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Polarized electron scattering from oriented nuclei in distorted wave method
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Expressions are developed for the differential electroexcitation cross section and the polarization
of the scattered electrons in polarized electron scattering from oriented nuclei. These expressions
are derived for a mixed multipole transition using the distorted-wave method. The effect of the
Coulomb distortion is discussed for electric dipole transition of unoriented ' 'U using 20 MeV par-
tially polarized electrons.

I. INTRODUCTION

Electrons have been used successfully over the years to
probe the nucleus. The roles of the electron and nucleus
are going to be as significant as ever in helping us to get
more insight through the nuclear structure. However,
until recent years, in the vast majority of experiments,
technological difficulties required averaging out the in-
coming and outgoing electron's spin and target orienta-
tion. This naturally reduces the amount of information
that could be gained.

In recent years, because of technological advancement,
polarized electron beams and oriented target nuclei are
more readily available. This, in turn, requires the ad-
vancement of available theoretical calculations concern-
ing polarization. There has been a number of excellent
works on the topic of polarized electron and/or oriented
nuclei (e.g., see Refs. 1 —5). In 1964 Weigert and Rose
completed a comprehensive work on this topic. They
did their calculations in plane-wave Born approximation
(PWBA). However, their approach can be applied to
distorted-wave methods and this is my objective in this
article. I achieve this in part by using a code that calcu-
lates the electron scattering matrix elements in distorted-
wave methods for finite-size nuclei. This code has
been used successfully to study electrofission of heavy nu-
clei with low to moderate incoming electron energy
(5—200 MeV).

In Sec. II, I present the formalism which includes the
derivation of the cross section and polarization of the
outgoing electron. The effect of Coulomb distortion in
the electric dipole transition of unoriented U using 20-
MeV, partially polarized electrons and the final remarks
are presented in Sec. III.

II. FORMALISM

A. Transition matrix

Consider a process in which an electron with energy
E„momentum k&, and polarization P, interacts with a
fixed target nucleus (the recoil effect is negligible for in-
coming electrons with low to moderate energies and
heavy target nuclei) initially in state J, , M, . As a result
of the interaction, the electron scatters into the final state

E2, k2, P2 and the nucleus by absorbing ~=E, —E2, and
angular momentum L transfers into the excited state
J2,M2. To study this process and investigate the effect of
polarization, it is convenient to use the density-matrix ap-
proach and define a transition matrix A in such a way
that '

o'(k&, k2, P& )p(P2) = A p(P& ) A

where

p(P)= —,'(1+o"P) (2)

0(k„k2,P, )Pz= Tr[~ A p(P, ) A ] . (4)

Therefore, the transition matrix A completely determines
0'(k), k2, P)) and P2.

Let a, and a2 be the spinors of the incident and the
outgoing electrons (see Appendix A for more detail).
Then define a matrix T that transfers a, into a2, namely,

a2= Ta) (5)

It is possible to relate matrices T and A and therefore
rewrite Eq. (5) in terms of A:

—,'(1+P)az = k, (Eq+m, )
1/2

k2(E, +m, )
A —,'(1+P)a, .

In the following I will find a relationship between a2 and
a, through solving the corresponding Hamiltonian and
hence determining A through Eq. (6).

In distorted-wave methods the Hamiltonian of the
scattering process is

(H, +H~+H;„, )qI=E+,

where 4' is the wave function of the electron-nucleus sys-
tem, and E is the energy of the system. H, is the Hamil-
tonian of the electron in the Coulomb field of the nucleus,

is the nonrelativistic density matrix, 0.;(' —] 23) are the
Pauli matrices, P is the polarization vector, and
0(k&, k2, P~) is the scattering cross section. Equation (1)
and (2) imply that

o(k&, kz, P&)=Tr[Ap(P&)A ],
and

42 2172 1990 The American Physical Society



42 POLARIZED ELECTRON SCAI lERING FROM ORIENTED. . . 2173

HN is the nucleus Hamiltonian, and H;„, represents the
interaction between the electron and nucleus exclusive of
the Coulomb interaction. From Eq. (7}one gets

The solution to this equation is

G(ri, rz)=1ri y tP„'(ri)lg (r~) for r, & rz, (12)

(H, E—~)f, = H—;„,Q, (8)
and

where P, and g, are the outgoing and incoming elec-
2 1

tron wave functions, respectively (see Appendix A). Us-

ing the Green's-function method, one can write

g, (rz)= —JG(r„rz)H;„,f, (r, )dr, , (9)

(H, E~)G—(r„rz)=5(r, ,rz)I, (10}

where G(r„rz) is the Green's function satisfying the fol-

lowing equation:

G(r„rz)=~i g P"„(r,)Q (rz) for rz &r, ,
KP

(13)

where P is the regular solution to the Dirac equation,
while g is, in general, a linear combination of the regular
and irregular solutions (see Appendix A for more detail).
Using Eqs. (9), (12), and (13), one gets the following
asymptotic form for the outgoing electron wave function:

with I being a unit matrix. Using Eq. (Al) I rewrite Eq.
(10) as follows:

[a it+Pm, + V(r) —Ez]G(r„rz)=5(r„rz)I . (11)

ikqr
ef„(rz)=az

T

with

(14)

a = —i2

' 1/2

KpPg

QEi +m, y, '(kz )

QEz —m—,g„'(k~ }

being the spinor of the scattered electron. Using Eqs. (A3), (Al 1), and (A13) in Eq. (15), one gets

—,'(I+P)az= g c b

mmmm&

(16)

where

b =( i)4n— .
1/2

2E, k,

1/2

g(Ez+m, )

'~&. +~. 1 I —I
X g e ' '

i
' 'C(l, —,'J, ;p, ,

—m„m~)C(lz —,'Ii, pz
—m~, mz)FI (kz)

Ki)M )

KpPp

(2!,+1)

In Eq. (17), C( ) is the Clebsch-Gordan coefficient and

(18)

P, l
I?l

1
4

Also, in Eq. (17), I have assumed that the incident beam is along the z axis and therefore replaced Yl
' ' (k, ) with

1

Q(21, + 1)/(4m )5„

Following the works by Zamani-Noor and Onley, Zamani-Noor, Gargaro and Onley, ' and Gargaro", I expand the
right-hand side of Eq. (18) and write

' 1/2
1 +1/2 2j, +1

, '„'=4mma' g (
—1) ' C(j ij &L; ——', —'}C(j iLJz, piMpp)

LM

X[R (Ki, Kg)N (co)+R (K, , Ki)N (co)], (19)

where R (Ki, Kp) and R (K~, Kp) are the radial integrals for electric and magnetic transitions, respectively (see Appen-
dix B for more detail}, while N (co) and N (co) are the reduced nuclear matrix elements for electric and magnetic
transitions, respectively, and a is the fine structure constant. Using Eq. (19), I rewrite Eq. (17}as follows:
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1/2

b =( —i)8m.
E2 +~e

1 1 2

~~„+~.],
K1K2

LM

X Y~
' ' (kz)C(l& —,'j, ;O, m& )C(lz —,

' jz, m&+M —mz, mz)C(j Ij &L; ——,', —,')

XC(j,Lj ~;m, ,M)C(J, LJ~;M„M)[R (~„~~)N (co)+R (s„x~)NM~(co)] .

(20)

Now that b has been evaluated in terms of calculable
1 2

terms, namely, the electron radial integrals and nuclear
matrix elements, I use Eqs. (6) and (16) to write

k)(Eq+m, )

kq(E)+m, )
y c b,x'=

m1m2
'

1 j2
E1+me

XA gc X',
m1

(21)

with the following result for A:

r
' '" b++ b-+2E, k2

k, (E~+m, ) b+ b
(22)

where + stands for + —,
' and —stands for —

—,'. Using Eq.
(22) in Eqs. (3) and (4) will determine the cross section
and polarization of the scattered electron completely.

B. Cross section

To calculate the cross section for nuclear transition
J1~J2 one basically has to evaluate terms of the follow-

I

ing type [see Eqs. (3) and (22)]:

J 2E, k2

1 2

(23)

where wM is the probability of sublevel M1 being occu-
1

pied. If wM is the same for all M, values, then the target
1

nucleus is unoriented; otherwise, the target is oriented.
To perform the sum over M, and M2, we write wM in

1

terms of statistical tensors fi, which were first introduced
by Fano. ' In what follows I assume that the oriented
nucleus is axially symmetric with the symmetry axis be-
ing the spin quantization axis. Hence'

mM =g fl(2I+1)'~ C(J)IJ, ;M)0) .
I

(24)

An oriented target is defined to be aligned if wM =w
1 1

otherwise, it is polarized. Therefore, from Eq. (24) it fol-
lows that even values of I (IAO) represent the contribu-
tion from alignment of the nuclei, while odd contribu-
tions represent the polarization of the nucleus. For I =0,
f0= 1/(2J, +1), which is always present. Inserting Eq.
(24) into Eq. (23) and using Eq. (20), one can sum over
M, andM2 to get

