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p-shell nuclei in a (0+2)fun model space. I. Method
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An empirical efective interaction for the A =4—16 p-shell nuclei in the complete (0+2)Re mod-

el space is presented, which also reproduces the predominant 2'~ intruder states. The results are
not spoiled by the mixing catastrophe. The inclusion of 2%co states also leads to a new feature not
encountered before in smaller model spaces, i.e., the appearance of radially excited states. The
latter can be observed experimentally in certain cases.

I. INTRODUCTION

The first systematic shell-model study for p-shell nuclei
was published in 1965. ' It was very successful and is still
used for the interpretation of experimental data. The in-
teraction with configuration mixing included was deter-
mined in the smallest model space possible for the p-shell
nuclei, the Okapi model space. In this space only normal-
parity states can be described. During the last 20 years
new and fast developments in the available computer fa-
cilities took place. This was the reason that large-scale
shell-model calculations became feasible. For p-shell nu-
clei this resulted in 1983 in a publication in which a
mass-independent interaction was presented in the
(0+1)fico model space. With that description one could
treat both normal- and non-norma1-parity states.

Despite the successes of these earlier calculations a
number of discrepancies between theory and experiment
remained. In particular the existence of intruder states
was an unsolved problem. These are low-lying states in
the spectrum which cannot be reproduced in the small
$6cu model space. Hence, it is a natural continuation of
earlier calculations to treat the p-she11 nuclei in the
(0+2)%co model space.

The p-shell nuclei are good candidates to investigate in
shell-model calculations. The two main reasons are (i) no
inert core has to be assumed, since these nuclei contain a
relatively small number of particles, and (ii) the j values
of the p-she11 orbits as weil as those of the neighboring
shells are relatively small. This makes it easier to expand
the model space to include the neighboring shells.

In this paper we describe the methods used to obtain
the present empirical effective interaction and the elec-
tromagnetic operators as well as some general results of
the calculations.

The choice of the model space and the expansion of the
interaction in terms of Talmi integrals are given in Secs.
II and III, respectively. The approach to obtain the pa-
rameter values is outlined in Secs. IV —VII. Some proper-
ties of the resulting interaction are discussed in Sec. VIII.

The general agreement with experiment for the predom-
inant OAco states and the intruder states is shown in Secs.
IX and X. The methods used to identify the so-called ra-
dially excited states is presented in Sec. XI. The main
conclusions are summarized in Sec. XII.

More detailed results for the various p-shell nuclei sep-
arately are given in paper II, see Ref. 3.

II. THE MODEL SPACE

The Hamiltonian is assumed to be translational invari-
ant. The number of basis states, for which we chose har-
monic oscillator states, is in principle infinite. Hence,
one has to restrict the configuration space in order to ob-
tain a finite number. But then it is possible that spurious
and nonspurious states will mix, even for a translational
invariant interaction. However, it has been shown that
this problem of mixing does not occur in a complete %fico
model space, with %=0, 1,2, . . . . A complete %Ace
model space contains only basis states with an excitation
of XA'co above the Fermi level. In such a limited, but
complete, space the Hamiltonian still commutes with the
center-of-mass Hamiltonian, and therefore we can use the
procedure for the exact elimination of the spurious states,
described by van Hees et al.

The calculations in this paper concern Op-shell nuclei,
i.e., nuclei with a mass 3 =4—16. The simplest model
space for these nuclei is the OAco model space. In this
space the s shell is completely filled and only the p shell is
active. It is clear that in such a model space only states
with m. =( —1), i.e., normal-parity states, can be calcu-
lated.

A next step is the inclusion of particles in the sd shell
or holes in the s shell. Allowing a single particle to move
from the s shell into the p shell, or from the p shell into
the sd shell makes it possible to describe the non-norrnal-
parity states too. This gives us the ltd model space.

