M1 and E2 strength functions of barium from thermal neutron capture

M. A. Islam,* T. J. Kennett, and W. V. Prestwich

Department of Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

(Received 29 January 1990)

Thermal-neutron-capture gamma rays from natural barium have been studied at the tangential facility of a reactor using a pair spectrometer. Precise transition, level, and neutron separation energies of six isotopes of barium are inferred. The separation energies are $S_n(^{133}\text{Ba})=7189.96\pm0.36$, $S_n(^{135}\text{Ba})=6972.21\pm0.18$, $S_n(^{136}\text{Ba})=9107.84\pm0.04$, $S_n(^{137}\text{Ba})=6905.78\pm0.03$, $S_n(^{138}\text{Ba})=8611.75$ ±0.04 , and $S_n(^{139}\text{Ba})=4723.44\pm0.04$ keV. The M1 strength functions of ^{136}Ba and ^{138}Ba are found to be $(27\pm7)\times10^{-9}$ and $(5.7\pm2.1)\times10^{-9}$ MeV⁻³, the former being much higher and the latter much lower than the global average of 18×10^{-9} MeV⁻³. The average $\overline{B(E2)\downarrow}$ of $^{136,138}\text{Ba}$ observed is $53\pm35\ e^2\text{fm}^4\text{MeV}^{-1}$, which is 0.6 ± 0.4 times the value predicted by the Axel-Brink hypothesis.

I. INTRODUCTION

An investigation of the electric quadrupole strength of photons produced in neutron capture throughout the entire mass region has been underway here for some time.¹⁻⁴ Because of the small partial width of such transitions, acquisition of spectra with high statistical precision and good sensitivity is necessary if meaningful measurements are to be made. In addition, accurate energy estimation is important in complex cases where interference or placement ambiguity is possible. Possession of high quality spectral data, such as that required for quadrupole strength studies, permits extraction of additional and important structure information.

A favorable case for the study of quadrupole strength is found in the reactions ${}^{135}\text{Ba}(n,\gamma){}^{136}\text{Ba}$ and ${}^{137}\text{Ba}(n,\gamma){}^{138}\text{Ba}$ where a total of five E2 transitions are possible. These isotopes fall near the 82 neutron shell and, since there is evidence⁵ for an enhancement of the M1 strength in such regions, an estimation of this quantity could also prove useful.

The separation and level energies for the six isotopes of barium populated via the (n, γ) reaction range from well known to meager. Isotopes which fall into this latter class⁶ are ¹³³Ba, ¹³⁵Ba, and ¹³⁷Ba. The potential information that could be obtained from a study of the photon spectrum arising from thermal neutron capture by natural barium prompted us to undertake the present study.

II. EXPERIMENTAL PROCEDURE

The experiment was conducted at the tangential irradiation facility⁷ of the McMaster University Nuclear Reactor. The thermal neutron flux at the sample site was 5×10^{12} cm⁻²sec⁻¹ when the reactor operated at its nominal power of 2 MW thermal. The capture gamma rays, following passage through a 1 cm² collimator, were detected by a pair spectrometer consisting of a high purity Ge detector (Princeton Gamma-Tech) surrounded by a quadrisected NaI(Tl) annulus. The electronic arrangement⁸ permitted the acceptance of only those pair events for which two 511 keV photons were sensed in two opposite quadrants and no bremsstrahlung was present in either of the remaining quadrants. The information was encoded by a 13 bit NS-409 ADC and data were stored in an analyzer designed around a NOVA2 computer.⁹ The detection system had a resolution (FWHM) which ranged from 2.1 to 5.0 keV between the energy region 2500-8300 keV. Throughout the experiment a dual point NS-635 stabilizer, which tracked two strong peaks of the (n, γ) spectrum, was used to regulate the zero and gain of the system.

Initially a 4.0 g sample of 99.999% pure BaCO₃ [Aldrich Chemical Company, Inc.] was placed within a graphite capsule, inserted into the irradiation position, and counted for a total time of 250 h. Following this, calibration for energy and intensity was achieved by recording the spectrum obtained for a sample of 2.602 g BaCO₃ and 1.179 g melamine. This second irradiation was conducted for 75 h.

III. DATA ANALYSIS

Initially the "toe" associated with each peak was removed through application of an appropriate filter.¹⁰ The centroids and areas of the peaks were than determined using a nonlinear least-squares fitting procedure in which a simple Gaussian line shape was assumed. The energies of photons from capture by nitrogen¹¹ were used as primary standards to construct the relation between energy and pulse height. Energies of prominent isolated transitions in barium were then determined from this relation and used as secondary standards for calibration of the pure barium spectrum. The process was then repeated for the pure sample in order to obtain estimates for the energies of the remaining transitions. A relative efficiency curve was constructed from the melamine data using the published nitrogen intensities.¹¹ This was then used to calculate the relative intensities for the barium transitions. Finally absolute intensities were determined using the total cross sections of the barium isotopes¹² and the recently published value of 78.9 ± 1.4 mb for the ¹⁴N cross section.13

42 207

TABLE I. Energy and intensity of gamma rays in the 135 Ba (n, γ) 136 Ba reaction.

From Ref. 14						From th	is work		
Energy		Relative		Energy ^a		inter	nsity ^b	Level	(keV)
(keV)		intensity		(keV)		(per 1	1000 <i>n</i>)	From	То
9106.5	1.3	2.9	0.3	9107.42	0.06	24.36	0.65	9108	0
8288.2	0.8	1.8	0.4	8288.98	0.05	13.40	0.30	9108	819
7554.3	1.0	0.24	0.08	7556.43	0.07	4.52	0.15	9108	1551
7526.6	2.0	0.07	0.04	7528.89	0.16	1.05	0.07	9108	1579
				7053.75	0.24	0.97	0.26	9108	2054
7026.4	0.7	0.7	0.1	7027.48	0.06	5.94	0.21	9108	2080
6978.2	0.7	0.2	0.05	6978.91	0.11	2.10	0.10	9108	2129
				6966.44	0.18	1.16	0.08	9108	212
				6884.97	0.10	2.08	0.13	9108	2141
				6792.05	0.23	0.75	0.23	9108	2316
				6716.84	0.23	0.87	0.10	9108	2310
6707.4	0.8	0.3	0.05	6707.58	0.07	4 20	0.10	9108	2400
	0.0	010	0.00	6676.97	0.15	1.72	0.17	9108	2400
6574 9	0.6	0.5	0.1	6574.90	0.06	5.81	0.12	9108	2431
007115	0.0	0.5	0.1	6466 72	0.00	2.85	0.20	9108	2555
				6446.18	0.11	2.05	0.14	9108	2041
				6412.80	0.10	1.01	0.17	9108	2002
				6222.02	0.22	1.01	0.17	9108	2094
				6333.93	0.47	0.91	0.20	9108	2//3
				6293.93	0.13	0.83	0.12	9108	2812
6007 4	0.5	0.2	0.1	0112.13	0.17	0.85	0.11	9108	2996
6062.5	0.5	0.3	0.1	6085.69	0.11	3.70	0.38	9108	3019
0003.5	0.4	3.5	0.6	6062.36	0.04	19.81	0.31	9108	3045
5(72.2	0.6			5991.32	0.17	1.59	0.35	9108	3116
56/3.2	0.6	0.4	0.1	5672.32	0.07	6.57	0.25	9108	3435
5340.3	0.7	0.2	0.1	5340.24	0.10	4.48	0.26	9108	3767
5311.9	0.6	3.7	0.4	5312.39	0.05	30.50	0.92	9108	3795
5141	1.7	0.4	0.2	5141.84	0.06	4.79	0.32	9108	3966
				5127.41	0.14	3.36	0.26	9108	3980
4994.1	2.4	0.4	0.2	4992.06	0.24	1.25	0.36		
4929.4	1.7	0.8	0.3	4925.13	0.06	7.57	0.51		
4731.8	2.0	0.3	0.2	4728.65	0.11	4.80	0.30		
4508.8	2	1.5	0.2	4508.64	0.09	11.41	1.05		
4429.0	2.0	2.1	0.4	4424.51	0.10	11.01	1.02		
4322.5	1.5	1.3	0.4	4318.81	0.27	4.94	0.88		
4137.2	1.4	1.4	0.4	4137.29	0.08	6.11	0.55	4137	0
3983.4	1.0			3980.41	0.09	5.62	0.38		
3967.8	2.0			3965.28°	0.06	10.66	0.45	3965	0
3860.7	1.5	0.7	0.2	3863.41	0.23	3.33	1.25	3863	0
3793.7	2.0	0.5	0.2	3795.24	0.18	2.09	0.67	3795	0
3739.2	3	1.1	0.3	3738.22°	0.07	13.55	0.84		
				3436.18 ^d	0.09	20.31	3.45	3436	0
				3370.75	0.27	5.14	0.77	3371	0
				3116.42	0.47	7 64	2 54	3116	0
				3044 51	0.05	13.03	0.58	3045	0
2977.0	0.4	3.6	0.5	2976.04	0.05	69.89	1 93	3795	910
	0.11	5.0	0.5	2970.04	0.13	9.47	2 30	3795	017 010
				2073.30	0.11	176	0.70	3092	019
				2773.32	0.11	4.70	0.79	2773	0
2686 5	2.0			2093.97	0.11	0.79	1.21	2093	0
2000.0	2.0			2009.20	0.07	12.30	1.39	7105	0
				2703.22	0.07	13.43	0.92	2483	1.551
				2441.33	0.19	3.33	1.12	3992	1551
				2429.03	0.31	5.20	1.02	4008	1579
				25/4.10	0.18	5.59	1.36	2374	0
2120.0	1.0			2153.53	0.08	8.14	0.70	2154	0
2128.9	1.0			2128.89	0.05	44.50	2.24	2129	0
				2083.31	0.11	9.61	1.30		
				2141.35	0.06	7.43	0.64	2141	0

