order hadronic cal-
culation. The excitations are in the reduced y, z basis, but
the physical cluster states exist in the original r, basis. A
standard Moshinsky transformation connects the two
bases, but the physical nature of a given y, z or r, 0 excita-
tion is not manifest.
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[p (y)]..=—[p,
'"' "'"(y)]. + [p',""(y)].

[p',"' "'"(y)1'." =fo—(q)f. (q Vo(qy /2),

[p',"'"(y)]„"'=f~(q)j,(qy /2)

(46a)

X f'dz[q „( zy)j o(qz/2)q (z;y)]

(25) in conjunction with Eq. (14b), in U(1) color. Rewrit-
ing this in terms of one-body and exchange pieces, one
has

form factor with pointlike hadrons and the internal had-
ron form factor. The exchange operator is what remains
of the modified charge operator after the one-body piece
is removed. The prescription for the one-body piece is
now fixed, so that it has the same form for both projec-
tors. Note that the exchange charge operator gives zero
contribution as q~O from charge conservation. Nor is
there a contribution as y~~ since the hadrons ap-
proach infinite separation. The resulting form-factor
contributions are

f„(q—) ',

where Eqs. (46b) and (46c) follow for y )z and

(46c)

pone body( ) ( ~( a')
~ (

one-body
)

~

+(a ) )

p xch(q) —(+(o)~( exch) ~+(o))

with

(47a)

(47b)

f„(q)=—f dz())„(z)jo —z ()) (z) .
2

~foo(q)~ is the ground-state isolated hadron form factor.
The one-body piece is defined so as to have a form-factor
contribution identical to that of a convolution model.
This form factor is merely a product of the "nuclear"

p( cr )( q ) y [pone-body(
q ) +p exch( q ) ] (47c)

The channel wave functions y'„'(y) depend on the origi-
nal level of truncation o. The form of Eq. (47) is clearly
independent of the particular hadronization scheme.

For scheme II, the effective exchange charge operator
1S

[p',"'"(r)]'„"'=foo(q) f rd8 q)„j, —cos6) jo —sin() (p f„(q)j0(—qr/2) . . (48)

The Ip„(&,r ) arguments have been suppressed and f„„(q)is as above. Making the change of variable z= rg, the limit-

ing behavior of this operator at large r can be calculated via the replacement q)„(z/r;r)~p„(z), where the integration
in the first term of Eq (48) now extends to infinity, rather than to r~/4 This approx. imatton has exponentially damped
corrections in r. The resulting integral on [0, oo) is dominated by z/r «1 for large r; expanding the jo s in powers of
z/r yields

[p',"""(r)]„'"'- f (q), —f dz p„(z)p (z)z'j qz
r

r

+foo(qVo —r f dz P„(z)p (z)
2 0

q . q, cos —z +g0 —z
6r 2 2

2z2 q
2z4

3r 32r
+O(r ) . (49)

Since cos(qr /2), sin(qr /2) —1, the exchange charge
operator has 0 (1/r ) behavior as r ~ oo; this justi fies the
neglect of the exponentially damped terms. If one now
checks Eq. (49) in the limit of small q, the terms above
vanish identically —as expected —with cancellation
occurring between terms which are of different order in r,
since jo(g)~1 as (~0. To leading order,

[ exch( )](II) f ( )
«S(q«2)

Pq nm 00 q

X f dz ())„(z)(t( (z)z jo —z

+O(r ) .

Doing the integral, the n =m =0 operator has the form'

3
[ h( ) ]( II )

q 00
8 2 48 2

xe-~ '-"+O(r--') . (51)

This limiting behavior is in marked contrast to the ex-
ponentially damped numerical behavior of Eq. (46c) at
large y.

The one-body and exchange form-factor contributions,
Eq. (47), for both schemes were calculated in Ref. l.
Quantitative agreement with the quark-level form factor
is seen in both schemes with only a two-channel trunca-
tion. The scale in q is set by the ground-state isolated
hadron form factor,

~ f~(q) ~

=e I ~' . The success per-
sists even in extreme kinematic regimes; the form factor
is well described by either hadronic basis with o =1 even
when the isolated hadron form factor has fallen by 2 or-
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ders of magnitude. Moreover, the o. =2 form-factor cal-
culation in scheme I is a still better description of the
quark-level form factor; this is surprising because an ex-
plicit calculation of the o. =2 boundary function in this
scheme shows that it is not "small, " that is, in compar-
ison to the normal derivative of

1

(2)11/2
e Po(z) .

Yet, the significance of this in relation to the form-factor
convergence is unclear; a calculation of the o =0 and
o = I boundary functions is lacking. A sensitive cancella-
tion of the one-body and exchange contributions in each
scheme gives rise to the convergence seen. The insensi-
tivity of the results thus far to the particular hadronic
scheme is remarkable; the two hadronization schemes are
qualitatively different. This is manifested not only in the
long-range behavior of their effective potentials but also
in their effective charge operators.