The next expansion of the model space is the 2Aco mod-
el space. This space contains all configurations where ei-
ther two particles make a jump of 1A~ between two
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neighboring major shells, i.e., from the s shell into the p
shell and/or from the p shell into the sd shell, or a single
particle makes a 2%co jump, i.e., from the s shell into the
sd shell or from the p shell into the fp shell. It should be
remarked that in the 2A~ model space only states with
normal parity can be calculated.

III. THK INTERACTION
For a translational invariant, isospin conserving two-

body interaction V, which depends only on intrinsic coor-
dinates, one obtains the following expression for the ma-
trix elements between normalized and antisymmetrized
two-particle states '

2+(1+5,b )(1+5,d )

X g Ib —, Jb

A S J

I,

I„
A' S J

[(1—
(
—1)'+s+T)(1—

(
—1)' + )(nlNLln, l, nblb )„(n'I'NLln, l, ndld )A ]

nln 'I'NL

I S j I' S j
X g L 0 L L 0 L (n(IS)jTlVln'(I'S)jT) .

A S J A' S J

The matrix elements (n (IS)j Tl Vln'(I'S)j T) are referred
to as relative matrix elements.

The next step consists of the assumption that the
effective interaction V,z can be decomposed in the follow-
ing way

V,ff= g V,T(r)Q+T,
vT

where V,T is a radial potential and PT is an isospin pro-
jection operator. The different operators Q, with v label-
ing the central (S =O, S =1), tensor or spin-orbit parts,
are defined with the Pauli spin operator cr as follows.
The central spin projection operator on states with S=O
1s

(1). (2)
+central, S =0 4 (

the central spin projection operator on states with S=1 is

(1). (2)
~central, S = 1 4 ( +

the tensor operator is

(4)

3( (1).r)(~(2).r) ~(1).~(2) .
tensor

the spin-orbit operator is

(6)

where 8 the relative two-particle orbital angular momen-
tum.

With these expressions one can rewrite the relative ma-
trix elements in (1) (see Lawson ):
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A way to evaluate the radial matrix elements of
V ff ( nil V,T l

n 'I' ), has been given by Talmi, where
these matrix elements are expressed in terms of Talmi in-
tegrals I' ' according to the relation

n + n'+ (I + I')12
(nil V 7ln'I') =- (1O)

p =(1+i')/2

The Talmi integrals I' ' are defined as
2p +2

I(vT)
P e " V T(r)dr,

(11)
and the expansion coefficients 8 (nln 'I', p) are given by
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k max

8 ( nln '1',p) =
—,
' r(p + —', ) y a„//, a„ / /, (12)

with k' =p —A, —k and A, = (1 +1')/2. The summation
boundaries in (12) are k;„=max(0,p —

A,
—n') and

k,„=min(n, p —
A, ). The factors a„/k are the expansion

coefficients of the associated Laguerre polynomial
L„"+' '(x), given by

n +1+—,
' 1/2

(13)
2n!

I (n +I + —,')

Herewith we have explained the procedure to evaluate
the two-body matrix elements of an effective interaction
V,z which is parametrized in terms of Talmi integrals.

It can be shown that of the p=O Talmi integrals only
two I o Talmi integrals contribute in an actual calcula-
tion: I' t &, s=o, T=&) and I( t &, s=&, T=O) Further-ion: 0

' an
more, of the p= 1 Talmi integrals I~ ]

' does not con-
tribute to any matrix element. The total number of Tal-
mi integrals that contributes in a (0+1+ +N)fico
model space for p-shell nuclei grows only linearly with N,
and is equal to 13+N X 8.

IV. THK FITTING PROCEDURE

par

A /3xt/
=b, 1 ~ a ~ n,„p,

P= 1

(14)

where n~„denotes the number of parameters and n,„„
the number of experimental data. The symbol
denotes the coefficient matrix (describing the Hamiltoni-
an or electromagnetic operators), b are the experimental

Talmi integrals can be evaluated in a phenomenologi-
cal approach, i.e., the integrals are determined from a fit
to a large set of experimental data.

