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A formalism is developed in order to describe, within the Glauber model, the scattering processes
between heavy ions in situations involving several coupled channels. The approach is based on a
suitable truncation of the number of nuclear states which can be excited at each microscopic
nucleon-nucleon collision. The set of coupled equations for the S-matrix elements of the conven-

tional reaction theory is replaced by simple matrix relations, only involving the nucleon-nucleon

scattering amplitude and the nuclear densities and transition densities. This method avoids the
difficulties arising from the combinatorial aspects of the multiple scattering theories, the slow con-
vergence of the series, and the problems of center-of-mass correlations. We discuss some specific ex-

amples of multichannel collisions where the multiple-scattering series can be summed to give analyt-
ic expressions for the scattering amplitude. We finally explicate the formalism for the perturbative
treatment of mutual excitation and charge-exchange processes.

I. INTRODUCTION

A large amount of work has been devoted to the appli-
cation of the Glauber model' to the description of
high-energy hadron-nucleus and nucleus-nucleus scatter-
ing processes. In the variety of the contributions, all ex-
ploiting the Glauber basic idea of describing the global
process in terms of the coherent effect of microscopic
nucleon-nucleon collisions, one can evidence two fronts
of advance. The first is the successful analysis of a large
variety of experimental data, within the original formula-
tion' or its numerous approximations (for a recent
review see, e.g. , Ref. 6). The spectrum of applications
also includes the excitation of discrete low-energy nuclear
levels in heavy-ion reactions. ' A second front can be
viewed in the works devoted to justify and rederive the
Glauber model and its approximations, in terms of the
Goldberger-Watson multiple-scattering theory. '

Along this line, and encouraged by the successful re-
sults quoted above, " ' we devote this paper to put into
a wider conceptual framework the method we have intro-
duced in the previous works. The formalism is based on
a suitable truncation of the completeness of the nuclear
states which can be thought to be virtually excited in
each elementary collision. In the case of elastic scatter-
ing, this amounts, in lowest order of approximation, to
describe the process as resulting from sequences of ele-
mentary collisions in which the colliding nuclei are
frozen in their ground state. This starting idea has been
pointed out by several authors (see, e.g. , Refs. 7 and 19),
including the authors of the present work. "' This ap-
proximation leads, for the elastic scattering, to the same
analytical results as the so-called optical limit to the
Glauber model.

The capability of this approach to describe inelastic-
scattering processes ' suggests the possibility of general-
izing the method in order to obtain a formalism suitable
to describe a wider class of reactions, including those
characterized by strong channel coupling. The system of
differential equations obtained in the conventional
coupled-channel approach is replaced by simple matrix
operations. We underline that the basic approximation,
and the consequent simplifications introduced by the op-
tical limit, is that all the multiple sequences in an as-
signed order of scattering give the same contribution to
the scattering amplitude. Similar approximations and
simplifications occur in the more general formalism we
consider here. In specific conditions of coupling between
different channels, the multiple-scattering series can be
summed giving analytic expressions for all scattering am-
plitudes.

Section II is devoted to illustrating the drawbacks of
the standard Glauber model in the description of heavy-
ion scattering process. More precisely, we give some con-
crete examples of the difficulties arising from the com-
binatorial aspects of the multiple-scattering approach and
show the slow convergence of the series when the
uncorrelated-particle model is assumed to describe the
nuclear states. The standard derivation of the optical
limit is also recalled. In Sec. III the philosophy of the
multichannel approach is discussed and the general for-
malism is built up. Sections IV and V are devoted to a
different sort of examples. In Sec. IV we discuss rather
general models of coupling between channels, but disre-
gard the excitation of the projectile and the angular-
momentum algebra. In Sec. V the specific case of mutual
excitation and of charge-exchange reactions are described
in a more realistic framework. Some concluding remarks
are pointed out in Sec. VI.
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II. THE GLAUBKR FORMALISM
FOR NUCLEUS-NUCLEUS COLLISIONS

A. Basic formulas and classification of scattering sequences

Let us recall for later reference the basic concepts and
the formalism of the Glauber model for the scattering of
complex systems as developed in Refs. 3 and 4. The
scattering amplitude for the collision of a projectile of
mass A p on a target of mass A T assumes the expression

r(b)= .
k Je "f~~(q)dq

NN

If not otherwise stated, the scattering amplitude f~~(q)
is assumed to be completely general, therefore including
spin and isospin degrees of freedom.