C. Momentum distribution

The quark-level momentum distribution is qualitatively
different from the other observables so far considered in
that its "softening, " that is, its enhancement at low p,
cannot be reproduced in any inert meson description. In
the discussion that follows, low and high p shall refer to
p &((p )' and p »(p )'~, respectively. The momen-
tum distribution of a particular hadronic state in either
scheme may be calculated using Eqs. (16) and (17). In-
serting hadronic projectors, such as Eq. (30} or (31),
yields [n (p)]„ for any level of truncation. This is cer-

I)p) = —(I)»(x) q'II'(z, y),1 I
v'4~x 4nyz. (52)

where V~" is given by Eq. (32}with the sum terminated at
level o. Using Eq. (6) in U(1) color with s waves only,

gives

tainly tractable, but it is far easier to calculate the second
moment of the momentum distribution instead. This ob-
servable, like the momentum distribution itself, is qualita-
tively distinct from what could be obtained in any inert
meson description. That is, (p )~„„„is less than —,', the
isolated hadron second moment; any package model can
yield only an increase.

The calculation of the second moment of the momen-
tum distribution proceeds in a manner analogous to the
calculation of (p ) „„k. Consider the commutator of the
dilatation operator with the Hamiltonian

((P~[x p(„)+y p(~)+z p(, ),H]~)P),

now, however, the state ~%) is no longer the exact q q
bound state but, rather, a hadronic wave function calcu-
lated in a truncated basis of hadron internal excited
states. Thus, this expression is no longer identically zero;
the virial theorem does not necessarily hold in the had-
ronic basis. The (p ) is calculated in the following way.
The hadronic wave function at some truncation o. is used
to compute the expectation value of the commutator
above. This result is related to (p ) by using Eqs. (18)
and (19) while noting that, for hadronic wave function
~%), the right-hand side of Eq. (18) is now evaluated us-

ing the hadronic wave function's binding energy.
In scheme I, ~%') becomes

()P~[x p(„)+y p( )+z p(, ),H]~(P)

2i g f —dy f dz(I()„(z;y)y„(y)Iy[B e (y)]+2() +[a, (y) —e„(y)](z(),+y() )I9) (z;y)y (y) .
0 0

1

(53)

"Symmetrizing" this expression in n, m should eventually yield an expression similar to the effective Hamiltonian.
After this and use of Eq. (27) and the (p„(z;y) orthonormality relations, one finds

(4~[x p(„)+y p( )+z p(, ),H]~%) =2i g dy y„(y) h„'"(y)+5„[——,'y()~e„(y) —e„(y)]-
n, m

e„(y)—e„(y)
2

X f dz(I()„(z;y)(z(), +y() )(p (z;y) 'y (y) .
0

(54)

Using Eq. (19) and the right-hand side of Eq. (18), where es is now the binding energy of the hadronic wave function to
a given level of truncation, s(s ', one finds that Eq. (54) equals 2i I 8(p ) —(12+es ') I, so that (p )(") is

(p )I")=—,'+4ea —
—,
' g f dye„(y} (')„[—,'yB e„(y)+[e„(y)—6]I

n, m

(y) —e„(y)+ dz ((()„(z;y)(zB,+y() )y (z;y) y (y),
2 0

(55)

where eo( oo }=6. For cr =0,

(p )I())=—', +4eI)' ——,
' f dye (y)I —,'y() Eo(y)+[so(y) —6]I .

To analyze the sign of the integral in Eq. (56), consider that, as y ~0,
(56)
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2
(2n +1)m

En y
3'

(57)

However, for large y, the asymptotics of go(z;y) for large z and y yield

3 2 2

Eo(y )
—6 ——32v'2 lay 'e (58)

in leading order, so that eo(y) —6 &0 and —,'yB so(y) & 0 at large y. Thus, even though ss ' is clearly less than zero, the

overall sign of the terms which add to the isolated meson result of —, is not manifest. An explicit numerical calculation

yields

(p )"'= 1 4855 (p )'"= 1 4836 (p )'"= 1 4833 (59}

where (p ) „,„k=1.4800. This hadronic scheme seems quite successful: the second moment of the lowest truncation is

less than the isolated meson result —in contrast to an inert meson description —and the (p ) of successive truncations
seems to converge, albeit slowly, to the quark-model result.

For scheme II, replacing %~"(z,y) in Eq. (18) with %II"(r,8), Eq. (33), finally yields, after "symmetrization" and use
of Eqs. (28) and (29),

(p )~ "I=—,'+ —,'e ' —
—,
' g f dr y„(r) 6„—"B„e (r)+[e (r) —6] +8r f rd8y„(sin 8—8 )y

+ —[E (r) —s„(r)] rd8 p„B„g y (r),
2 0

(60)

where Eo( oo ) =6 and y„—=y„(8;r ). To lowest order in truncation,

(p )Io}'=—,'+4es' —
—,
' f dr go(r) —B„eo(r)+[Eo(r)—6]+8r f rd8yo(sin 8—82) (61)

Now, for small r,

E (r)-
2

2(2n +1)
r

r
B,s„(r)———s„(r),

2

r rd8po(sin 8—8 ) — —— — r &0.2 ~4 2 2 2 3 2 & 2

0 4 3m 48

(62)

——,Be+4r'sin'8 g„(8;r ) =s„(r)ri„(8;r) .
1

r
(65)

turn, is related to the definition of the confined wave
functions, Eq. (29}, and the long-range behavior of the
effective forces. However, it is not the choice of the
confined wave functions which causes this result to go
astray. It would have been possible to define confined
wave functions r)„(8;r) such that