Z ' ','= g ( —)
' '(2Jq+1)+2J(+1( —) fr W(J(J)LL', IJq)C(LL'I;M, M)—

1 1 1 1
1 2

K1K2
LL'
M
I

m +M —m
X ' 'i ' '( —

)
' Q(2j, +1)(21,+1)YI ' ' (k )'2

—i(5, +5, )

Xe ' '
( —i) ' '( —)

' Q(2jl+1)(21I+1)Y,™~2(k )
'2

XC(l, ,'j, ;O, m, )C(—lz—,'j ~;m, +M mz, m~)C—(j ~j zL; —,', ,')C(j, Lj &,'m&, M—)—

XC(1',—,'jI;O, m', )C(lz j~'mI+M mz m— z)C(j Ij zL', —
—,', —,')C(j',L jz mi M)

X [R (s, , ~~)N (co)+R (~„~~)N (co)]

X [R (z'(, v~)N (co)+R (v), zq)N (co)] . (25)

For an unoriented target, only the I =0 term will contribute and Eq. (25) for each multipole transition L simplifies to
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Z2 2,2I m m'(2. L) 6477 ~ Q (~2+ ) 1 ~iiL( )
2

k, (2J, +1) (2L+1)

M el~2

ml+M —m2

X C(1, ,'j, —;O,m, )C(12—,
' j2,m, +M —m2, m2)C(j,j,L; ,'—, '—)C—(j,Lj, ;m „M)

2

XR (ai, a2) (26)

where A, stands for the type of transition (i.e., A=E ,for electric transition, A, =M for magnetic transition). Using Eqs.
(3), (20), and (25), I calculate the cross section with the following result:

J~+ — J~+- J2 —+ J2 —+
o'(ki, k2, P, ) —[(Pi„)P,y )—(ZJ'++ +Zi' )+(Pi„+1Pi )(ZJ'++ +Zi' )

J2++ J2+ — J2 —+ J2 —— J2++ J2 —— J2++ J2 ——
+Piz(ZJ ++ —ZJ + +Zq + ZJ — )+(ZJ ++ +Zi ++ +ZJ +Zq )] (27)

The terms involving (P&„+iP& ) represent the e6'ect of the transverse polarization on the cross section, while the
coeScient of P„represent that of longitudinal polarization. The last term is the cross section for unpolarized electron
beam.

C. Polarization of the scattered electron

The polarization of the scattered electron can be calculated by using Eqs. (4), (23), and (25) with the following results:

J +- J2 —+ J2++ J2 —— J,++
o(k&, k2, Pi)(P2„ iP2~) —[(P» tP,~)Z—J'+ +(P»+tPi )Zz'+ +P&, (ZJ + ZJ + )+(ZJ + +ZJ + )] )

(28)

J,+- J2 —+ J++ J J++ J
(ok&, k P2)(1P 2+tP )2—[(Pi, tPi~)ZJ' + +(P»+tPi )ZJ' + +P„(ZJ —+ Zj —+ )+(ZJ —+ +ZJ + )],

(29)

and

J~+ — J2+- J2 —+ J2 —+
a(ki, k2, Pi)P2z —[(Pi„tP,y)(Zq —++ ZJ )+(P»+iP,~)(ZJ ++ ZJ )

J2+ + J2 —— J2+ + J J2+ + J J2++ J)——
+P,z(ZJ ++ ZJ ++ —ZJ— +ZJ )+(ZJ ++ +ZJ ++ ZJ —Zg— )] . (30)

In Eqs. (28), (29), and (30), one can make the observa-
tion that the polarization of the scattered electron can be
due to the polarization of the incoming electron and jor
the orientation of the target nucleus.

III. RESULTS AND DISCUSSION

Using the expressions developed in Sec. II, one can
study a number of difFerent experiments that involve
beam polarization andi'or target orientation. The in-
clusion of the distortion effect distinguishes this work

I

from the previous ones. Therefore, in what follows I will
discuss this effect and its significance in an example and
postpone an extensive study of the results of Sec. II to a
future paper.

To study the distortion effect, consider the following
process: An incoming partially polarized electron beam
with polarization P =0.2, P =0.3, and P, =0.5, and en-

ergy E =20 MeV interacts with an unoriented U tar-
get. The outgoing electrons scatter through angle 0„
while the nuclei undergo electric dipole transition. Using
Eq. (26) in Eq. (27), I calculate o ~/o. o, where o & is elec-

TABLE I. o.~/00 calculated in DWBA for different values of excitation energy co and scattering an-
gle 0, .