By expanding the products in (2), we can group all the
resulting terms according to the order of scattering, i.e.,
the number of nucleon-nucleon collisions involved. We
can therefore express I in the form

P, „(Q)= Jd b e'~ (4 4 ~I (b)~4 4 ) r(b)=y r'"'(b)=y r'""(b)
n, g

(4)

where the total profile I (b) is expressed in terms of the
nucleon-nucleon profiles y in the form

Ap AT

where we have explicitly expressed the nth-order contri-
bution I'"' as the sum of the terms associated with the

ANAT
r(b)=l —g g [I—r(b —,'+,')],

1=11=1
(2)

s, q and r,p denote the final and the initial states of the
target and projectile, respectively. In the above expres-
sions k is the incident momentum in the ion-ion center-
of-mass system, 5 is the transferred momentum, b is the
impact parameter, and s; and s are the projections of
the coordinate vectors of the ith and jth nucleons on the
plane perpendicular to the incident momentum. The ele-
mentary profile y is the two-dimensional Fourier trans-
form of the XN scattering amplitude f~~(q )

possible sequences of n collisions. For each n, &'ie addi-
tional index g individuates a specific sequence of that or-
der, namely, the set of n pairs of indices (one for the tar-
get and one for the projectile) characterizing each micro-
scopic collision. One has, in fact, the possibility of
different combinations of the scattering processes, with
allowed multiple collision by the same nucleon and ex-
cluding only a second collision between the same pair of
nucleons. For any scattering order n a generic sequence g
of n collisions contributes to the profile with the term

I'"'g'(b)=y(b —s +sk )y(b —s +sk ) y(b —s +sl, ) .

n factors

For a given scattering order n, not all combinations
give, however, equivalent contributions to the scattering
amplitude, even treating all nucleons as indistinguishable.
This is due to the obvious consideration that the same
number n of microscopic collisions can be obtained from
the combination of different groups of nucleons, as illus-
trated in Table I. An actual calculation within the
Glauber model therefore requires, as a preliminary step,
the solution of a combinatorial problem. One has to indi-
viduate, at each scattering order, the nonequivalent se-
quences of collisions and determine their multiplicities
which arise from the indistinguishability of the nucleons.
This problem, which has been worked out when the num-
ber of constituents of the colliding partners is relatively
small, ' ' may become a nontrivial task in the case of
heavier systems. As an example, in Table I we display all
the different sequences associated with the first six orders
of collisions for the scattering of an alpha particle by a
target of mass A. Their number, which is 1, 3, 6, 16, 27,
and 62 for the first six values of n, grows rather rapidly
with the scattering order. For each case we also give the
corresponding value of the multiplicity. To get an idea of
the difhculty of a complete solution of the problem we re-
mind that, taking as an example the process a+ ' C, we
have to sum the multiple-scattering series up to the max-
imum scattering order n =48. The complexity of cases

gets maximum around n =24, where the number of se-
quences to be classified is

48

24
=3 X 10'

Note that, for scattering orders beyond the value n =24,
because of a sort of particle-hole symmetry of the prob-
lem, we reobtain just the cases encountered for n &24,
now in decreasing order of complexity.

B. The independent-particle approximation

A second class of problems is associated with the expli-
cit evaluation of the contribution of each (nonequivalent)
scattering sequence. Each contribution involves a mul-
tidimensional integral over all the nucleon coordinates,
the knowledge of the nucleon-nucleon scattering ampli-
tude and of the many-body nuclear wave functions. After
integration over the variables not appearing in a given se-
quence of profiles, one is left with an integral in which the
knowledge of the nuclear correlation functions is
demanded. A common way of overcoming this point is
based on the independent-particle description of the nu-
clear states, an assumption which allows us to express all
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TABLE I. Schemes for all the nonequivalent sequences associated with the first six orders of collision for the scattering of an alpha
particle (a) by a nucleus of mass number A. Each dot is associated with an elementary nucleon-nucleon collision. The nucleons in-

volved are individuated by the column (target) and the row (projectile). The multiplicity of each scattering sequence is listed on the
right of each scheme as a product of combinatorial factors. The sequences are ordered according to decreasing compactness index Q.
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TABLE I. (Continued).
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these correlation functions simply in terms of the nuclear
densities. Note that the assumption of uncorrelated wave
functions gives origin in each contribution to a common
center-of-mass correction factor only depending on the

transferred momentum and the masses of the colliding
nuclei (cf. Refs. 3—5}. If one further assumes a Gaussian
form for both the nucleon-nucleon scattering amplitude
and for the nuclear densities, one eventually obtains ana-
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lytic expressions for all the contributing factors to the
elastic scattering (cf. Ref. 3}.

As an example of the predictions based on the
independent-particle Glauber model, in Figs. 1 and 2 we
consider the elastic scattering of an alpha particle on ' C
and Ca at an incident energy of 1.37 GeV. Standard

Gaussian parametrizations have been assumed for the nu-
clear densities of both projectile and target (cf. captions
to the figures), as well as for the NN scattering amplitude

kNN —a 2

f~w(q}= (&ex+&}~Nxe "
4m
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FIG. 1. Elastic scattering of an alpha particle on "C at E~,b = 1.37 GeV. (a) and (c) display the separate contributions of different
scattering orders to the cross section versus the square of the momentum transferred for the uncorrelated Glauber model and the op-
tical limit, respectively. (b) and (d) give the summed values for the angular distributions versus the scattering angle for the two

2yg 2
methods. Densities of Gaussian shape are used, normalized to unity: p(r) =p(0)e " " with R =1.37 fm and R, 2 =1.935 fm. Ex-

C

perimental data from Ref. 26 are displayed only for a qualitative comparison of the convergence of the methods.
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with parameters 0.&~
=2. 84 fm, azz =0.26, and

a =0.045 fm relevant to the nucleon-nucleon collision at
the corresponding energy of 342.5 MeV.