We have made two important improvements in the
fitting procedure during the last few years. The first one
consists of the inclusion of static moments in the experi-
mental data used for the determination of the interaction
parameters. A detailed discussion about the conse-
quences of an inclusion of these moments can be found in
van Hees et al.

The second extension, based to some extent on the
work of Chung, is the possibility to assign an error to
each parameter in the fit, which gives an indication
whether the parameter is well determined or not. For a
full discussion we refer to Wolters. In this paper we will

only summarize the method.
In the fitting procedure one uses a set of equations,

which describe the theoretically calculated observables.
The parameters in the Hamiltonian and in the elec-
tromagnetic operators will be determined by fitting the
calculated values to the corresponding experimental
values. This requires an iterative process. The aim is

that the finally obtained parameters will reproduce the
experimental values of all included observables as well as

possible.
In mathematical form one wants to solve the following

set of linear equations for the parameter vector x

values of the observables (e.g. , level energies, static mo-
ments) and x// the components of the parameter vector x
(in our case consisting of Talmi integrals, g factors and
effective charges).

The function Q one needs in the least-squares fit to
solve (14) is given by

Q'= g g A /3x//
b— (15)

where the value of x, which minimizes Q, has to be
determined. Weight factors for the experimental data are
included in the matrix A and b.

One can then define two types of errors for each pa-
rameter x;, the delta error 5x; and the epsilon error ex;.
For the delta error 5x; the value Q remains smaller than

(1+5)Qm,„ if just this one parameter x, is chosen in the
interval [x;—5x;,x;+5x;] around its optimum value x;.
All other parameters x with j Ai are kept fixed at their
optimized values. The epsilon error ex; of the parameter

x, is generally much larger than its delta error. It deter-
mines the range in which x, may vary under the condi-
tion that all other parameters x/ with j Wi are optimized
again.

The errors are defined such that, with the parameter
values x, +5x; or x;+ex;, the value of Q will not in-

crease more than a fraction 5 of the minimum value for
Q, denoted by Q;„. The 5 and e error thus gives an in-

dication whether or not a certain parameter has a large
effect on the results (5 error) and if it is strongly correlat-
ed with other parameters (e error). Since Q depends
nonlinearly on the parameters, one should take a rather
small value for h. In this calculation we take the value
6 =0.05 and thus Q;„may increase by 5%.

U. EXPERIMENTAL DATA

We start the discussion of experimental data to be in-
cluded in the fitting procedure with the level energies. A
separation will be made between levels which can be de-
scribed in a OAm model space and those which cannot.
We will call the latter intruder states.

The following criteria have been used to select the ex-
perimental data.

(i) All states should have a well assigned normal parity
[m =( —1)"]. This is evident, because only these states
can be described in the (0+2)A/o model space.

(ii) All included levels should have well-assigned spin
and isospin quantum numbers.

(iii) Level energies are taken from N Z nuclei only.
In general for these nuclei more experimental data are
available than for the proton rich nuclei.

(iv) For the predominantly 0//ice levels, at most the
lowest two states with given J;T are selected for each
nucleus. The third or higher levels are in most nuclei ex-
perimentally uncertain, because of problems in spin, iso-
spin and/or parity assignment. This criterium also holds
for the intruder states. Exceptions are the third 1+ state
in ' N, because it is the lowest-lying intruder state in this
nucleus, and the third —,

' state in ' N, which is also a
well-known intruder state. Both states are included in
the fit.
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For the 3 ~ 12 nuclei only four intruder states are
selected for the fit: the Oz+ states in He, ' Be, and ' C
and the 2&+ state in ' Be. Other candidates for intruder
states in these nuclei are not available; experimental spec-
tra for these nuclei are incomplete or it is unclear to
which calculated level an experimental state should be as-
signed. Most of the intruder states with a spin higher
than the maximum value that can be obtained in the (h6co

model space are included. These states have been ob-
served mainly in nuclei at the upper end of the p shell.