	From 1	Ref. 14			From this work Absolute					
Energy		Relative		Energy ^a		inte	nsity ^b	Level (keV)		
(keV)	intensity		(keV)		(per 1000 <i>n</i>)		From	То		
2080.8	1.5	0.8	0.4	2080.03	0.05	28.89	1.77	2080	0	
				1993.60	0.20	7.90	3.15	2812	819	
1954.6	1.0	3.5	1.4	1955.19	0.17	12.21	2.55	3505	1551	
				1874.96	0.10	10.42	1.62	2694	819	
1841.1	1.0			1842.99	0.15	22.35	2.82	2662	819	
1822.0	1.5	2.2	0.5	1821.90	0.12	22.15	3.34			
				1666.81	0.16	22.02	5.82	2485	819	
1612.2	0.7	1.3	0.5	1613.73	0.09	66.83	7.48			
1579.8	0.4	5.4	1.7	1581.50	0.06	37.20	2.33	2400	819	
1550.0	0.6	11.9	1.4	1551.04	0.08	96.49	10.61	1551	0	

TABLE I. (Continued).
------------	-------------

^bError in absolute intensity is due to statistics and efficiency calibration. To this a 16% error due to the uncertainty in σ_{γ} of ¹³⁵Ba has to be added.

^cHas interference with ¹³⁸Ba. ^dMay have interference with ¹³⁸Ba.

TABLEII	Energy and intensity	of commo rays in th	e^{137} Ba $(n \ \gamma)^{138}$ Ba reactions
	Differ by and meensie	or Bamma rays in th	$\mathbf{C} = \mathbf{D} \mathbf{u}(n, p) = \mathbf{D} \mathbf{u} + \mathbf{C} \mathbf{u} \mathbf{C} $

-	From Ref. 15				From this	s work			
F	р.	1. 4	D	8	Abso	lute	τ1	(1	
(lesV)	Relative		Ener	(h-3V)		(mage 1000m)		Level (kev)	
(Kev)	1010	ensity	(Ke	(Kev)		00n)	From	10	
8614	5		8611.28	0.10	0.87	0.04	8612	0	
7176	1.8	0.1	7175.57	0.06	1.36	0.04	8612	1436	
6421.5	1.7	0.5	6421.49	0.05	4.57	0.12	8612	2190	
			6393.81	0.13	0.64	0.04	8612	2218	
			6303.69	0.11	0.40	0.05	8612	2308	
			6166.23	0.13	0.87	0.07	8612	2445	
6028.4	0.6		6028.48	0.04	14.62	0.33	8612	2583	
5972.3	0.7		5972.35	0.05	6.64	0.13	8612	2639	
			5831.06	0.11	1.33	0.10	8612	2781	
			5815.77	0.15	1.01	0.08	8612	2796	
5730.4	0.5	12	5730.83	0.04	98.99	2.11	8612	2881	
			5694.56	0.09	1.81	0.08	8612	2917	
			5680.38	0.09	1.71	0.08	8612	2931	
			5620.53	0.11	1.23	0.07	8612	2991	
5559.8	2	0.3	5561.80	0.06	3.74	0.19	8612	3049	
			5526.63	0.09	2.85	0.28	8612	3085	
			5449.19	0.05	10.74	0.28	8612	3162	
			5369.15	0.20	0.95	0.10	8612	3242	
			5354.20	0.15	1.10	0.11	8612	3257	
5271	1.5	1.6	5272.93	0.05	11.57	0.32	8612	3339	
			5244.71	0.08	1.62	0.09	8612	3367	
			5169.05	0.09	2.14	0.14	8612	3443	
5108.2	2	1.3	5107.35	0.05	8.83	0.25	8612	3504	
5009	2	0.4	5010.92	0.07	2.97	0.17	8612	3601	
4968	1	1.3	4968.39	0.06	19.10	0.73	8612	3643	
			4918.13	0.13	1.05	0.14			
4881	2	0.2	4881.25	0.09	2.44	0.23			
4774.5	1.5	1.2	4739.76	0.08	2.40	0.13			
4689	1	2.2	4689.61	0.05	21.89	0.67	8612	3922	
			4676.65	0.20	2.63	0.28	8612	3935	
4600	2	0.8	4599.42	0.06	5.96	0.49	8612	4012	
4551.1	1.5	0.2	4551.04	0.11	2.30	0.32			