In Figs. 1(a) and 2(a) we give, for the two reactions, the
separate contributions of the different scattering orders

(up to n =6) to the elastic cross sections, while the
summed values are given in Figs. 1(b) and 2(b). The ex-

ponential dependence of the contribution at each order
on the square of the transferred momentum 5 is a direct
consequence of the Gaussian form for amplitudes and

densities. This behavior allows a more transparent esti-
mate of the importance of the different scattering orders.
In particular, the different slopes of the curves are a sig-
nal of the expected dominance of the high-order terms at
large scattering angles. More surprising, these turn out
to be also largely dominant in the forward direction.

The situation that emerges from the analysis of the
figures is rather discouraging. The contributions of the
lowest scattering orders do not seem to display any indi-
cation of a possible rapid convergence of the full series.
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FIG. 2. The same as in Fig. 1 for the elastic scattering of an alpha particle on Ca at El,b =1.37 GeV. The Gaussian density pa-
40rameter for Ca is R40 =2.52 fm. Experimental data from Ref. 27 are displayed only for a qualitative comparison of the conver-

gence of the methods.
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In particular, no resemblance yet appears with the experi-
mental data, both in the magnitude, largely overestimat-
ed, and in the shape which does not display the charac-
teristic diffraction pattern.

C. Order-of-magnitude estimate and the optical limit

The inclusion of higher-order terms, although neces-
sary, looks rather cumbersome without further simplify-
ing assumptions. An order-of-magnitude estimate of the
different contributions was worked out by Czyz and Max-
imon based on the concepts of separability and compact-
ness. Within a given sequence of elementary collisions,
one may individuate subsequences which are separated,
in the sense that no coordinate of the profiles of the one
appears in the others. We denote n; the scattering order
of the ith subsequence (g; n; =n). As an example, the
sequence 16 of the fourth order in Table I is character-
ized by four separated subsequences of order 1, while the
sequence 1 is irreducible. In the independent-particle ap-
proximation, the total contribution factorizes in the
product of terms, each corresponding to a separated
subsequence. For each irreducible configuration, one can
introduce the compactness index Q, = n, —

v, + 1, v, being
the number of diff'erent variables (of both nuclei) appear-
ing in the ith subsequence. Finally, the total compactness
index Q of a definite sequence is defined as the sum of the
partial indices Q;, i.e., Q =g; Q;. For example, within
the sequences of order n =4, the sequence 1 has Q = 1, all
the others are characterized by Q =0. Similarly, for
n =6, the sequences 1 and 2 have Q =2, those from 3 to
14 have Q =1, all the others have Q =0. Now the basic
result which can be obtained along the Czyz and Maxi-
mon approach is that the contribution to the forward-
elastic-scattering amplitude coming from the definite se-
quence g only depends on the order n and compactness
Q being approximately given by

Q

F~I" &'(S=O) = ' '", (7)
2n R2 a

'n

ikg' '—'
(
—1)n+' Ox+

n=1

&max R
Q

X g T„(Q)
o a

n

Note that the relative importance of the sequences with
different compactness is basically governed by the value
of the slope parameter a. We can immediately see that,
for relatively low bombarding energies where a is becom-
ing small as the nucleon-nucleon amplitude tends to be-
come isotropic, the more compact sequences, although
associated with lower multiplicities, become dominant.

where R =R T +Rp + 2Q p being the slope of the ele-
mentary profile (6). By weighting each sequence of order
n and compactness Q by the multiplicity factors T„(Q),
we deduce the final formula

Foo(b =0)=g Foo'g'(b, =O)
n, g

This result rules out any statistical approach. As shown
by Czyz and Maximon, this effect is not a consequence of
the semiquantitative estimate, but of the independent-
particle description of the nuclear wave functions disap-
pearing with the introduction of correlations.