In total 109 states in the nuclei with 3 =4-16 have
been selected of which 36 are classified as intruder states.
Furthermore, we included in the fit 18 experimentally
known magnetic dipole moments and 12 electric quadru-
pole moments of the nuclei with A =4—16. All experi-
mental data have been taken from Ajzenberg. ' ' Ex-
ceptions are the data of He, which have been taken from
Fiarman et al. ,

' and the quadrupole moment of Li,
where a recent and more accurate value from Weller
et al. ' has been taken. The values of the binding ener-

gies for the ground states have been obtained from
Wapstra et al.

VI. COULOMB ENERGY

The interaction presented in Sec. III does not take into
account the charge-dependent part of the interaction, i.e.,
the Coulomb energy. Therefore we have removed the
charge-dependent contribution Ec from the experimental
energies. The value of E~ is determined from a least-
squares fit to experimental data. In the determination of
Ec the following assumptions are made.

(i) Ec depends only on Z.
(ii) The difference between the contribution to Ec for

different Z values is determined by the differences in the
experimental energies of all known analog states in a cor-
responding isobaric multiplet.

In Table I the resulting empirical values for Ez are
presented. To judge the correctness of these values, we
performed a calculation in the (0+1)A'co model space in
the proton-neutron formalism. The advantage of using
the proton-neutron formalism is the fact that the
Coulomb interaction can be easily taken into account in
the Hamiltonian. The interaction in this calculation was
parametrized by fico, 21 Talmi integrals, 6 parameters
(effective nucleon g factors and charges) for the included
static moments, and a strength parameter for the
Coulomb energy. The relative matrix elements of the
Coulomb interaction between two particles are those of
the 1/r potential. All parameters have been determined
in a fit of calculated energies and moments to 146 corre-
sponding experimental energies and 39 static moments.

After reaching convergence of the fit, we calculated the
Coulomb energy for each level. This energy is not neces-
sarily the same for all levels with equal Z. Therefore this
calculation yields a minimum and a maximum value of
Ec for levels of each Z included in the fit. The latter Ec
values are also presented in Table I. The correspondence
between the empirical values and the calculated values in
Table I is rather good. We conclude that the empirical
Ec values are suSciently accurate to estimate the
influence of the Coulomb energy on the total binding en-
ergy.

VII. THE ITERATION PROCESS

The interaction is parametrized in 29 Talmi integrals
and %co. The inclusion of magnetic dipole and electric
quadrupole moments leads to six extra parameters: four
effective g factors and two effective charges. To deter-
mine the values of the interaction parameters we first
constructed the Hamiltonian matrices of all states includ-
ed in the ftt. Furthermore, the matrices of the JN, 1

and/or 82 operators, for those states of which the mo-
ments are included in the fit, were created. This was pos-
sible by using one and the same program: RITSSCHIL. '

With a set of numbers that occupy about 2 Gbyte the
iteration process to determine the parameters could be
started. One step in this process takes about 50 min CPU
time on a vector computer as the Cyber 205 (2 pipes).
The wall-clock time for one iteration step is about 1.5 h.

If one tries to determine all parameters at once, the
fitting procedure does not converge. The strategy finally
used consists of several stages, which were carried out
one after the other. The parameters derived from one
stage were used as starting parameters in the next stage.
Each stage consists of roughly five iterations steps. For
the detailed description of the iteration process we refer
to %olters.

VIII. THE RESULTING INTERACTION

For the resulting interaction one obtains the root-
mean-square deviations shown in Table II. These are the
deviations between the experimental and calculated level
energies and moments, which were included in the fitting
procedure. For the energies we give the total rms devia-
tion of all states in the first row of Table II and also the
separated rms deviation for the states, which can be de-
scribed in the 0%co model space, and the one for the in-
truder states in the second and third row, respectively.
For the static moments we give the rms deviation Ap, ,
for the magnetic dipole moments and b,g, , for the
quadrupole moments.