0

F	From Ref. 15				From thi	s work		
_	-		-	a	Abso	lute		(1 17)
Energy	Re	lative	Ener	gy ^a	inten	sity"	Level	(keV)
(Kev)	111	ensity	(Ke	•)	(per 1	000 <i>n</i>)	FIOII	10
			4535.93	0.06	3.85	0.15	4536	0
4533.3	2	0.7	4531.67	0.05	4.79	0.18	8612	4080
			4469.25	0.25	2.39	0.50	8612	4142
4445.3	1.5	0.8	4445.38	0.05	5.86	0.33	4445	4242
4369.3	1.5	0.8	4369.47	0.05	8.36	0.33	8612	4242
4330.8	1.5	1.8	4332.21	0.06	13.51	0.59	8012	42/9
4323.7	1.5	1.8	4323.39	0.07	10.41	0.62	4324	4324
4286.8	2	1.6	4288.03	0.06	8.03	0.42	4280	4279
4278.8	2	0.7	4280.28	0.08	4.77	0.35	8612	4360
4251	1.5	1.2	4252.10	0.00	7 43	0.33	8612	4445
4105.2	1.5	1	4142.15	0.05	0.84	0.16	4142	0
A111 A	15	0.2	4114 76	0.10	5 19	0.36		0
4111.4	1.5	0.2	4103.28	0.52	1.46	0.71	8612	4508
4082 1	2	0.8	4082.95	0.06	6 59	0.43	•••	
4082.1	2	0.0	4076 10	0.09	3.18	0.38	8612	4536
			4061.42	0.09	4.74	0.57		
4025.2	04		4025.85	0.07	6.44	0.45	4026	0
3963.8	1.5	0.5	3965.28	0.06°	4.31	0.18	8612	4646
3945	3	0.3	3945.81	0.08	5.98	0.64		
3920	3		3923.81	0.09	1.36	0.27		
3866	3		3868.54	0.17	1.81	0.53		
3824.9	1.5	0.3	3823.56	0.18	1.67	0.20		
			3826.54	0.15	1.93	0.21		
3813.7	1.5	0.2	3815.59	0.08	3.45	0.26		
3737.4	1.5	0.5	3738.22	0.07°	5.48	0.34		
3713.7	1.5	0.2	3714.65	0.06	8.26	0.44		
3642.4	1.5	1	3643.61	0.31	4.07	1.48	3643	0
3602	3	0.2	3600.53	0.17	1.85	0.29	3601	0
3503.9	1.5	0.9	3504.02	0.06	8.27	0.51	3504	0
			3442.34	0.13	3.70	1.32	3443	0
			3436.18	0.09 ^d	8.21	1.39	3436	0
			3366.74	0.09	5.80	0.45	3367	0
339.3	1	1.3	3338.60	0.05	16.80	0.84	3339	0
			3209.75	0.10	2.11	0.35	4646	1436
			3085.43	0.17	1.78	0.26		
			3074.29	0.11	2.01	0.21	4508	1436
3050	3	0.9	3049.28	0.05	5.28	0.22	3049	0
			2931.69	0.21	1.92	0.33	2932	0
2923	3	0.5	2923.37	0.14	2.47	0.48	4360	1436
			2916.86	0.18	2.38	0.43	2917	0
0.000			2795.68	0.14	2.14	0.54	2796	0
2639.1	1	2.2	2639.27	0.04	32.21	0.77	2639	0
2500		0.45	2609.56	0.16	1.13	0.30	4508	1899
2580	3	0.45	2582.86	0.08	7.31	1.30	2583	0
2217.0		2	2217.73	0.05	/9.90	2.84	2022	1900
2023	2	2	2023.55	0.07	15.70	1.25	3922	1899
2000	3	0.5	2001.12	0.18	2.09	0.08		
1705	3	1.5	1709 10	0.13	10.41	1.20		
1405	J 15	25	1/06.10	0.29	72 12	5.45	2021	1436
1475	0.2	2.5	1495.02 1 <u>4</u> 44 QQ	0.15	23.13	2.43 4 31	2931	1430
1435 7	0.2	100	1435 88	0.00	398 65	10.48	1436	Λ

TADIEII (Continued)

^bError in absolute intensity is due to statistics and efficiency calibration. To this an 8% error due to the uncertainty in σ_{γ} of ¹³⁷Ba has to be added.

^cHas interference with ¹³⁶Ba. ^dMay have interference with ¹³⁶Ba.

	From H	Ref. 16		From this work Absolute						
Energ	gy	Rela	ative	e Energy ^a		intensity ^b		Level	(keV)	
(keV)	inter	nsity	(keV	·)	(per	100 <i>n</i>)	From	То	
4096.1	0.7	60	7	4096.14	0.04	56.9	1.2	4724	627	
3641.4	0.7	20	3	3641.47	0.05	20.8	0.4	4724	1082	
3432.0	2.0	1		3432.40	0.33	0.5	0.1	4724	1291	
2594.1	1.0	8	1	2594.29	0.04	6.8	0.2	4724	2129	
2567.0	2.0	3	1.5	2564.61	0.08	2.1	0.1	4724	2185	
2537.0	1.5	3	1	2537.88	0.06	4.6	0.3	4724	2185	
2522.5	1.5	8.5	1.5							
				2480.68	0.12	0.5	0.1	2481	0	
				2288.28	0.08	2.5	0.2	472	2435	
2242.0	1.0	5	1	2242.67	0.06	3.5	0.2	4724	2481	
				2173.96	0.23	0.6	0.2	2174	0	
1952.3	1.0	3	2	1951.53	0.15	1.2	0.4	1951	0	
1854.0	1.0	3	2	1853.31	0.09	3.2	0.3	2481	627	
1558.0	1.0	2.5	1.5	1558.10	0.33	1.3	0.5	2186	627	
1500	2	1		1501.52	0.16	4.01	1.32	2129	627	
1420.1	1.0	5	2	1420.01	0.33	1.9	0.52	1420	0	

TABLE III. Energy and intensity of gamma rays in the 138 Ba $(n, \gamma){}^{139}$ Ba reactions.

^bError in absolute intensity is due to statistics and efficiency calibration. To this a 10% error due to the uncertainty in σ_{γ} of ¹³⁸Ba has to be added.

The energies and intensities of the transitions observed for barium are listed in Tables I-VI. The energy errors were estimated by combining the uncertainty in the centroid with that from the calibration. The same procedure was used for relative intensity error estimates using the area uncertainty with that of the efficiency curve. For absolute intensities, errors must be adjusted to include the additional contributions arising from the uncertainty in the barium and nitrogen cross sections.

The high sensitivity and precision of the present measurements resulted in the detection of many more transitions than were previously observed, even when enriched targets had been used. Isotopic and decay mode assignment were made where possible through use of previous studies.^{6,14-16} In addition, precise level energy data from compilations¹⁷⁻²³ was employed when available. Because of the number of transitions observed and the multitude of levels associated with the contributing isotopes, misassignment is possible. To minimize this, duplicate placement ambiguities were resolved by using energy precision and intensity information. Possible interference from any impurity was checked with the help of the compilation of Lone *et al.*²⁴

IV. RESULTS AND DISCUSSIONS

A. Photon transitions in barium

Using the thermal-neutron-capture cross sections and natural abundances¹² of barium isotopes, it is calculated that about 44% of the primary gamma radiation results from capture in ¹³⁷Ba, whereas 29% and 20% should be ascribed to capture in ¹³⁵Ba and ¹³⁸Ba, respectively. The remaining 7% is due to captures in ¹³²Ba, ¹³⁴Ba, and ¹³⁶Ba.

In total 67 transitions have been identified to be due to ¹³⁶Ba and of these, 34 are new. The number of primary transitions is 28, which is more than twice that previously reported.¹⁴ Among the transitions, 55 could be placed in a decay scheme. The energies and absolute intensities of ¹³⁶Ba transitions are presented in Table I and the decay modes indicated. Energies and relative intensities from Ref. 14 are also displayed. Although the energies agree in general within error, there has been a significant improvement in precision.

Eighty-five transitions have been attributed to ¹³⁸Ba. Among these 38 are primary, thus doubling the number of such transitions observed in the past.¹⁵ The energy, intensity, and assignment of the transitions along with those in the literature are presented in Table II. The level structure of ¹³⁹Ba is very simple because of

The level structure of ¹³⁹Ba is very simple because of the influence of the 82 neutron closed shell. Therefore there are relatively few transitions expected and this has been borne out by the fact that only 15 have been observed. These are presented in Table III along with those from the literature.¹⁶ Ground state transitions from the

TABLE IV. Energy and intensity of gamma rays in the 132 Ba $(n, \gamma)^{133}$ Ba reactions.