These order-of-magnitude estimates can be used to
derive the so-called optical limit to the Glauber theory.
In the limit of a very large number of constituent objects
( A T, A p ~~, with the constraint that the product
AT APo &&~const), the numbers T„(QWO)become van-
ishingly small with respect to

T„(Q=0)=
ApAT

It is therefore assumed that all the contributions at a
given order are equal to that obtained for the case of a
completely separable sequence, a choice that also clears
all problems connected with possible divergences. In this
particular case, we can release the approximated expres-
sion (7). The corresponding contribution is, in fact, com-
pletely factorized and simply given by

(C'co~r'""~c'C') =k(b)",

where A, is the scattering term associated with a single
collision

X(b) = (e,'e,'~) (b —s,'+s„')C,'C,')
(10)

Summing to all orders one gets the final expression for
the elastic amplitude in the optical limit

F(d )=
2m

( )n+1 Id2b iZebg(b)n

J d'be' '[1—[1—A(b)] ' ']
or, assuming Ap AT very large,

F(g) d2b eiZ b(1 e T P
)

277
(12)

The predictions of the optical limit for the two cases
previously considered are also displayed in Figs. 1 and 2.
As in the case of the fu11 Glauber model, we show the
partial contributions associated with each scattering or-
der [Figs. 1(c) and 2(c)], and the summed values up to a
definite order [Figs. 1(d) and 2(d)]. Due to the simplicity
of the optical limit, we can easily consider scattering pro-
cesses of any order at variance with the full Glauber
model.

As is clear from the figure, the results of the optical
limit are in good agreement with the experimental data,
showing a faster convergence than the previous calcula-
tion. This is a systematic feature which has been pointed
out in variety of systems and bombarding energies, in-
cluding rather low values (cf. Refs. 12—14).
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III. THE MULTICHANNEL FORMALISM

As shown in the previous section, the Glauber optical
limit for heavy-ion scattering seems to display a number
of advantages with respect to the uncorrelated Glauber
model: it is extremely easy to compute, it does not
present any pathological behavior with the slope of the
X-N amplitude and, as the most important feature, its
predictions are in good agreement with the experimental
data. It is therefore important to find an alternative
derivation of the optical limit from the full correlated
Glauber model. The basic key in this scheme is provided
by the truncation of the completeness of intermediate
states which can be inserted between each pair of elemen-
tary profiles in the full expression (5), i.e.,

I=y ~C'e')&C'Cf~, (13)
jk

where 4 and 4k stand for the target and projectile
states (in particular, j =0 and k =0 correspond to the
ground states). This procedure, suggested in the frame-

F „(&)=+o„o(&)

d b e'~ &@ @fr(b)~@ @ )
277

s 0 r 0

d be'~ r (b).ik
2' $71 (14)

In the expression of the contribution of a definite se-
quence g of nth order

work of a rederivation of the optical limit, "is here ex-
tended to cover a wide range of reactions.

For the sake of simplicity we shall consider the case in
which the projectile (with mass number Ap ) is not excit-
ed during the collision. The generalization to the case of
an excited projectile will be exemplified in Sec. V. To
avoid complications in the formulas associated just with
the angular-momentum algebra, we will, for the moment,
assume that all the considered states of the target have
angular momentum zero. The scattering amplitude in
this case assumes the form

r,'"„"(b)=&@'c,'~r'""(b)~a 'e')
=&4, 40~y(b —s +sk )y(b —s +sj, ) y(b —s. +sk )~4„40)

n factors

we insert between each pair of successive profiles a truncated completeness of projectile and target states in which only
the ground state of the projectile and the lowest X levels for the target appear, i.e.,

NI= y ~a,'e,')&e,'e,'~
q=0

We obtain by this way

N

r,"s'(b)=&@ @ y(b —s +sf ) g ~Q @ )&Q @O~y(b — +sk )

q=0

(16)

X y ~e',e') &e',e,'~ y(b s'+sk )~C'—e')
q'=0

This expression evidences the limitations and the merits
embodied in the method proposed here: for assigned ini-
tial and final states the right-hand side is independent on
the particular sequence g of collisions, only depending on
the scattering order n, as in the case of the optical limit
and at variance with the exact expression. In fact, it fac-
torizes in the product of terms, each involving a single
profile and therefore not dependent on the two particular
nucleons responsible of each microscopic collision. On
this ground we can state that this approach is the natural
extension of the optical-limit approximation to the
analysis of many-channel processes.

To get a more explicit expression we can introduce the
matrix D

D„(b)=&4C ~y(b s+s„)~AT@—) .

With this notation the contribution of each sequence of
collision of order n assumes the form

I,'",'(b)= g D, ,(b)D, „(b) D „,(b)

:—I lD(b ) I"I, ,
n factors

(19)

namely, I,'"„'(b)is just given by the (s, r) element of the
nth power of matrix D. Note that we have consistently
dropped the redundant index g.