For large r, s„(r)—6 is
ral4: yand, thus, —it
damped in this limit.
form

identical in form to Eq. (58) with
and —,'rB„so(r) are exponentially
However, the sin term has the

(63)

r f rd8po(sin 8—8 )-— + 4+0(r )
0 16r 96r

If one were now to calculate the (p ) in a scheme with
these confined wave functions, the objectionable sin term
above would no longer exist. However, ri„(8;r) ap-
proaches P„(r8) as r ~ ao with power-law corrections, so
that it is now the term

so that it is of long range and ultimately gives a positive
contribution to Eq. (61). Numerical calculation shows
the sin term of Eq. (63) to be negative definite for all r,
thus giving a large positive contribution to (p )~o~. An
explicit computation of (p ) I

"I yields

which has power-law falloff and gives a large positive
contribution to (p ) Io, . That is, for large r,

4r sin (zlr)-4z — + +O(r ),2 2 2 4z 8z

3r 45r

(p )'"'=1.5498, (p )'"'=1.4882 . (64)
where z —= rO. In this limit, then,

The a =0 moment is greater than the isolated meson
value; it gains a contribution of +0.0545 from the sin
term mentioned above. This large value can be traced to
the power-law falloff of the sin term at large r, which, in

8
( i i )

16 4m 40

45r 9r ~p E ~p
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IV. SU(N) HADRONIZATION

I shall now construct effective hadronic theories from
the SU(N} quark model, which is governed by the Hamil-
tonian, Eq. (12). Equation (12) is a set of differential
equations in 4'0 and 4, that are coupled by virtue of the
boundary condition on the rearrangement surface, z =y.
The SU(N) %0 only differs from its U(1) counterpart by
virtue of this boundary condition, Eq. (13). Equation (13)
can be rewritten as

B„+0(y,z)

%O(y, z)
1 B„V,(y, z)

+&(y, z)
(66)

where A, —:(N+s)l(N —s). The size of the coupling to
the hidden color sector is clearly dialed by N and s, the
overall symmetry of the wave function; thus, A, provides a
useful parametrization between the antisymmetric U(1)
(A, =O) and symmetric U(1) Q, = ao) limits. I will continue
to consider the overall symmetric state, s = 1, and I shall
choose q q systems with v, and A, such that a bound
state exists. Such choices with v, ~0.5 are the most sen-
sitive to the presence of the hidden color sector, as indi-
cated by the SU(N) phase shifts. Thus, v, =0.5, A. =3;
v, =0.6, X=3; and v, =0.6, A, =2 systems are considered.
k=3 corresponds to the internal color group SU(2), and
A, =2 corresponds to SU(3). Since the normal derivative

and the resulting contribution to (p ),o, is positive. This
is not conclusive; however, it seems to indicate that the

(p )Io~'& —,'result is more a consequence of the original

choice of confined coordinates than of the choice of the
confined wave functions themselves.

In conclusion, the confinement scheme which generat-
ed good agreement in the lowest order of truncation to
the other U(l) observables studied is in qualitative
disagreement with the quark model (p ) to the same or-
der. However, the sign of (p ) —

—,
' does not necessarily

determine the behavior of the momentum distribution
relative to n;„~(p) at low p. If (p ) & —,', then this con-
straint plus the normalization condition f d p n(p)=1
and the Fermi motion constraint n (p}& n;„,(p) at large p
does imply that the momentum distribution must be
softer at low p than the isolated meson case. However, if
(p ) & —,', the enhancement of n (p) at low p is no longer

guaranteed, though it may exist. The o =0 scheme-II
wave function may build in some of the correct behavior
at low p because the o =1 result is markedly improved,
even though it is certainly still worse than the lowest-
order scheme-I result.

Both effective schemes considered are able to repro-
duce the softening of the quark-momentum distribution
seen at low p upon inclusion of a single excited hadron
internal state. At the o =0 level, scheme I is already able
to reproduce the (p ) & —', result and, thus, assuredly has

the qualitative low-p behavior of the true momentum dis-
tribution. This is marked as an inert meson description is
wholly unable to reproduce the (p ) & —,'result and,
indeed, cannot reproduce the softening of n (p) seen here
with the inert meson states P„(z}of this model without
the explicit inclusion of excited hadron internal states.

of the wave function at y =z is finite and yet the wave
function is symmetric, this means that the normal deriva-
tive will vary in sign upon calculation above or below the
rearrangement surface.

Any of the schemes discussed in the U(1) section can,
in principle, be used in the SU(N) case as well. The con-
vergence to the "wrong" results would be evident,
though, even after the inclusion of the first excited had-
ron internal state; the energies of the o' = 1 U(l) schemes
discussed are overbound with respect to the quark-model
energies of the v, =0.6, k = 3 and v, =0.6, k =2 systems.
Incorporation of the SU(N) boundary condition, Eq. (66),
in any hadronization scheme constructed is thus crucial
in yielding convergence to the SU(N) results. It seems
cogent to concentrate on hadronic schemes in which the
confined coordinate becomes the normal coordinate at
z =y: the importance of the z =y boundary condition
dictates that the exact quark-level boundary condition be
embedded in the confined wave function's behavior at the
rearrangement surface. That is, I shall consider coordi-
nates (r, g) such that the confined wave function y„(gr)
satisfies

r)p„(g;r)l t, „,=g(r)g„(g; ), (67)

where g=g(r) specifies the rearrangement surface. The
novel departure is the g(r) term. This function contains
the boundary condition information of the quark model