Energy ^a		Relative	Level (keV)		
(keV)		intensity ^b	From	То	
7189.85	0.26	0.38	7190	0	
6327.44	0.12	6.39	7190	863	
5656.70	0.18	1.55	7190	1532	
5608.64	0.30	0.96	7190	1581	

^aError in energy is due to statistics and the calibration.

^bError in relative intensity is due to statistics and efficiency calibration.

From Ref. 6				From t	his work		
Energy	Relative	Energy ^a		Re	Relative intensity ^b		(keV)
(keV)	intensity	(keV)		inte			То
		6972.39	0.25	0.7	0.1	6972	0
		6751.64	0.22	0.5	0.1	6972	221
5389	6.0	5387.57	0.07	6.0	0.4	6972	1584
4895	1.7	4895.03	0.22	3.8	1.3	6972	2075
4520	5.1	4524.00	0.10	3.2	0.4	6972	24 48
		2447.80	0.18	4.9	0.9	2448	0

TABLE V. Energy and intensity of gamma rays in the ${}^{134}Ba(n,\gamma){}^{135}Ba$ reactions.

^bError in relative intensity is due to statistics and efficiency calibration.

excited states at 2481 and 2174 keV were observed for the first time in the present study.

No information regarding the ${}^{132}\text{Ba}(n,\gamma){}^{133}\text{Ba}$ reaction has been published. We observed four transitions which may be due to ${}^{133}\text{Ba}$. The photon energies and relative intensities of these are presented in Table IV.

In the present study, six transitions are observed in 135 Ba, of which all but one are primary. Three of the transitions, including the one from the capture to ground state, were not reported in the past. The energy and intensity of transitions for 135 Ba found in this work and those of Ref. 6 are presented in Table V.

The energies and relative intensities of the transitions for ¹³⁷Ba along with those from the literature⁶ are given in Table VI. The energies of transitions observed here differ significantly from the published values.

The unassigned transitions are presented in Table VII. These transitions could not be fitted unambiguously within any of the level structures of the barium isotopes as presently known. In some case energy imprecision has restricted placement.

B. Neutron separation energies

To determine the neutron separation energy of ¹³⁶Ba, recoil-corrected energies of 27 primary transitions have been added to the corresponding known energy levels¹⁷ or to secondary transitions, if observed. In the case of

¹³⁸Ba, in total 32 primary transitions have been used. For ¹³⁹Ba and ¹³⁷Ba, a least-squares fit¹¹ was performed to determine level energies as well as the neutron separation energies. For ¹³³Ba and ¹³⁵Ba, the level energies, ^{18,19} and three and four primary transitions, respectively, have been utilized to estimate the separation energy.

The values of the separation energies of the six isotopes of barium obtained in this work are presented in Table VIII along with those from the compilation of Wapstra and Audi.²⁰ The present values for ¹³³Ba, ¹³⁶Ba, ¹³⁸Ba, and ¹³⁹Ba agree well and show a marked increase in precision. The S_n (¹³⁵Ba)=6972.21±0.18 keV of this work is slightly lower than the reported value of 6973.2±0.4 keV.²⁰ For ¹³⁷Ba, the present S_n value of 6905.78±0.03 keV, on the other hand, is higher than the 6899±3 keV quoted by Wapstra.²⁰

C. Energy levels

Energy levels inferred for the six isotopes of barium, along with those reported previously, are given in Tables IX-XIV. The values for ¹³⁶Ba exhibit general agreement with those in the literature,¹⁷ although there is a substantial improvement in precision. There is evidence for a new level at 3863 keV.

In ¹³⁸Ba the level at 3162 keV differs slightly from that in the literature,²¹ while the other levels agree within er-

From Ref. 6				From th	nis work		
Energy	Relative	Energy ^a		Rela	ative	Level	(keV)
(keV)	intensity	(keV)		intensity ^b		From	То
		6906.02	0.11	1.2	0.1	6906	0
6610	4	6621.81	0.06	5.3	0.2	6906	283
4716	55	4723.37	0.04	55.0	1.1	6906	2182
4245	20	4242.72	0.05	19.3	0.6	6906	2663
		3583.81	0.19	2.1	0.4	6906	3323
		3322.95	0.13	1.7	0.2	3323	0
		2662.66	0.06	9.5	0.6	2663	0
		2379.10	0.07	9.0	1.0	2663	284
		2182.00	0.26	2.8	0.3	2182	0
1898	45	1898.58	0.05	60.7	2.2	2182	284

TABLE VI. Energy and intensity of gamma rays in the 136 Ba $(n, \gamma){}^{137}$ Ba reactions.

^aError in energy is due to statistics and the calibration.

^bError in relative intensity is due to statistics and efficiency calibration.

		assigned the			upture by II	atural ball	
Photon		Re	elative	Photon			Relative
energy ^a (keV)		int	ensity ^b	energy (kev)			intensity
7790.10	0.23	0.61	0.11	4925.13	0.06	7.08	0.48
7040.43	0.31	0.53	0.09	4876.69	0.08	6.17	0.57
6894.11	0.23	0.66	0.11	4861.02	0.29	1.10	0.37
6773.94	0.20	0.76	0.13	4855.11	0.14	3.59	0.68
6663.20	0.27	0.73	0.09	4799.43	0.17	2.61	0.36
6643.55	0.40	0.54	0.10	4812.07	0.11	3.58	0.34
6563.45	0.23	0.74	0.09	4820.38	0.17	2.28	0.27
6487.56	0.22	1.18	0.24	4786.16	0.07	6.28	0.26
6387.54	0.14	1.35	0.06	4766.82	0.22	1.60	0.22
6290.24	0.41	0.20	0.07	4755.92	0.06	11.14	1.74
6210.58	0.22	0.67	0.09	4/39.76	0.08	5.55	0.29
6191 10	0.31	0.47	0.09	4/28.00	0.11	4.48	0.28
6129.41	0.17	8.03	0.14	4/11.09	0.23	1.07	0.21
6085 69	0.00	3 46	0.49	4664 12	0.11	2.90	0.24
5998.79	0.11	0.82	0.30	4655 12	0.11	2.20	0.25
5951.33	0.08	2.12	0.17	4638.44	0.15	4.66	0.52
5920.46	0.25	1.28	0.51	4609.36	0.09	7.77	0.77
5888.40	0.18	3.53	1.24	4604.66	0.15	4.98	0.79
5840.75	0.33	0.89	0.14	4592.69	0.15	4.10	0.64
5767.85	0.74	0.83	0.28	4551.04	0.11	5.32	0.74
5756.16	0.77	0.87	0.29	4501.72	0.29	2.56	0.75
5583.83	0.29	1.04	0.15	4495.50	0.17	4.98	0.77
5556.53	0.16	2.55	0.36	4482.84	0.49	2.79	0.81
5539.57	0.23	2.44	0.45	4414.42	0.22	5.26	0.86
5432.75	0.22	1.50	0.55	4349.16	0.08	6.23	0.79
5401.72	0.15	1.66	0.15	4341.93	0.22	2.24	0.55
5376.04	0.13	3.27	0.25	4318.81	0.27	4.62	0.83
5363.35	0.59	0.68	0.19	4313.81	0.46	2.24	0.76
5308.14	0.33	2.70	0.35	4273.72	0.42	1.46	0.46
5256.89	0.14	1.82	0.15	4258.30	0.22	3.05	0.42
5235.71	0.08	3.39	0.20	4230.89	0.27	2.42	0.42
5177 84	0.09	2.60	0.19	4207.09	0.07	7.15	0.42
5146.22	0.00	0.72	0.48	4220.20	0.07	15.85	0.59
5135.08	0.16	1.27	0.31	4189 49	0.03	3.61	0.02
5092.49	0.10	6.73	0.39	4148.89	0.17	1.99	0.34
5044.76	0.09	3.31	0.38	4127.13	0.31	2.90	0.49
5040.76	0.08	4.57	0.43	4068.72	0.18	4.10	0.63
4992.06	0.24	1.16	0.33	4057.13	0.54	1.98	1.01
4051.64	0.22	3.18	1.26	3120.55	0.93	3.90	1.66
4046.62	0.13	5.90	1.05	3110.47	0.28	7.76	2.02
4036.82	0.16	5.19	0.56	3095.31	0.09	8.20	0.80
4031.88	0.13	7.14	0.71	3061.98	0.14	3.74	0.46
4017.27	0.11	7.62	0.79	3032.35	0.11	4.52	0.44
4011.54	0.20	3.94	0.59	2966.48	0.18	6.24	0.78
4001.37	0.08	13.79	1.47	2928.60	0.20	5.04	0.90
3993.80	0.35	3.17	1.11	2913.88	0.30	3.55	0.83
3966.93	0.40	3.03	1.01	2901.97	0.25	2.10	0.52
3940.02	0.39	5.30	2.04	2893.07	0.09	7.07	0.74
3905.24	0.16	5.08	2.04	2800.02	0.20	2.92	0.30
3891.39	0.08	6.68	0.50	2806 14	0.04	11 40	1 04
3881.43	0.35	1.39	0.35	2773.32	0.11	4.45	0.74
3853.68	0.20	2.20	0.45	2762.34	0.08	8.76	0.97
3845.53	0.22	1.81	0.47	2748.10	0.14	4.00	0.84
3799.98	0.09	3.98	0.82	2679.64	0.08	10.24	1.56
3785.57	0.21	2.45	0.78	2614.96	0.20	1.77	0.55
3778.75	0.24	1.99	0.88	2577.45	0.22	6.46	2.08