The equivalence of all the sequences of the same order
has obviously cleared all cumbersome combinatorial
problems associated with the multiplicity of each se-
quence. Furthermore, as it appears from Eq. (19), only
matrix elements of one-body operators have to be calcu-
lated, the knowledge of all correlation functions being re-
placed by the knowledge of all nuclear densities and tran-
sition densities. The two formulations are clearly
equivalent when all nuclear states are included as inter-
mediate states, but the latter suggests novel perspectives
when physical considerations suggest a truncation in the
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ANAT

r, „(b)=S,„—y ( —)"+'
n=1

and

ANAT

( )n+1
n=1

F (Z)= d be'ik
2m

ANAT

ApdT

I {n)
S, P'

[[D(b)]"],„(20)

basis. We also note that the introduction of complete sets
of states among each pair of successive collisions arises in
a quite natural way in the derivations of the Glauber
model given by Foldy and Valecka, ' Harrington, '

Eisenberg, ' and Wallace' who derive the Glauber model
from the Goldberger-Watson multiple-scattering theory.

The total profile function and the scattering amplitudes
then assume the final expressions

single element [D(b )]o o which coincides with the matrix
element A, defined in Eq. (10). In this case the sum in Eq.
(21) coincides with Eq. (11). One so obtains, in a com-
pletely different framework, the expression of the optical
limit. Note that this alternative derivation of the optical
limit, suggested by a number of authors, "" does not
make use of the independent-particle model, being based
on the converse on the frozen-nucleus approximation and
so no center-of-mass correction is necessary. Further-
more, no role is played by the assumption of large num-
ber of constituents ( AT, Ar ~ ~ ) so justifying the good
results obtained by the optical limit for relatively light
nuclei. We recall that the use of the optical limit in con-
nection with finite masses together with several versions
of the center-of-mass correction problem have been dis-
cussed by Franco and Varma.

B. Two-channel case

X g [ [D(b )]"],„,
n=0

respectively, having taken into account that

(21)

Let us consider the case of two strongly coupled chan-
nels, labeled by 0 and 1. In this case the relevant matrix
D is a two-dimensional matrix with elements

Doo( b) =
& + +g y(b —s +s k ) l

@ C

[[D(b )]"I, „=5,
„

and

=A(b) =D„(b) (24)

for n =0.
More explicit expressions of Djj can be given in the

form

D '(b ) = fpo(rk )p '(r& )y(b s+sf )drk—dr (22)

fpo(q)r»', (q)f.N(q)e"'dq
Vl NN

(23)

in terms of the densities and transition densities po(q)
and pjj'(q ) in the momentum space.

As a final remark we briefly discuss the problem of the
center-of-mass correction factor. As mentioned before,
this arises in connection with the use of uncorrelated
wave functions. In our approach the nuclear wave func-
tions only enter in the evaluation of the matrix elements
Djj i.e., expectation values of one-body operators which
lead to the use of diagonal and nondiagonal densities.
From a physical point of view, these densities are obvi-
ously related to the fully correlated wave functions and
therefore no need arises to introduce center-of-mass
corrections.

IV. DEVELOPMENT
OF PARTICULAR COUPLING SCHEMES

where po is the ground-state density of the projectile and

p~~ the target density of state j (for j=j') or the transi-
tion density from j to j' (for jAj'). The same quantity
can be written in the form

D„(b)={+,Co~y(b —s, +s, )~40@o)=p(b) (25)

&(b) p(b)
D(b)=

p(b) A(b)
—A, (b)3.+B(b), (26)

where the matrix B has the simple expression

0 p(b)
B(b)= p(b) ()

(27)

The nth power is easily evaluated by the binomial formu-
la

n n
[D(b)]"= g k" (b)[B(b)]

m=0
(28)

and this leads directly to the total profiles for elastic and
inelastic scattering

which can be explicitly evaluated in terms of the densities
and transition densities as in Eqs. (22) and (23). To sim-

plify the notation, we make explicit the assumption that
all the states we consider have zero angular momentum,
so that densities and transition densities have spherical
symmetric distributions. With Eq. (24) we introduced the
reasonable approximation that the diagonal elements of
the matrix D are the same in the ground and the excited
state. With these notations the matrix D assumes the
form

A. One-channel case: The optical limit I oo(b) =1—
ATAp ATAp

As a first example of the formalism built up in the pre-
vious section, we consider the case of elastic scattering in
the assumption of absence of virtual excitations of the
other states. Under these conditions the matrix D has a

M =0{even)

X [1—A(b)] p(b)
AT AP A{b)=1—e r cosh[ATApp(b)] (29)
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and C. Multichannel case with no coupling within excited states

A~Ap

rto(b)= X
M = 1(odd)

3rd'
[1—

A,(b)] p(b)

—AT Apk(b)=e sinh[ATAep, (b)] . (30)

—AT Apk(b)I, (b) = A A p(b)e (31)

as expected from the fact that, in the weak-coupling lim-
it, in each sequence of order n contributing to the
multiple-scattering series, only one collision of inelastic
nature can appear.

Note that, by a proper choice of phases in Eqs. (26) and
(27), we assumed real transition densities. If a more gen-
eral assumption is introduced, only the substitution of p
with po,p, 0 is required.