I9, (deg)
(MeV) 20 40 60 80 120 140

8
11
14
18

0.973
0.940
0.885
0.786

0.984
0.963
0.922
0.798

0.988
0.972
0.940
0.831

0.992
0.978
0.952
0.866

0.994
0.982
0.961
0.898

0.997
0.987
0.970
0.925

1.000
0.991
0.979
0.951

1.000
0.995
0.989
0.976
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cR

0
0
P"

y cQ

larization of the beam will have a null effect on the cross
section in PWBA, as long as the target nucleus is
unoriented. This effect is shown in Fig. 1 by dashed lines
which are the PWBA results. However, in the distorted-
wave method (solid lines in Fig. 1), the polarization of the
incoming beam has significant effect on the cross section
for high-excitation energies and forward-scattering an-
gles. The observed significant effect of the Coulomb dis-
tortion in this example calls for a more detailed study of
the expressions developed in this article, which, in turn,
should lead to a better understanding of the nuclear
structure.
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FIG. 1. 0 p/ao vs the excitation energy ~ and scattering an-

gle 8, . The marks are the calculated points, which have been
connected by smooth lines to guide the eye. The dashed and
solid lines represent plane- and distorted-wave results, respec-
tively.

troexcitation cross section for polarized incoming elec-
tron beam and cro is that for unpolarized incoming elec-
tron beam. One of the terms that has to be calculated is
R" (Ki, K2). This involves integration over an infinite

range including inside the nucleus, which involves nu-
clear density functions (see Appendix B). For this I use
here expressions derived from assuming irrotational in-
compressible flow in the nucleus:

APPENDIX A

[a k+Pm, + V(r)]Q=EQ . (Al)

The solution when separated in polar coordinates is writ-
ten as

g.(r)x".

if.(«)x" (A2)

where y" are the two-spinor angular momentum eigen-
functions:

X".= g C(i ,' j;S r-r)I't' —'(~ 0)X'
w=+ 1/2

(A3)

The time-independent Dirac equation with a central
potential in standard notation is

Ji-i(r)=r' 'po(r)

JI (r) =dpo(r) /dr,

J„,(r) =0,
(31)

In Eq. (A3) the subsidiary angular momentum eigenval-
ues j and I are regarded as functions of the Dirac angular
momentum eigenvalue which specifies both:

where po(r) is the ground-state charge distribution, which
is taken to be the standard Fermi shape. In Table I, I
show values of o /o o for different selections of
transferred energy cu and scattering angle 8, . In Fig. 1, I
compare distorted-wave Born approximation (DWBA)
results with the plane-wave Born Approximation
(PWBA) results, which is equivalent to letting the charge
of the nucleus go to zero. Numerically, we can achieve
this in the distorted-wave calculation by letting Z (nu-
clear charge) become small (but not zero); for Z =2, for
example, the results of the DWBA calculation agree with
PWBA results to 3—4 digits. ' As is well known, the po-

l=~ for ~)0,
l= —~—1 for a(0.

(A4)

For a Coulomb potential having charge Ze as its source,
one gets

f, "' (r) = —QE —rn, Im[ V+r(kr)],

g
c"I(r) =QE+ m, Re[ V+r(kr)],

(A5)

where Vr can be written as a combination of Whittaker
functions of the second kind, 8' „,as follows:

V (kr)=2(2kr) I (y+iq)(y+i7)) exp —
m +i P —

y
———

r 2 2 4
L

W +ipse ( 2ikr) —1/2, r(2lkr)
X exp i "' — +exp[i'(@+1)]

2 I (y+ I+i g) r(r (A6)
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with

(
2 2Z2)1/2

g=aZElk,

exp(2ig }=exp( i—m}.
~—iaZm, /P

P + i7)

(A7)

The superscript C in Eq. (A5) denotes a point Coulomb solution, while R and I refer to regular and irregular solutions,
respectively. The choice of the sign of y in Eq. (A5) is (+) for the regular function and (

—) for the irregular function.
The asymptotic forms off„' ' and g„'"' are

(E —m, ) sin[kr+riln(2kr) —
—,'(I +1)m+5„' ]f„' ' (kr)~—

mk T

g
c R I

( k )
(E+m, )

~k

cos[kr +ri ln(2kr) —
—,'(I +1)m+5„' ]

where

1 I+1
5„"(y) =P

——
my

—argl (y+i ri)+
2 2

and

&„(y)=5„"(—y)

(A9)

(Alo)

are point Coulomb phase shifts.
For an electron of energy E~, momentum k&, and polarization m &, the appropriate combination of the functions Q

describing an incident distorted plane wave and outgoing Coulomb scattered waves normalized in energy scale is

i5
P, '(k~, r)=4m g e 'i 'C(1„—,',j „'I2~ —m„m&)YI ' '(k, )g, '(k, r) .