TABLE VII. Unassigned transitions observed in neutron capture by natural barium.

Photon energy ^a (keV)		Re inte	lative ensity ^b	Photon energy (keV)		Re	elative tensity
3733.23	0.14	5.47	0.56	2569.55	0.23	5.99	1.90
3718.94	0.42	1.99	0.54	2531.05	0.28	5.54	1.38
3705.60	0.25	3.00	0.59	2517.14	0.14	4.78	1.13
3590.49	0.13	6.40	0.75	2512.02	0.08	10.62	1.37
3562.52	0.16	3.35	0.71	2500.27	0.32	13.09	7.46
3451.58	0.20	6.72	1.77	2470.84	0.10	6.82	0.92
3412.81	0.09	3.51	0.49	2436.68	0.31	3.02	0.98
3397.12	0.09	7.54	0.99	2422.54	0.18	5.57	0.99
3380.46	0.14	2.50	0.95	2402.10	0.08	9.72	1.17
3359.88	0.34	2.64	0.74	2278.71	0.54	7.15	3.32
3350.71	0.20	4.84	0.72	2275.89	0.65	5.61	2.42
3333.70	0.30	2.59	1.01	2164.96	0.22	6.56	1.67
3320.52	0.13	3.14	0.44	2040.61	0.29	14.14	6.58
3304.08	0.11	6.57	0.72	1961.50	0.16	9.96	2.13
3294.61	0.17	4.53	0.68	1940.55	0.07	15.62	2.29
3230.01	0.09	6.47	1.60	1869.54	0.12	6.62	1.29
3224.79	0.09	6.26	1.86	1832.05	0.23	12.51	2.73
3219.96	0.15	3.81	1.28	1727.09	0.19	13.39	4.62
3197.11	0.17	3.02	0.73	1718.84	0.30	8.37	2.97
3148.13	0.22	3.44	1.04	1572.59	0.07	21.91	1.80
3144.28	0.21	4.55	1.10	1532.64	0.12	72.64	9.97
3141.03	0.18	4.85	0.99	1507.17	0.24	26.70	10.35
3129.53	0.67	3.57	1.77			20070	20100

TABLE VII. (Continued).

^bError in relative intensity is due to statistics and efficiency calibration.

ror. There are two possible new levels at 3085 and 3601 keV. The levels in ¹³⁹Ba agree in general with those in the literature²² but again there has been marked improvement in precision.

Three levels of ¹³³Ba were determined in the present study and agree within error with the values in the literature.¹⁸ Because the statistics were poor, the precision obtained is worse than for the published data. The levels of ¹³⁵Ba agree with those previously reported.¹⁹

The four energy levels in ¹³⁷Ba obtained in the present study differ by 5–18 keV from the values adopted in the latest compilation²³ as is apparent in Table XIV. There is a discrepancy in the literature regarding the first excited state in ¹³⁷Ba. A study of the $(\alpha, 3n\gamma)$ reaction²⁵ gave a value of 279.2±0.3 keV, while a value of 283.65±0.15 was obtained from a study of the $(n, n'\gamma)$ reaction.²⁶ The present study gives a vale of 283.76±0.04 keV, thus supporting the value obtained from the $(n, n'\gamma)$ reaction and

TABLE VIII. Neutron separation energies of barium isotopes.

Final	l	Neutron sep	aration energy	
nucleus	This w	orka	Ref.	20
¹³³ Ba	7189.96	0.36	7190	7
¹³⁵ Ba	6972.21	0.18	6973.2	0.4
¹³⁶ Ba	9107.84	0.04	9107.1	0.8
¹³⁷ Ba	6905.78	0.03	6899	3
¹³⁸ Ba	8611.75	0.04	8611.3	0.8
¹³⁹ Ba	4723.44	0.04	4723.41	0.30

^aBased on a ¹⁵N Q value of 10833.30±0.02 keV (Ref. 20).

disagreeing with the other value which was incidentally adopted in the compilation.²³ The other common levels from the two reactions^{25,26} exhibit general agreement. The level at 2182.33 keV in the present work is higher than 2173 ± 2 keV quoted by Peker in the compilation.²³ Peker used the corresponding primary transition reported by Groshev et al.⁶ It should be mentioned at this point that out of the four transitions in the 136 Ba $(n,\gamma)^{137}$ Ba reaction that Groshev *et al.* reported, the two with higher energy differ substantially from our values while the lower two are in agreement. The separation energy of ¹³⁷Ba was previously found to be 6891 keV,⁶ in contrast with our value of 6905.78 keV. This problem has been compounded by the fact that in the report of Groshev et al., the same transition energy is erroneously given two values, e.g., 4712 and 4716 keV. The compiler used 4716 keV which, in combination with his adopted S_n value of 6889 keV, gave the level at 2173 ± 2 keV. Groshev et al., on the other hand, used 4712 keV which, in combination with their deduced S_n value of 6891 keV, gave the level at 2179 keV. If the other data of Groshev et al., e.g., the transition energy 1898 keV and the level energy 281 keV, are used the level energy is found to be 2179 keV. This value is close to the present value of 2182.33 keV. Our value also agrees with 2180±20 keV found in the (d,p) reaction.²⁷ The level at 2662.87 keV differs from the adopted value of 2644 ± 5 keV,²⁴ which is again readjusted from the value of 2646 keV of Groshev et al. The corresponding primary transition at 4245 keV,⁶ when used in conjunction with the present S_n value of 6906 keV, gives a level energy of 2661