These equations embody the expected features of a
multiple-scattering problem. In the elastic scattering we
have contributions from inelastic-multiple-scattering pro-
cesses, but these always appear in even powers, corre-
sponding to excitation-deexcitation sequences. In the in-
elastic case, on the other hand, the inelastic term p ap-
pears in odd powers, as necessary to end up in the excited
channel after a sequence of excitation-deexcitation pro-
cesses.

In the limit of weak coupling ( ~p~ (( A,
~ ), the contribu-

tion of an inelastic microscopic collision becomes negligi-
ble with respect to those of elastic nature. We can there-
fore keep the first term in the sum in Eqs. (29) and (30).
In this way the expression for the elastic scattering
reduces to the optical limit (12), while for the inelastic
channel we get

D,o(b) = (4, +0 ~y(b sj~—+sk ) ~4O@o &
=p;(b) (32)

and introducing again the ansatz for the diagonal terms

D;, (b) =Doo(b) = A(b), (33)

one obtains the following expressions for the elastic chan-
nel profile:

I 00(b) =1—
ATAp

M =0(even)

WrAp
[1—

A, (b))

y p, (b)2
iWO

(3&)

and for the profile connecting the ground state to the ith
excited state

ATAp

r;o(b) =p;(b)
M = 1(odd)

~r~~
[1—

A, (b)]

(b)2
i&0

(35)

[see the comment after Eq. (30)]. On defining

&(b)=g p;(b)'
I%0

The above procedure can be easily extended to the case
in which the ground state is directly coupled to an
indefinite number of excited states, which are not coupled
among them [cf. Fig. 3(a)]. In this case, by denoting
p, (b), the coupling term between the ground state and
the ith state

IWO

we can write the above expressions in the final form

ATAp

M =0(even)

ArAp
[1—

A, (b)]

X g(b)M/2
(37)

0
ATAp

r;0(b) =p, (b)
M =1(odd)

ArAp
[1—

A,(b)]

X g(b)(M —1)/2

which can be approximated in the form

I oo(b) =1—e cosh[AT Aph(b)' ],
r;0(b)=p;(b)e sinh[ATApb(b)' ] .

(38)

These equations have similar structure to Eqs. (29) and
(30). They are also capable of the same perturbative ex-
pansions. The quantity 5(b) can be expressed in the al-
ternative form

b(b)= f C2(r, , r2)po(r, )po(r2)

FIG. 3. Sketch of the coupling schemes involved in the cases
considered in Secs. IV C (a) and IV D (b).

Xy(b s, +s, )y(b —s2+s2—)

X d11CPPdi) dT2 (39)
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in terms of the target two-body correlation function

C2(r), r2)=p2(r), r2) —p (r))p (rz) . (40)

This case is capable of illustrating the relation between
the present approach, stressing the role of the coupling
between different states, and the one based on the trunca-
tion of the correlation functions. In fact, Eq. (37), with
b, (b) in the form of Eq. (39), has also been derived by Ah-
mad starting from the introduction of completenesses of
intermediate states. In that case, however, the sub-
sequent sirnplifications have been obtained by neglecting
all the contributions which would imply higher-order
correlation functions. The same result can be obtained
from the more general correlation-function expansion
considered by Alkhazov et al. when high-order correla-
tion functions are approximated in terms of one-body
densities and second-order correlation functions.

As a final consideration we remind the reader that, for
the nucleon-nucleus elastic scattering, the uncorrelated-
nucleus approximation is equivalent to the frozen-target
hypothesis. The above analysis shows that, for the same
process, taking into account the correlations up to the
second order is equivalent to assuming that all the excited
states are coupled to the ground state but not between
them.

D. Multichannel case with a ladder coupling scheme

D;,+,(b) =v(b), D, , (b) =Dao=A, (b), (41)

i.e., only the principal diagonal and the two adjacent di-
agonals have nonzero elements. It is easy to evaluate the
powers of the matrix D and to give recursion relations
for any number of levels and for any order of scattering,
so that algebraic expressions for the scattering ampli-
tudes of the type of Eq. (34) or (35) can be written. For
the sufficiently interesting problem in which the ground
state is coupled to two excited states according to scheme
(41), one gets a closed form for I;0 in terms of hyperbolic
functions. For the elastic and the two inelastic channels,
one obtains

Let us consider now the case of a system of levels un-
der the assumption that the level i can be coupled only to
the levels i+1, and that all the coupling elements are
equal [cf. Fig. 3(b)]. A situation of this kind can occur,
for example, in the case of a harmonic vibrational spec-
trurn aside from angular-momentum coefficients. The
simplest case is associated with L =0 pair-transfer pro-
cesses between members of a pairing excitation spec-
trurn.