(a, —a, )q, (y, z)
g(t)—:

4o(y, z z=y=l
(68)

and will be used as input to the hadronization calcula-
tions of this section. The g(r)'s for the systems con-
sidered are shown in Fig. 2. They are calculated from the
quark model 40 and 8„+oon z =y = t, which are, in turn,
calculated using the P'„='(t) expansion results of Rosen-
felder. " The use of the g(r)'s is no departure from the
philosophy of the previous section; these boundary func-
tions are not free parameters but, rather, are fully
specified by the physics of the quark model. Thus, this
procedure is identical in spirit to the U(1) schemes in
which merely a zero normal derivative constraint was
embedded in the hadronization.

I shall consider the following two hadronization
schemes. First, a (r, 8) scheme with r and 8 as before
(z = r sin8, y = r cos8) will be discussed. Despite the un-
satisfactory long-range pieces in the polar Laplacian, this
scheme can incorporate Eq. (67) exactly. The use of this
scheme, though, is hardly a compromise. At the U(1) lev-
el, the agreement to the quark-model observables after in-
cluding merely one excited hadron internal state is im-
pressive. Second, I shall compare the more extensive re-
sults of the (r, 8) scheme with a (z,y) scheme similar to the
U(1) case in which B,g„(z;y) at z =y =t is now con-
strained to be g (t)p„(z;y). This last is merely an attempt
to gauge the sensitivity of the hadronization to the form
of the boundary condition incorporating g(r)

The confined wave functions shall be chosen to satisfy
the same equations of motion and orthogonality relations
as in the U(1) case. [See Eq. (29).] Now, however, the
y„(8;r) satisfy
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FIG. 2. The SU(N) quark-level boundary function g(r) vs r
[see Eq. (67)]. In this model, the choice of I, and v, completely
determine the hidden color dynamics. v, specifies the physical
extent of the color nonsinglet sector relative to the color singlet
one, whereas A, = (N +s) /(N —s ) specifies the strength of the
coupling of the two sectors. N is the number of colors, and s is
the symmetry of the state under quark exchange —here, and in
what follows, only the symmetric state (s =1) will be considered
[see Eqs. (10) and (66)]. (a) v, =0.5. k=3. (b) (I) is v, =0.6,
k=3, and (2) is v, =0.6, k=2.

P 7T
Eo(r) —

Eo( «a )
——32V 2/m.

3

e
—2(r7Tl4)

X I+2v 2g — +O(r )v'2 r vr

v, =0.5, A. =3 case. Luckily, the factors of v'2 and the
specific form of g(r lv 2) conspire to allow a calculation
of the c 's through r=4, which should suffice for a nu-
merical calculation of the effective potentials. Note that
r =4 corresponds to evaluating g(t) at =2.8, so that the
obvious instability in the quark-boundary-function ratio
is avoided. The instability in this ratio certainly does not
seem to affect the results found: the effective potentials of
the (r, 6) schemes with varying v, and A, calculated at
r =4 all agree well with the large-r analytic forms.

The derivation of the effective Hamiltonian now fol-
lows as before. The projector has the same form, Eq.
(31), and, consequently, a symmetric prescription for the
energy yields an expression for h„(r) identical in form to
that of the U(1} case. [See Eq. (36).] The effective poten-
tials are, of course, numerically distinct from the U(1)
case, since the confined wave functions satisfy different
boundary conditions. However, the large-r behavior of
the effective potentials is precisely as in the U(1) case, Eq.
(42}. The long-range behavior comes from the confined
wave function's mapping to an isolated hadron spectrum
P„(r8) that depends on r and not from any details of the
confined wave function's boundary condition at 8=m. /4.
Thus, the striking long-range channel couplings seen in
the U(1) case are preserved here as well. The Gaussian
damped pieces will depend on the boundary condition;
note

(69)

(71)

The additional r and v'2 factors come from the mapping
to polar coordinates. That is, (v'2/r)B&—=8, —

«} and
z =y = t = r /v'2. The expansion

«p„(8;r ) = g A'"'(r)sin(2b 9)
m =1

is used as in the U(1) case. Requiring that the sine expan-
sion for «p„satisfies the boundary condition of Eq. (69)
term by term yields a transcendental equation for the b

b m. b

2 2
cot

A coefficient c—:b m. /2 must be generated in each
[(m —1)~,mar] interval. A solution c clearly exists for
any m & 1 and is readily generated using the Newton-
Raphson method. There is no solution, however, for
m =1 if the right-hand side of Eq. (70) is larger than 1.
"Losing" the nodeless term in the sine expansion has
disastrous consequences on the convergence of the sine
expansion itself. The sign of g(r/v'2) for the various
cases are such that this failure could occur only for the

These terms, though, are clearly irrelevant for sufficiently
large r. The r~O behavior for the Voo, V, ] potentials is
as in the U(1} case, Eq. (40). For small r, the sine func-
tions are independent of r since Eq. (70) becomes identi-
cal to the U(1) case as r ~0; the 0 (1/r ) behavior comes
from their normalization.