0.2

2

2.5

0.15

TABLE IX. Level energies of ¹³⁶ Ba.			TABLE X. Level energies of ¹³⁸ Ba.				
This Energy	work (keV)	Ref. Energy	17 (keV)	This work Energy (keV)		Ref. 21 Energy (keV)	
818.59	0.06	818.515	0.012	1435.91	0.03	1435.795	0.010
1551.12	0.06	1550.97	0.03	2190.10	0.06	2189.8	0.2
1578.73	0.17	1579.02	0.05	2217.75	0.05	2217.97	0.06
2053.89	0.25	2053.876	0.02	2307.90	0.12	2307.66	0.07
2080.09	0.04	2080.07	0.05	2445.38	0.13	2445.72	0.07
2128.88	0.05	2128.81	0.05	2583.04	0.05	2583.18	0.08
2141.35	0.06	2141.28	0.07	2639.29	0.03	2639.59	0.07
2222.69	0.11	2222.73	0.06	2779.93	0.12	2779.5	0.09
2315.61	0.23	2315.43	0.09	2795.78	0.10	2795.68	0.14
2356.03	0.22	2356.46	0.07	2880.79	0.06	2880.98	0.14
2390.82	0.23	2390.77	0.08	2917.02	0.09	2916.86	0.18
2400.08	0.08	2399.86	0.09	2931.24	0.10	2931.52	0.21
2430.70	0.15	2430.98	0.06	2991.09	0.12	2991.24	0.09
2485.25	0.07	2485.44	0.17	3049.49	0.04	3049.99	0.17
2532.77	0.07	2532.46	0.07	3085.12	0.09		
2640.95	0.11	2640.71	0.21	3162.44	0.06	3163.61	0.12
2661.50	0.11	2661.63	0.10	3242.49	0.20	3242.66	0.12
2693.96	0.10	2693.64	0.17	3257.43	0.15	3257.72	0.25
2773.37	0.11	2772.4	0.3	3338.67	0.04	3339.07	0.19
2777.69	0.14	2778.5	0.8	3366.86	0.06	3367.02	0.25
2811.75	0.13	2811.73	0.20	3436.22	0.09	3437.5	0.6
2976.08	0.05	2975.7	0.5	3442.52	0.08	3442.6	0.6
2995.56	0.18	2994	5	3504.17	0.05	3505.1	2
3044.87	0.04	3045.6	0.5	3600.71	0.07		
3116.39	0.17	3114	1	3643.29	0.07	3643.3	0.4
3179.72	0.08	178.9	0.7	3922.06	0.07	3922.61	0.18
3370.80	0.26	3370	1	3935.01	0.20	3935.27	0.15
3435.39	0.08	3436	1	4012.25	0.07	4012.3	0.4
3767.49	0.11	3767.1	0.5	4025.91	0.07	4027.0	1.5
3795.34	0.07	3795.5	0.4	4061.18	0.07	4061.42	0.09
3863.09	0.08			4080.00	0.06	4080.1	0.5
3965.90	0.08	3965.0	0.5	4142.29	0.16	4142.15	0.2
3980.43	0.08	3983.5	2.0	4242.21	0.07	4242.51	0.18
				4279.47	0.07	4278.8	2.0
				4323.56	0.05	4346	2
				4359.58	0.07	4360.2	2.0

4445.47

4508.41

4535.90

4646.41

keV which agrees with our value. The present value also agrees with 2663 ± 20 keV obtained from the (d,p) reaction.²⁷ The level at 3322.65 keV may be compared with 3319 ± 20 keV.²⁷ It appears that the uncertainty quoted in the (d, p) study is overestimated.

D. Magnetic dipole strength function

The magnetic dipole strength function is defined as²⁸

$$k = \langle \Gamma_{\gamma} D^{-1} E_{\gamma}^{-3} \rangle , \qquad (1)$$

where Γ_{γ_i} is the partial M1 radiative width of the capture state for transition i, D the average spacing of accessible neutron resonances at the neutron binding energy, and E_{γ} denotes the transition energy. To determine k, the quantities $(\Gamma_{\gamma_i} D^{-1} E_{\gamma_i}^{-3})$ were determined separately for 17 and 16 transitions in ¹³⁶Ba and ¹³⁸Ba, respectively. Corrections were made for the fractional spin contribution (F) to the capture. The values of F, Γ_{γ} , and D were calculated using the data of Ref. 12. The calculated values for ¹³⁶Ba and ¹³⁸Ba are given in Table XV. In ¹³⁶Ba, levels with spins 1⁺ and 2⁺ are populated by

TABLE XI. Level energies of ¹³⁹Ba.

4445.3

4508.11

4645.7

4538

0.04

0.52

0.05

0.07

		— — — — — — — — — — — — — — — — — — —	
This v Energy	vork (keV)	Ref. 1	22 (keV)
Lifergy		Energy	
627.28	0.04	627.318	0.022
1081.92	0.05	1082.04	0.05
1420.02	0.33	1420.67	0.04
1951.55	0.15	1952.3	1.0
2129.11	0.04	2129.3	0.9
2158.80	0.08	2158.87	0.16
2173.98	0.23	2173.95	0.05
2185.53	0.06	2185.9	0.8
2435.14	0.08	2433	10
2480.70	0.05	2481.4	0.7

FIG. 1. The upper portion of the $Ba(n,\gamma)$ spectrum containing three primary E2 transitions. The E2 transitions at 5832, 6304, and 7054 keV are indicated. The ordinate is the square root of the counts per channel thus yielding a constant precision.

FIG. 1. (Continued).

*M*1 transitions from both possible capture states which also are formed with spin 1⁺ and 2⁺. For the populated level 0⁺ (or 3⁺), the contribution is entirely from the 1⁺ (or 2⁺) capture state. In ¹³⁸Ba, the levels with spins 1⁺, 2⁺, and 3⁺ are contributed to by only the 2⁺ capture state, which dominates the thermal capture cross section.

state, which dominates the thermal capture cross section. The quantities $\Gamma_{\gamma i} D^{-1} E_{\gamma i}^{-3}$ for ¹³⁶Ba and ¹³⁸Ba and the averages for these are presented in Tables XVI and XVII. The magnetic strength function for ¹³⁶Ba using 16 primary transitions is found to be $(27\pm7)\times10^{-9}$ MeV⁻³. This value agrees with that of $(20\pm7)\times10^{-9}$ MeV⁻³ obtained from this nucleus from discrete neutron resonance capture²⁹ but does not support the value 50×10^{-9} MeV⁻³ reported by Bollinger³⁰ from average resonance capture. This value may be compared with the global average of the *M*1 strength function which is reported^{5,30} to be $(30\pm4)\times10^{-9}$ MeV⁻³ and 18×10^{-9} MeV⁻³.

to be $(30\pm4)\times10^{-9}$ MeV⁻³ and 18×10^{-9} MeV⁻³. The quantity $\langle \Gamma_{\gamma i} D^{-1} E_{\gamma i}^{-3} \rangle$ for E1 radiation, using four transitions, is found to be $(69\pm39)\times10^{-9}$ MeV⁻³. This agrees within error with the value $(39\pm19)\times10^{-9}$ MeV⁻³ obtained from a resonance capture experiment.²⁹

The strongest primary transitions in ¹³⁶Ba is at 5312 keV and populates a level at 3795 keV. The reduced strength of the transition is 346×10^{-9} MeV⁻³. The tentative spins and parity of the level¹⁷ are 0(+), 1, 2, 3(+). If

the level has a positive parity, the primary transition can be M1 and, if included in the average, will yield an M1strength function of $(46\pm15)\times10^{-9}$ MeV⁻³. If the parity of the level is negative, the corresponding primary transition would be E1. Inclusion of this transition would make the E1 strength function $(124\pm70)\times10^{-9}$ MeV⁻³. Considering the Porter-Thomas distribution³¹ and performing an analysis, there appears to be a 20:1 chance that the transition is E1 and therefore that the level at 3795 keV has a negative parity. Since we have observed the deexcitation of the level to the ground state which is 0^+ , a J=0 or 3 assignment can be ruled out. Thus this level has possible $J^{\pi}=1(-), 2(-)$. But as the deexcitation to the ground state rules out 2(-) in favor of 2(+), it is likely that the spin is 1(-).