2E, k,
(Al 1)

The final-state wave function must be taken to be outgoing distorted plane waves plus incoming Coulomb scattered
waves

pz'(k2, r)=4m g e
2E k2 2 K212

I6K ('i 'C(12, ,',j 2,'p2 m2, m—2)Y(
'—' (k2)f, '(k2r), (A12)

which describes an electron of energy E2, momentum k2, and polarization m2, which has been scattered by the
Coulomb interaction of the nucleus. A general spin state can be represented by superposition of two possible spin
states; hence

y

(kyar)=

y c
m) =+1/2

(A13)

where c,&2 and c,&2 are arbitrary constants.
For the case that the source is an extended nucleus, the radial wave functions outside the nucleus can be written as'

f,(kr)=A„f„' (kr)+B,f„' (kr),

g (kr)=A, g ' (kr)+B„g„' (kr),

with the following asymptotic form:

(A14)

f„(kr)~— (E —m, ) sin[kr +7I ln(2kr) —
—,'(I + 1)m +5„+5„]

g„(kr)~
(E+m, ) cos[kr +kiln(2kr) —

—,'(I +1)~+5„+5„]
(A15)

where 5„ is the additional phase shift arising from the finite extent of the nuclear charge distribution. Using Eqs. (A8)
and (A14), one finds
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sin(8„)

/8„+cos(8„)
(A16)

where

0 gI gR
K K K (A17)

APPENDIX 8: RADIAI. INTEGRALS

In the following I briefly discuss the radial integrals (details are available in Refs. 6—8). The interaction between the
appropriate components of the electron current and charge densities J,p and those of the nuclear vector and scalar
potentials A ",(I) is written as

R kL(~ ~ ) f ( A2L JA.L y2L~2L)r2dr (Bl)

where the quantity Rl is, aside from normalization, the same as the radial integral R" introduced in the text [see Eq.
(19)]. The charge and current transition charge densities are written in terms of f„,g„, the two radial components of
the Dirac wave function for the electron moving in the Coulomb Geld of the nucleus:

J '=&[L«+1)l '"[L(f.
, g., g.,f., )+(—~) ~2)(f.,g., +g.

,f., )],
J = i[L(—L+1)] ' (a, +Ir2)(f„g„+g„f„),
p"=f.

,f.,+g.
,g.,

The nuclear current density is also broken down into a multipole:

J„„,(r) = g JL(r)YLL, (r), .
M, L,L'

and the corresponding potentials (in the least singular gauge' ) are then

(B2)

(B3)

(B4)

(B5)

(r) =hL '
) (cur) f [ jL+)(cur')[—L/(L +1)]' JL+,(r')+jL, (cur')JL )(r') jr' dr'

0

+jL )(cur) f I
—hL('+))(cur')[L/(L+ I)]'i JL+)(r')+hL(" )(cur')JL )(r'))r' dr'

—[L/(L +1)]' (2L +1)co r ' f JL +)(r')r' dr',
r

(r)=hL"(car) f jL(rl)r')JL(r')r' dr'+jL(cur) f hL"(cur')JL(r')r' dr',

(B6)

(B7)

(r) = [L /(L + 1)]'i hL( ()cur )f [ jL+)(d'or')[L /—(L + 1)]' JL+ &(r')+j L )(cur')JL )(r') I
r' dr'

0

+ [L/(L +1)]'ijL(cur) f [
—hL'+, (cur')[L/(L +1)]' JL +,(r')+hL(" ) (d'or') J L(r') I

r' dr'
I'

—[(L +1)/(2L +1)]'i cu r f J L(+r)')r' dr' . (B8)

The complicated forms given in Eqs. (B6)—(B8) apply only where the range of integration extends throughout the nu-
cleus. Once outside the nucleus (i.e., for r )R „«where all JL =0), they take on the the simple forms

(r) =h (') (cur )R

g ML( ) h(1)( )R ML

(r)=[L/(L+1)]' h"'(cllr)R

where R~,Rz are the radial parts of the nuclear transition matrix elements:

nuc

R)v = f [ JL+)(cur )[L/(L +1)) JL+)(r )+j L )(car )JL )(r ))r dr
0

nuc

R& = jL d'or' JL r' r' dr' .

If we extract the factor Rz from the transition integral RI, we get the normalized radial integral

R A.L()C ~ ) R XL(IC, K )/R AL

(B9)

(B10)

(Bl 1)

(B12)

(B13)

(B14)
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