Consider now the derivation of the effective charge
operator for the SU(iV) case. The total quark-level form
factor has both +0 and 4', contributions:

F(q) =2e

Xf dyf dzjo —y jo ~z

X[CO(y, z)+%,(y, z)] . (72)

A hadronization of the %'0 piece of the form factor yields
an effective charge operator identical in form to that
found previously. The convolution model form factor of
this singlet piece is identical to that of the U(1) case, so
that pulling out the one-body piece yields
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vr/4
[po"'"(r)]„=f~(q) rdO y„jo cosO Jp sinO y f—„(qj)o(qr/2) . .

0 2 2
(73)

Equation (73) has the same r ~ ~ and r ~0 behavior as the U(1) exchange charge operator since the calculation of
these limiting forms does not depend on the detailed form of the confined wave functions at 8=sr/4. [See Eq. (50).]
The SU(N) color singlet exchange charge operator is thus of O(1/r ) for large r A. dditional contributions to the
effective charge operator above come from the hidden color sector 4, (y, z}. The hidden color portion of the form factor
defines the nonlocal hidden color charge operator p"„' (r', r" ), that is,

I'h (q)=2e f dy f dz jo y jo z qlf(y, z)

(74)

where y„(r) is a color singlet channel wave function. To extract p„"' (r', r"), consider Green's theorem for 'P, (y, z) in

terms of +& and 8„+i on the z =y boundary. Using the boundary conditions, Eq. (13), to replace the %'& values there
yields

oo

%&(y, z) = — dt'[G, (y, z, t', t')(a+s)r)„%'o(t', t') (a s)—+o(t—', t')I, (y, z, t', t')],
0

(75)

where I, (y, z, t', t')—:(8, —8 )6, (y, z,y', z') ~, , and 6, (y, z,y', z') is the hidden color Green's function defined by

[s—h &(y,z)]G&(y, z,y', z') =Sly —y')5(z —z') .

The hadronic expansion of +o and 3„+o,Eqs. (33) and (69), for 8=x /4 yields

(76a)

Be+o(8, r ) = —g — g y„(n/4;r )y„(.r) .
8 m/4 =2 2

(76b)

Using the above and Eq. (75) in Eq. (74) gives, finally,

—
q /322 II It

p"„' (r', r")= g — tp„(n/4;r')a(r', r")(a+s) —g — y (m. /4;r")
P 2 2 &2 2

II II—(a —1)qr„(vr/4;r')P(r', r") g — tp (m/4;r")
2 2

I I—(a —1) —g — y„(m /4; r')l3(r", r')y (n /4;r" )
2 &2

(77)

+(a —s) y(r', r")g„(n/4;r')y (m/4;r")

where a, P, and y contain the integrals over the hidden color Green s function and its normal derivative. Specifically,

f n/4
dr rdOj o

—y jo —z Gt(y, z, r', r')GI(y, z, r",r")—=a(r', r"),
0 0 2 2

(78a)

dr rdOjo y jo z Gi(y, z, r",r")I I(y, z, r', r') =p(r', r"),
0 0

0 0
(78b)

oo m/4
dr rdOjo y jo z I (g, zt, r', r')I t(y, z, r",r")—=y(r', r"),

0 0 2 2
(78c)
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n

FIG. 3. Schematic illustration of the hidden color contribu-
tion to the effective form factor. Two color singlet hadrons
upon quark exchange have some probability of being in a hid-
den color state, as indicated by the shaded portion of the figure.
The photon may couple to either the color singlet or hidden
color states; the hidden color state's contribution to the wave-
function normalization yields a finite contribution at q =0.

with z =r sin8, y = r cos8. p„"' (r', r" ) is not purely an ex-
change operator; it is finite at q =0. A schematic picture
of the processes included in p"„' (r', r" ) is shown in Fig. 3.
There are hidden color contributions to both the U(1)
one-body and exchange contributions, and the former is
responsible for the nonvanishing contribution at q =0.
The hidden color piece therefore contributes to the nor-
malization of y„(r). At the hadronic level, though, the
channel wave-function normalization is determined by
the usual hadronic constraint g„f dry„(r)=1. It is

more reasonable, then, to think of the constant adjust-
ment to the form factor for all q as a "dressing" of the
elementary charge of the hadrons. The calculation of
p"„' (r, r') is rather complicated, so that convergence to
merely the +0 piece of the form factor has been con-
sidered. This separation of the total form factor into
singlet and hidden color components is artificial, but in
the context of the model it is completely unambiguous.
Convergence to the singlet form factor is necessary for
the hadronic scheme to be sensible, though it is not a

sufficient requirement since the convergence to the hid-
den color component may be different.