After the exclusion of the unconfirmed M1 transition, most of the strength in the thermal spectrum is due the ground state transition of the capture state at 9108 keV. The strength of this transition is found to be more than 10 times the average of the rest. The question arises if this ground state transition is following a semidirect capture. The semidirect capture only occurs for $1_n=0$ states.³² In the target nucleus ¹³⁵Ba, $l_n=2$ states are partially empty, but s states are full and very little $l_n=0$ strength is expected. In fact for the 9108 keV transition,

TABLE XIV. L	evel energies	of ¹³⁷ Ba.
--------------	---------------	-----------------------

This v Energy	vork (keV)	Ref. Energy	23 (keV)	Re: Energ	f. 27 y (keV)	Ref. Energy	26 (keV)
283.76	0.04	279.2	0.3			283.65	0.15
2182.33	0.04	2173	2	2180	20		
2662.69	0.04	2644	5	2663	20		
3322.65	0.11			3319			

(2)

TABLE XV. Values of F, Γ_{γ} , and D for ^{136,138}Ba calculated from Ref. 12.

Final nucleus	Resonance spins	F	$\langle \Gamma_{\gamma} \rangle$ (eV)	D (eV)
¹³⁶ Ba	1+	0.19	0.106	99
	2+	0.81	0.132	67
¹³⁸ Ba	1+	0		
	2+	1	0.08	486

TABLE XVI. Magnetic dipole strength in ¹³⁶Ba. Average: $(27\pm7)\times10^{-9}$ MeV⁻³.

E (keV)	I (%)	$\Gamma_{\gamma_i} D^{-1} E_{\gamma_i}^{-3} (\text{MeV}^{-3}) \times 10^8$
9107	2.44	18.2
7529	0.10	1.3
6966	0.12	2.0
6792	0.07	1.3
8289	1.34	4.0
7556	0.45	1.8
7027	0.59	2.9
6979	0.21	1.0
6885	0.20	1.0
6717	0.09	0.7
6708	0.42	2.4
6467	0.28	1.8
6446	0.34	2.2
6414	0.10	0.6
6334	0.09	0.6
5991	0.16	1.3

TABLE XVII. Magnetic dipole strength in ¹³⁸Ba. Average: $(5.7\pm2.1)\times10^{-9}$ MeV⁻³.

E (keV)	I (%)	$\Gamma_{\gamma_i} D^{-1} E_{\gamma_i}^{-3} (\text{MeV}^{-3}) \times 10^9$
7175	0.14	0.6
6394	0.06	0.4
6165	0.09	0.6
6028	1.46	10.0
5972	0.66	5.1
5680	0.17	1.5
5620	0.12	1.1
5562	0.37	3.6
5449	1.07	1.1
5369	0.10	1.0
5272	1.16	13.0
5245	0.16	1.8
5169	0.21	2.5
4968	1.91	25.6
4676	0.26	4.2
4532	0.48	8.5

 $l_n = 2$ (d,p) strength, but no $l_n = 0$ strength is observed.¹⁷ Thus the transition is not semidirect. It may be mentioned here that virtually no $l_n = 0$ (d,p) strength is observed for the other transitions in ¹³⁶Ba as well. The *M*1 strength function for ¹³⁸Ba, obtained using 16

The *M*1 strength function for ¹³⁸Ba, obtained using 16 primary transitions, is $(5.7\pm2.1)\times10^{-9}$ MeV⁻³. This value is much lower than that of ¹³⁶Ba. This is also lower than the global average.^{5,30} This low value of the magnetic strength for a closed shell nucleus is contrary to what is expected.⁵

E. E2 strength in neutron capture

Since the spin of the target nuclei 136,138 Ba is 0⁺, s-wave neutron capture produces only $\frac{1}{2}^+$ states. Thus a primary transition populating a $\frac{5}{2}^+$ level will be a pure E2 transition, provided that the p-wave capture contribution is negligible. Using data of Ref. 12, the ratio of E1transitions arising from p-wave capture to E2 transitions is found to be less than $\frac{1}{200}$ in the present instance. A list of four $\frac{5}{2}^+$ levels in the two isotopes are given in Table XVIII. Primary E2 transitions to three of these levels were observed in the present study for the first time. An upper limit for the intensity of the unobserved transition was also determined. The results are presented in Table XVIII. The three cases were checked against possible interference from other isotopes of barium. A transition at 6751 keV which could be an E2 transition in 136 Ba can be better explained on the basis of energy as a transition in ¹³⁵Ba. A portion of the Ba (n, γ) spectrum containing the primary E2 transitions is displayed in Fig. 1.

To compare the experimental E2 strength with that expected from giant quadrupole resonances,^{1,33} we estimated the reduced transition probability:²⁸

$$\overline{B(E2)\downarrow}$$
 (per MeV)=1.25×10¹² $f_{E2}(E)$ [e^{2} fm⁴MeV⁻¹]

where

$$f_{E2} = \langle \Gamma_{\gamma_i} D^{-1} E_{\gamma_i}^{-5} \rangle ,$$

 Γ_{γ_i} being the partial E2 radiative width of the capture state for transition *i*, *D* the average level spacing of the resonances of a given spin and parity, and E_{γ_i} denotes the transition energy.

The absolute intensities of the primary E2 transitions are converted to radiative widths by using the Γ_{γ} and Fvalues given in Table XV. The level spacings used are also given. The $\overline{B(E2)}\downarrow$ values for the transitions are presented in Table XVIII. The average $\overline{B(E2)}\downarrow$ is found to be $53\pm35~e^2\text{fm}^4\text{MeV}^{-1}$. The uncertainty reflects the 68% limits for a χ^2 distribution with four degrees freedom.

The quadrupole strength function, on the basis of the giant resonance model, is the sum of the contribution from the isoscalar and isovector giant quadrupole resonances:¹

$$\left\langle \frac{\Gamma_{\gamma_i}}{D} \right\rangle = \left\langle \frac{\Gamma_{\gamma_i}}{D} \right\rangle_{T=0} + 1.8 \left\langle \frac{\Gamma_{\gamma_i}}{D} \right\rangle_{T=1}.$$
 (3)

Final	Level (keV)	7) Photon energy (ke		Intensity	$\overline{B(E2)\downarrow}$ (e^{2} fm ⁴ /MeV)	
nucleus	populated	Expected	Observed	(per 1000 <i>n</i>)	Expt.	Calc.
¹³⁶ Ba	1866.576(19)	7241.04(4)		< 0.04	< 3.1	83.8
	2053.876(20)	7053.77(4)	7053.75(24)	0.97(26)	175.0	83.8
¹³⁸ Ba	2307.66(7)	6303.94(8)	6303.69(11)	0.40(5)	8.3	85.0
	2779.50(9)	5832.12(10)	5831.69(11)	0.93(9)	27.5	87.5
				Average	53±35	85

TABLE XVIII. Primary E2 transitions in ^{136, 138}Ba.