According to the above schematization, the coupling-
matrix elements are assumed to have the form

A A
I (b) =1—[1—A(b)]

M =2(even)

ATRA
[1—A(b)] [+2v(b)]

= 1 —
—,'e [cosh[ A T A p&2v(b) ]+1 j, (42)

ATAp

r)0(b) =
M=1(odd)

ATap
[1—A(b)] [&2v(b)]

e sinh[Ar Ar&2v(b)],
2

(43)

ATAp

r„(b)=-
M =2(even)

ATRA
[1—A(b)] [&2v(b)]

= —,'e I cosh[ Ar A~&2v(b)] 1] . — (44)

V. FURTHER APPLICATIONS:
MUTUAL EXCITATION AND CHARGE EXCHANGE

In the above sections, two features which one faces in
considering actual nuclear reactions have not been dis-
cussed: the possibility that the projectile is also excited
and the problems arising in connection with angular
momentum, spin, and isospin of the nuclei.

It is not an easy task to take into account these features
in general terms, since each specific reaction presents
peculiar characters. We shall examine in the perturbative
approximation the mutual excitation of two nuclei and
charge-exchange reactions. This will evidence, on the
one hand, the flexibility of the formalism to describe
specific reactions; on the other hand, these examples

stress the fact that each case needs its own appropriate
techniques.

Let us briefly recall some results from Refs. 13 and 14
concerning the inelastic scattering. In the perturbative
approximation the inelastic scattering with excitation of
the target from the 0+ ground state to the state +LM is
described by the amplitude [cf. Eq. (31)]

+L,~,o( ~)

ATAp f d b e' M(b)[1 —A.(b)]

(45)

where A,(b) is given by Eq. (24) and
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Pr, M(b) &@LM+olyl@o@o&

By introducing the target transition density

(46) where BLM is a geometrical factor vanishing for L+M
Qdd:

pi~(r )=pD r) I'r.~(r)

and by defining the momentum space transition density

pl (q) =4tr f dr r jl (qr)pr (r), (47)

one gets, for the eikonalized form factor, the expression

prM(b ) =e™baalM(b)

1/2

( )M
2L+1

LM 4a

X [(L —M)!(L +M)!]' 1+(—1)
(L —M)!!(L+M)!! 2

(49)

iM4b
e

ikNN
BLM dqqP0 q NN q PL q JM qb

0

(48)

I

This leads to the final expression for the inelastic cross
section

k f db bJsr(qb)@1M(b)e
0M= —L

L
(do /dot)r = g k f db bJM(qb)plM(b)[1 —A(b)]

M= —L 0

L
= X (50)

A. Mutual excitation

The formalism briefly recalled above can be naturally extended in order to describe a wider class of reactions of sur-
face character. As typical examples, we will shortly discuss the cases of mutual excitation and charge-exchange reac-
tions. Let us first consider mutual excitation processes, which have been usually described within a multistep
distorted-wave Born approximation (DWBA). These processes correspond to the events which leave both reaction
partners in an excited state. From the point of view of the reaction mechanism, we have assumed in our approach that
any reaction process can be described in terms of a sequence of nucleon-nucleon collisions of either elastic or inelastic
character. The simplest scenario for a mutual excitation process is therefore to imagine a series of elastic collisions to-
gether with two inelastic collisions which are responsible for the subsequent excitation of the two nuclei (paths a and b
in Fig. 4). This description, even if we are summing the elastic-scattering collisions to all possible orders, corresponds
to the conventional two-step processes. In an alternative picture (path c in Fig. 4), we can assume that it is a single
nucleon-nucleon collision which simultaneously leads to the excitation of both nuclei and, in the standard language, this
corresponds to a one-step process.

The scattering amplitudes associated with these two processes are easily evaluated along the multichannel formalism.
In this case the completeness to be inserted between each microscopic collision is truncated to

l@o@'o&&@o+ol+g l@rm@o &&@IM@ol+g l@o@r.'M & &@o@1.M I+ g I@1M+1.'M'& &@LM@L'M'I (51)
M' MM'

(we assumed that both nuclei have J =0+ in their ground states). This leads to the expression for the scattering ampli-
tude

FIM, L'M'(6) =F1.M L.'$. (b, )+Fr'm I".Jr, (b, ),
where the two contributions are given by

FLMLVf'(~)= ~r ~p fd b e' '@1M(b )pg I (b )[1—+b)]"'"'2'
ik 2 ib, b T P ~T ~pA(b)

~T ~p d b e plM(b )pl. I (b )e
2m.

and

(52)

(53)

Fl'~l'$ (6)= ATAp d b e' 71~1 M(b)[1 A(b)]-
2m t

ik 2 iA.b
—AT Apk(b)

ATAp d b e' '
vI~1 ~(b)e

2m t
(54)
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/L M & t8t 0

(L M & t8t iL'M'&

Oi JLtM'&

LM, L M (b ) = & ~ LM +L M I r I @0@0&

i (M+M')$b
e

~LM~L'M'
1kNN

X f dq qpL (q)fNN(q)
0

XpL(q)~M+M (qb) .
FIG. 4. Coupling scheme involved in the description of a

mutual-excitation process.