The effective potentials through n =m =1 of the (r, 8)
effective Hamiltonian have been calculated for the
v, =0.5, A, =3; v, =0.6, A, =3; and v, =0.6, A, =2 cases.
As per the earlier discussion, the large-r behavior of all
the potentials is the same. The small-r behavior of the
channel potentials (n =m) is certainly the same. The
differences between the rp„(8;r) for various (v„k,) are
manifested in the intermediate regions of the potentials
and mainly in the diagonal terms, in the sizes of the po-
tential minima and in the extent in r of the wells. The po-
tentials all look rather similar, and thus only the poten-
tials of the v, =0.5, k=3 and v, =0.6, A, =2 systems are
plotted in Fig. 4. The depths of the wells in the respec-
tive cases reflect the binding energies of the original
quark systems: s~(v, =0.5, A, =3) &ss(v, =0.6, iL=3)
(sz(v, =0.6, k=2). These differences are also manifest

in a calculation of the scattering lengths in cr =0. That
is, direct integration of the respective Voo s yield
a(v, =0.5, A, =3)=4.58, a(v, =0.6, A, =3)=6.28, and
a(v, =0.6, A, =2)=8.46. These scattering lengths are
somewhat less attractive than the scattering lengths in
the respective quark models, and are certainly less attrac-
tive than the U(1) (r, 8) rr =0 scattering length a =4.27.'

The binding energies of the v, =0.5, k = 3 system with
truncation are c& '= —8.89 X 10 and c& '= —0. 129.
The energy of the 0.=1 truncation is in good agreement
with the quark-model energy c = —0. 140. Numerical
calculations indicate that the v, =0.6, A. =3 and v, =0.6,
A, =2 systems are bound as well. The 0 =0 and o =1
form factors of the v, =0.5, A, =3 system have been cal-
culated using the above binding energies. [See Eqs. (47),
(73), and (69).] The SU(N) (v, =0.5, A, =3) and U(1) form
factors at the quark level are actually rather similar. The
difference in normalization is not readily apparent, as for
this v, and A. the contribution of F, (q) at q =0 is rather
small. However, the form factors of the respective ha-

dronic models are distinct from each other level by level
in truncation and differ in how they converge to their
respective quark models. Figure 5 shows the total form

(a)

~ ~
~ ~ ~ ~ ~

(2)
01

~ ~ ~ ~ ~ ~ ~

FIG. 4. Effective hadron potentials for the SU{%(r 8}schemes [Eqs. {36},(69},and (68}]through n = m = l. (a} v, =0 5, A, =3. (b)
v, =0.6, A, =2. See Figs. 1 and 2 for conventions.
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FIG. 5. Effective form factor vs q for truncations o =0 and

o =1 in the SU(N) (r, g) scheme with v, =0.5, it=3. "Quark" is

the quark-model form factor Fo(q), defined in Eq. (14). "Had-
2 — /l6ron" is the isolated hadron form factor

~ foo(q) ~'=e ~ ~' which

sets the scale in q. v, and A, are defined in the text and in Fig. 2.

FIG. 6. One-body and exchange contributions to the o. =1
effective form factor in the SU(N) (r, 0) scheme with v, =0.5,
)I, = 3 vs q. "Quark" and "hadron" are defined in Fig. 5, whereas

v, and k are defined in the text and in Fig. 2.

=g{t) .

The q&„(z;y) are calculated via a sine basis expansion.
That is,

factor for the rr =0 and rr =1 truncations for the v, =0.5,
A, =3 system against the quark-model form factor. The
inclusion of the second channel certainly improves the
description of the secondary maximum, although the po-
sition of the zero relative to the quark value is only
slightly better. This is in contrast to the U(1) results,
where the o =1 truncation was markedly better than the
o =0 calculation, and the o. =1 truncation was in surpris-
ingly good agreement with the quark-model form factor.
However, the convergence of the o = 1 calculation to the
quark model in this case is still fairly good, and the agree-
ment found does not change significantly as q
increases —even to the point where the isolated hadron
form factor has fallen by 2 orders of magnitude. As in
the U(1) case, the cancellation of the one-body and ex-
change contributions gives rise to the convergence seen',
this is shown in Fig. 6. All in all the SU(N) (r, 8) hadroni-
zation scheme considered converges rather well to the
quark-model observables. It is of interest to see how this
convergence changes in going to a (y, z) scheme which in-
corporates g(t) information in merely the 8, derivative.

A (y, z) hadronization scheme shall now be considered
in which the confined wave functions p„(z;y) will satisfy
the same equations of motion, Eq. (27), and orthonormal-
ity conditions as in the U(1) case but now obey the z =y
boundary condition

(79)
p„(z;y)

y„(z;y) = g A '"'(y)sin
m =].

b ~z

2y

where the boundary condition Eq. (79) must be satisfied
term by term. This yields a transcendental equation for
the b

b ~ b
cot

2
(80)

The computation of the b proceeds as described above.
Now, however, there is some trouble for the v, =0.5,
k=3 case. That is, the functional form of the right-hand
side of Eq. (80) is such that it does exceed 1 at y =2.44.
At this point, the nodeless solution is lost, and the sine
basis expansion becomes hopelessly diseased. Unfor-
tunately, this failure occurs at a suSciently small y that it
is impossible to patch the numerical calculation onto
large-y asymptotic forms. Thus, in the work below, I am
limited to the v, =0.6, k=3 and v, =0.6, A, =2 cases.
The projector has the same form as in the previous sec-
tion, Eq. (30), and, concommitantly, the effective Hamil-
tonian is identical in form to that of the U(1) (y, z) case
[see Eq. (35).] Unlike the (r, 8) case, the large-y potential
forms depend sensitively on the boundary conditions the
rp„(z ', y)'s satisfy. For small y, the potentials are of identi-
cal form to the U(1) case. [See Eq. (39).] g(y) is finite as
y~0, so that the right-hand side of Eq. (80) guarantees
that the b go to the U(1) values of 2m +1 asy ~0.