The enhancement of the isovector resonance is due to the effect of the exchange corrections.³⁴ Each of the contributions is given by³³

$$\left\langle \frac{\Gamma_{\gamma_i}}{D} \right\rangle_{T=0,1} = 7.77 \times 10^{-12} E_{\gamma}^4 E_{OT}^2 C_T \frac{\Gamma_T}{(E_{\gamma}^2 - E_{OT}^2)^2 + \Gamma_T^2 E_{\gamma}^2} , \quad (4)$$

where E_{OT} and Γ_T are the giant resonance energy and width, respectively, for isospin T. For T=0 and 1, $C=Z^2 A^{-1/3}$ and $NZA^{-1/3}$, respectively. The E_0 and Γ_T were calculated from the mass number systematics compiled by Bertrand.³⁵ The $B(E2)\downarrow$ values were determined using the theoretical $\langle \Gamma_{\gamma_i}/D \rangle_{GQR}$ for each of the transitions. The average $\overline{B(E2)\downarrow}$ is 85 $e^2 \text{fm}^4 \text{MeV}^{-1}$ which agrees within error with our experimental value of $53\pm35 \ e^2 \text{fm}^4 \text{MeV}^{-1}$. The mean value of the experimental result, however, may also be in agreement with the finding of two surveys^{1,36} in the past that note that the E2 strengths are on average lower by about a factor of 2 than the predictions based on the Axel-Brink^{36,37} extrapolation.

V. CONCLUSIONS

A set of neutron separation energies has been determined for six isotopes of barium. Substantial improvement in precision is achieved. There is a general agreement in values with those of the literature for all but ¹³⁷Ba which is found to be 7 keV higher than the currently accepted value.²⁰ For these isotopes level energies have been deduced. The values for ¹³⁷Ba show significant deviation from those adopted in the latest compilation.²³ Others, in general, are in agreement with the literature. Evidences in the present study narrow down the possible spin of a level of ¹³⁶Ba at 3795 keV from 0(+)1,2,3(+) to 1,2. The more probable spin seems to be 1(-).

The magnetic strength functions of 136 Ba and 138 Ba have been determined. The value for 136 Ba agrees with the global average. The *M*1 strength function of 138 Ba is one-third the global average. This low value for 138 Ba is contrary to what is expected from the spin-flip model.³⁸

Three primary E2 transitions are observed in 136,138 Ba and the upper limit for another E2 transition is determined. The quadrupole strength function of 136,138 Ba is found to be 0.6 ± 0.4 times that expected on the basis of the giant quadrupole resonance model. Similar findings were reported in the past.^{1,36}

ACKNOWLEDGMENTS

The authors wish to express their appreciation to the Natural Sciences and Engineering Research Council of Canada and to the Province of Ontario for financial assistance.

- *On leave from University of Rajshahi, Bangladesh.
- ¹W. V. Prestwich, M. A. Islam, and T. J. Kennett, Z. Phys. A **315**, 103 (1984).
- ²T. J. Kennett, W. V. Prestwich, and J-S. Tsai, Z. Phys. A 322, 121 (1985).
- ³W. V. Prestwich, T. J. Kennett, and J-S. Tsai, Z. Phys. A **325**, 321 (1986).
- ⁴M. A. Islam, T. J. Kennett, and W. V. Prestwich, Phys. Rev. C 41, 1272 (1990).
- ⁵C. M. McCullagh, M. L. Stelts, and R. E. Chrien, Phys. Rev. C **23**, 1394 (1981).
- ⁶L. V. Groshev, V. N. Dvoretskii, A. M. Demidov, and M. S. Alvash, Yad. Fiz. **10**, 681 (1969) [Sov. J. Nucl. Phys. **10**, 392 (1970)].
- ⁷L. Nicol, A. M. Lopez, A. Robertson, W. V. Prestwich, and T. J. Kennett, Nucl. Instrum. Methods 87, 263 (1970).

- ⁸A. Robertson, G. C. Cormick, T. J. Kennett, and W. V. Prestwich, Nucl. Instrum. Methods **127**, 373 (1975).
- ⁹G. C. Cormick, M.Sc thesis, McMaster University, 1975.
- ¹⁰T. J. Kennett, W. V. Prestwich, and R. J. Tervo, Nucl. Instrum. Methods **190**, 313 (1981).
- ¹¹T. J. Kennett, W. V. Prestwich, and J. S. Tsai, Nucl. Instrum. Methods A249, 366 (1986).
- ¹²S. F. Mughabghab, M. Divadeenam, and N. E. Holden, *Neutron Cross Sections* (Academic, New York, 1981), Vol. 1.
- ¹³M. A. Islam, T. J. Kennett, and W. V. Prestwich, Nucl. Instrum. Methods A287, 460 (1990).
- ¹⁴W. Gelletly, J. A. Moragues, M. A. J. Mariscotti, and W. R. Kane, Phys. Rev. 181, 1682 (1969).
- ¹⁵M. A. J. Mariscotti, W. Gelletly, J. A. Moragues, and W. R. Kane, Phys. Rev. **174**, 1485 (1968).
- ¹⁶J. A. Moragues, M. A. J. Mariscotti, W. Gelletly, and W. R.

Kane, Phys. Rev. 180, 1105 (1969).

- ¹⁷T. W. Burrows, Nucl. Data Sheets 52, 273 (1987).
- ¹⁸Yu. V. Sergeenkov and V. M. Sigalov, Nucl. Data Sheets 49, 639 (1986).
- ¹⁹Yu. V. Sergeenkov, Nucl. Data Sheets 58, 205 (1987).
- ²⁰A. H. Wapstra and G. Audi, Nucl. Phys. A432, 55 (1985).
- ²¹L. K. Peker, Nucl. Data Sheets 53, 177 (1988).
- ²²T. W. Burrows, Nucl. Data Sheets 57, 337 (1989).
- ²³L. K. Peker, Nucl. Data Sheets **38**, 87 (1983).
- ²⁴M. A. Lone, R. A. Leavitt, and D. A. Harrison, At. Data. Nucl. Data Tables 26, 511 (1981).
- ²⁵A. Kerek and J. Kownack, Nucl. Phys. A206, 245 (1973).
- ²⁶M. R. Ahmed et al., Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutron (Moscow Atomizdat, Moscow, 1978).
- ²⁷D. von Ehrenstein, G. C. Morrison, J. A. Nolen, Jr., and N. Williams, Phys. Rev. C 1, 2066 (1970).
- ²⁸M. A. Lone, in *Neutron Capture Gamma Ray Spectroscopy*, edited by R. E. Chrien and W. R. Kane (Plenum, New York, 1979).
- ²⁹R. E. Chrien, G. W. Cole, J. L. Holm, and O. A. Wasson,

Phys. Rev. C 9, 1962 (1974).

- ³⁰L. Bollinger, in Proceedings of the International Conference on Photonuclear Reactions and Applications, Asilomar, 1973, edited by B. L. Berman (U. S. Atomic Energy Commission Office of Information Services, Oak Ridge, Tennessee, 1973), Vol. II, p. 783.
- ³¹C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).
- ³²C. Clement, A. M. Lane, and J. Kopecky, Phys. Lett. **71B**, 10 (1977).
- ³³M. A. Islam, Ph. D. thesis, McMaster University, 1982.
- ³⁴M. W. Kirson, Nucl. Phys. A337, 194 (1980).
- ³⁵F. E. Bertrand, Annu. Rev. Nucl. Sci. 26, 457 (1976).
- ³⁶J. Kopecky, in Capture Gamma-Ray Spectroscopy and Related Topics (Holiday Inn—World's Fair, Knoxville, Tennessee, 1984), Proceedings of the Fifth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, AIP Conf. Proc. No. 125, edited by S. Raman (AIP, New York, 1985), p. 318.
- ³⁷P. Axel, Phys. Rev. **126**, 671 (1962); D. M. Brink, Ph. D. thesis, Oxford University 1955.
- ³⁸J. Kopecky and R. E. Chrien, Nucl. Phys. A468, 285 (1987).