In these expressions the inelastic matrix elements p, LM(b )

and pL.M (b ) are associated with the inelastic excitation
of either the target or the projectile. They are given in
terms of the folding of the NN scattering amplitude with
the density p0 of one of the colliding nuclei and the tran-
sition density pL of the other, i.e.,

PLM(b ) = & @LM@'olr I+0@0&

=&O'LMc'LM IrlcocLM &

iMpb

~LM f dq qpo(q)fNN(q)pL(q)JM(qb)
NN 0

(55)

and

PL'M'(b ) & @0@L'M'Ir l~'a@0 &

= &O'LMc'L M Ir Ic'LMc'o &

iM ~be

ikNN

txt

~L'M' dq qpL (q)fNN(q)
0

XPo(q)~M (qb) . (56)

[Note that we have made the same approximation here
for p, that we made for I, in Eq. (24).] The matrix element
7 LM L M ( b ) associated with the simultaneous excitation
of the modes is instead expressed as the folding of the NN
amplitudes with both transition densities in the target
and in the projectile by the form

The relative role of the two processes is mainly governed
by the bombarding energy through the collision time, the
dependence being essentially linear for the one-step pro-
cess and quadratic for the two-step process. The direct
excitation is therefore expected to become more impor-
tant in the high-energy regime.

B. Charge-exchange reactions

Charge-exchange processes have been extensively used
as a tool for the study of nuclear properties in the spin-
isospin degrees of freedom; for the standard description
of the reaction mechanism see, e.g. , Ref. 25. At variance
with the standard inelastic processes where the angular
momentum associated with the vibration can be taken
from the reservoir of the ion-ion relative motion, conser-
vation of charge implies here the mutual excitation ef
both colliding nuclei. For this reason the possibility of
two-step processes as previously discussed are ruled out.
Other kinds of two-step processes are, on the other hand,
allowed, such as a stripping reaction followed by a pickup
reaction, although their importance is expected to de-
crease at high energies. In any case, the inclusion of
transfer reactions in the Glauber approach is not
straightforward. We will therefore discuss only the direct
one-step charge-exchange reaction mechanism.

The expression of the scattering amplitude for the
charge-exchange process will be much like the one for the
one-step amplitude for mutual excitation. There is, how-
ever, one relevant di8'erence. Although not explicitly
stated in the previous examples, we have been dealing
with processes ruled by the isoscalar component of the
NN scattering amplitude, both in elastic and inelastic col-
lision. Now we have to use, in connection with the NN
scattering amplitude, just the part which is responsible
for the specific transition. As an example, for the
Gamow-Teller transition, characterized by AS =b T =1,
at any order n of scattering we will consider n —1 elastic
collisions associated with the isoscalar part of the micro-
scopic amplitude, and one induced by the isovector spin-
flip component fNN.

In a general case, the final expression for the transition
amplitude will assume the form

pcharge exchange(g) -ikg g y y y y C T T P P tr tr
( gg

a

LtrMtrKM JTMTJpMp lml'm'L sttz

a f b db g (b)yM (gb)e
tr tr

(58)
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where
R (b)=M

VI. CONCLUSIONS AND PERSPECTIVES

The method developed in this work can be viewed as a
generalization of the optical-limit approach ' to the

1
BI B

AN

X f dq qpJ t„(q)fthm'tt(q)

Xpj t „(q)J~ + .+M~(qb) (59)

in terms of the corresponding transition densities

PJ t„(q) and pJ t„(q). In Eq. (58) we introduced a
P T"

geometrical factor C which takes into account, in a reac-
tion A (a, b)B, for the couplings between the diFerent an-
gular momentum; spin and isospin components are
summed on all possible s and t spin and isospin
transferred. Jz and Jp are the angular-momentum
transferred in the target and the projectile, respectively
(L„=Jr+ Jt, ), and Pa accounts for the angular depen-
dence of the momentum transferred in the plane orthogo-
nal to the incidence direction.

description of niultichanne1 scattering processes between
heavy ions at intermediate energies. The basic assump-
tion is that all the sequences of scattering of the same or-
der give the same contribution to the scattering ampli-
tude. In this way one avoids the difficulties arising from
the cumbersome combinatorial features of the multiple-
scattering theories. In several interesting cases the result-
ing simpler series can be summed to give analytical ex-
pressions. As a by-product, the center-of-mass correla-
tion problems are also avoided.

The applications of the method to the study of elastic
and inelastic scattering have been successfully carried out
in previous works (see Ref. 14 and references quoted
therein). Owing to the richness of experimental studies of
charge-exchange processes between heavy ions at inter-
mediate energies, it looks particularly promising to apply
the above procedure to the analysis of these reactions.
Finally, since, in the eikonal approximation, it is easy to
obtain the optical potential by inversion of the elastic-
scattering amplitude, ' it can be interesting to study the
high-energy behavior of the polarization optical potential
in both perturbative and strong-coupling situations.
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