Now the exchange operator which pertains to the sing-
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let form factor is identical in form to Eq. (46}. The hid-

den color e6'ective charge operator can be derived as well.
The hadronic expansion of %o and B„iPo, Eqs. (32) and

(79), for y =z = t yields

The normal derivative from y)z has been considered.
Introducing

C„(t)=g—(t)y„(t;t) c) y—„(t;y) ~
(82)

8„'lie(y, z )
y=z=t

1—g [[g(t)tp„(t;t)—c} p„(t;y)~, ]g„(t)
n

(81a)

(81b)

it is clear from the form of the normal derivative on

y =z = t, that C„(t) y„—(t; t) t), plays the role that

7" P'

—g — q„(ir/4;r)v'2 v'2

played in the (r, 8) case. Using Eq. (75), one obtains

2

hc (tt ttt)—
/32

I [C (t') —8, , g& ( t', t')] tx( t', t")(&z+s) [C (t")—p (t-;t-} a, ]

—(tz' —I )y„(t', t')p(t', t" )[C (t" ) g (t—",t" ) &, ]

—[C„(t')—8,, ~„(t';t')](a' —1}p(t",t')tp (t";t")+(a s)'y(t—', t")tp„(t';t')tp (t";t")] .

(83)

p„' (t', t") is more complicated than in the (r, 0) case simply because the confined coordinate z for y )z is not the nor-

mal coordinate at the rearrangement surface z =y. The a, p, and y are now

f dy dz jo —y jo —z Gi(y, z, t', t')G&(y, z, t",t")—:a(t', t")
0 0 2 2

(84a)

f dy dz jo —y jo —z G (yt, z, t", t")1 t(y, z, t', t')=p(t', t"),
0 0 2 2

(84b)

dy dz jo —y jo —z I t(y, z, t', t')I, (y, z, t",t")=y(t', t"—) .
0 0 2 2

(84c)

p,",',„(t',t") is finite at q =0; its physical interpretation is

as described above. I have not calculated the hidden
color exchange charge; again, as in the (r, 9) case, con-
sideration is restricted to the color singlet portion of the
form factor Fo(q).

The potentials for the v, =0.6, A, =3 case through
n =m =1 are shown in Fig. 7. The channel potentials
are strikingly less attractive than in the commensurate
U(1) case. This is supported by a large-y calculation of
Eo(y) —

Eo( ~ ), using the techniques outlined in Sec. III A.
That is,

2

~O(&) Eo( OC ) —32&2/my e

6

{} o

0

(2)
0)

I

X 1+g(t)—+O(y )
y

{85)

The term in brackets multiplies the U(l)
e (y) —e ( oo ) [see Eq. (58)]. An explicit evaluation of this
multiplicative factor at y =3 yields 0.70 for the v, =0.6,
A, =3 case, so that in asymptotia the SU(N) potentials are

FIG. 7. Effective hadron potentials through n =m =1 for
the SU(N) (y, z) scheme [Eqs. (35), (79), and (68}j with v, =0.6,
A, =3. See Figs. 1 and 2 for conventions.
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less attractive than the U(1) ones. This decreased attrac-
tion is reflected in the calculation of the binding energy.
At the o.=2 truncation, the system has no bound state;
nor is the v, =0.6, A, =2 case bound at this level. The
boundary values the SU(N) confined wave functions in-
corporate are nontrivial, so that it seems that the hadron-
izations in this case are much more sensitive to the incor-
poration of the correct boundary conditions at z =y.
These results seem to indicate that the incorporation of
the correct boundary conditions in the confined wave
functions is essential in establishing convergence to the
SU(N) quark-model results.

V. CONCLUSIONS

The above results show that a parameter-free hadronic
description with a small number of hadronic degrees of
freedom can reproduce the quark-model observables with
remarkable accuracy —for both U(1) and SU(N) color dy-
namics. The SU(N) results reproduce the general features
seen at the U(1) level. That is, the (r, 8) scheme which in-
corporates the exact SU(N) boundary condition con-
verges well to both the quark-level binding energy and
form factor for the choice of v, =0.5, A, =3 color dynarn-
ics. The convergence is likely not accidental; the calcula-
tion of the scattering lengths at the o. =0 level for the
v, =0.5, A, =3; v, =0.6, k=3; and v, =0.6, A. =2 cases
show the agreement to the respective quark-level calcula-
tions to be roughly equivalent. This is important as com-
parison of the hadron-scheme and quark-model results
for different sets of v, and A, are necessary in order to
gauge the sensitivity of the convergence to the particular
number of colors —here N=2 or 3—or, by dialing the
strength parameter v„ to the form chosen for the color
nonsinglet interactions. The form-factor convergence
seen for the v, =0.5, A, = 3 case is perhaps not as dramat-
ic as in the U(1) limit, but it persists to the same high q.
At q =8, the isolated hadron form factor is already
O(10 ), but the form factor of the cr= 1 truncation of
the hadronic basis is 0 (10 ) and yet continues to repro-
duce the form factor's qualitative structure. The poten-
tials in this hadronic scheme are identical to those of the
U(1) case as r~0 or as r ~ oo. The potentials vary from
those of the U(1) case only for intermediate r, and, essen-
tially, only the overall size of the n =m potential minima
are modified. The repulsion for small r, as in the U(1)
case, comes from the imposition of a boundary condition
at I9=m/4, from inclusion of the exchange dynamics. A
significant departure from the qualitative features seen in
the U(1) case is the poor convergence of the (y, z) scheme
with the

B,y„(z;y)~, , =g(t)y„(t;t)

constraint at the rearrangement surface. The U(1) ver-
sion of this scheme does as well as the corresponding
(r, 8) scheme; here, however, the n =m =2 truncation of
the hadronic basis for the v, =0.6, k = 3 case is not even
bound. At the SU(N) level, the incorporation of the ex-
change dynamics is necessary, but no longer sufficient;
the incorporation of the exact boundary condition in the

confined coordinate is now essential —at least in the lim-
ited set of examples explored.

At neither the U(1) nor SU(N) levels does this study
provide encouragement for any distinctive quark signa-
tures in low-energy nuclear observables. The rapid con-
vergence of the (r, 8) hadronic description to the high-q
SU(N) form factor has been discussed above. In the U(1)
limit, the efficacy of the hadronic expansion persists for
both the second moment of the momentum distribution
and the high-q form factor; this is contrary to all naive
expectations as n (p) and F(q) are rather different probes
of the bound state's structure. The convergence is rapid
not only for F(q); (p ) is reproduced very well in o =1
for the two schemes considered, even though n (p) of an
inert meson description in lowest order has incorrect
low-p behavior. That these parameter-free descriptions
are successful in describing the q q 's bound state is not
the only surprise; at the U(1) level, a rather remarkable
feature is the scheme independence of the convergence.
The (y, z) and (r, 8) schemes both incorporate the quark-
exchange dynamics but differ qualitatively in the large-r
behavior of their potentials and two-body charge opera-
tors; however, they converge nearly as well to the quark-
level results. This insensitivity to the particular hadronic
scheme demonstrates that the convergence found is likely
not accidental and strengthens a general conclusion as to
the presence of quark signatures in low-energy nuclear
observables. This feature could not be demonstrated in
the SU(N) case because of the sensitivity of the results
there to the precise boundary condition imposed on the
confined coordinate. The comparison of the scattering
lengths of the SU(N) (r, 8) schemes in tt =0 for various v,
and k with their respective quark-level values shows at
least no strong sensitivity to the particular v, and A,

chosen.
There may be no distinctive quark signatures in low-

energy nuclear observables, but this is not a negative re-
sult. Quite the contrary, it gives credibility to programs
which would attempt to calculate "observed" hadronic
phenomenological parameters from the underlying
theory. In addition, it is to be emphasized that, regard-
less of the sophistication of such attempts, a consistent,
understood, hadronization scheme is a necessary under-
pinning of any such calculation. I point to the important
role of the exchange charge in yielding the convergence
to the high-q form factor in making this statement. The
channel wave functions alone in any scheme, represented
here by the convolution model form factor, are not by
any means sufficient to describe this process. The general
requirements of a consistent hadronization scheme
should apply as well to a lattice calculation as to a poten-
tial quark model.

Other low-energy nuclear observables exist which
probe slightly different aspects of the q q 's bound state.
One interesting probe is the response function R (co, q ) at
rnssmaeCed kinematics, say for small, but finite, co and
large q. Kurnano has compared the response of a q q
system with quark-exchange dynamics in an overall har-
monic confining potential to that of a hadronic version of
the same model, and has found the hadronic description
to persist to large values of q. ' That model study was
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performed solely in the context of U(1) color dynamics;
this is a chance for the inclusion of the hidden color sec-
tor to wreak havoc with the good agreement found at the
U(1) level. The similarity of U(1) and SU(N) results for
the hadronic form-factor convergence has little bearing
on this situation; the response function for these
mismatched kinematics is a distinct observable.

One interesting dimension that could be explored is the
study of a SU(N) quark-exchange model with dynamics
that carry over to a system of noninteracting mesons for
sufficiently large N. The prescription of Ref. 2 for the
hidden color forces which is used here does not have this
nice property. Masutani has studied the quark-exchange
model for q q using hidden color interactions that have
the appropriate large-N behavior. He chose a Hamil-
tonian of form

h (y, z) = —t) —t), +4(Iz Pc+y Pc+ v, (y P, +z P, ) ]

with v, = 1. This Hamiltonian contains only noninteract-
ing mesons in large N since ~1):—~0) for an infinite num-

ber of colors. As is consistent with the ideas of 't Hooft
and Witten, he found the meson-meson scattering ampli-

tude to go as 1/N for large X. This suggests the follow-

ing interesting program: one could "hadronize" his mod-
el and explore the hadronic expansion convergence for
low-energy observables as a function of N to test in a
model context the idea that the large-N, low-F. phenome-
nology of the Skyrme model is applicable at N =3. The
trouble is that the Masutani model admits no bound
states for v, =1. Perhaps the model would have bound

states for v, & 1 as in the Lenz et al. model, but its nice
large-N properties would then vanish. However, a study
of the low-energy scattering observables might be in-

teresting.
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