TABLE I. The values of the Coulomb energy Fc (MeV) for each Z. For an explanation of the
dift'erent values, see text.

Z

Empirical E&
Calculated Ec (min)
Calculated Ec (max)

2He

0.76
0.55
0.68

3Li

1.46
1.70
1.70

48e

3.12
3.14
3.33

qB

5.02
5.16
5.25

7.72
7.56
7.77

7N

10.56
10.40
10.65

80

14.06
13.77
14.10
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TABLE II. rms deviations.

EE, , total
hE, , (Hico levels

AE, , intruder states
~Prms

rms

0.56 MeV
0.51 MeV
0.65 MeV
0.047p~
0.23 efm

TABLE III. Parameters (fico and Talmi integrals) of the
Hamiltonian with errors (MeV).

Parameter Value 5 error e error

Central S =O, T=

Central S =0, T =

Central S =1,T=

Central S =1,T=

Spin-orbit

Spin-orbit

Tensor

Tensor

fico

O,p=1
p=2
p=3

1,p=O
p=1
p=2
p=3
p=4

O,p=o
p=1
p=2
p=3
p=4

1,p=1
p=2
p=3

O,p=2
p=3
p=4

1,p=1
p= 2
p=3

O,p=1
p= 2

p —3
p=4

1,p=1
p= 2
p=3

+9.782
—1.756
+ 1.464
—0.678
—6.837
—2.749
—1.347
—0.144
+0.437
—8.592
—3.893
—2.623
—1.633
—0.432
+ 1.748
—0.193
—1.899
+0.270
+0.248
—0.472
—1.251
—0.391
—0.203
+ 1.581
+ 1.223
+0.501
—0.971
—0.117
+ 1.190
—0.327

0.010
0.034
0.107
0.150
0.009
0.028
0.016
0.068
0.192
0.009
0.031
0.016
0.082
0.217
0.004
0.017
0.021
0.034
0.094
0.205
0.015
0.048
0.034
0.113
0.096
0.173
0.437
0.061
0.040
0.068

0.875
2.058
2.450
4.350
1.342
1.192
1.223
1.685
2.636
1.595
1.212
1.130
1.924
4.098
0.342
0.231
0.473
0.355
0.762
2.017
0.267
0.293
0.305
0.887
0.798
1.358
3.077
0.829
0.752
0.577

In Table III the parameters for the Hamiltonian are
presented. The value of each parameter together with
the 5 and e errors (see Sec. IV), which resulted from the
fit, is given in this table as well.

Table IV contains the values of the parameters for the
JN, 1 and @2 operators with 5 and e errors. These parame-
ters form the six extra parameters in the fitting procedure
as a result of the inclusion of the static moments. The
matrix elements of an hL operator are proportional to
b, where b is the harmonic oscillator size parameter.
Therefore one can extract from the fit to quadrupole mo-
ments only empirical values for the products b e and
b e„, and not the effective proton and neutron charge, e

and e„. The matrix elements of the JK1 operator are in-

dependent of the size parameter b, so effective g factors
follow directly from the fit to the magnetic dipole mo-
ments. The consequences of this will be discussed in pa-
per II.

TABLE IV. Parameters of the AL1 and 62 operator with er-
rors.

Parameter Value 5 error e error

gt'

gs
b'e (efm')
b'e (efm')

+ 1.183
—0.137
+5.906
—4.175
+3.625
+0.178

0.053
0.058
0.113
0.133
0.218
0.197

0.069
0.071
0.170
0.186
0.717
0.647

IX. PREDOMINANTLY Ofico STATES

It follows from Table II that the total rms deviation for
all states included in the fit is given by AE„,=0.56 MeV.
The AE, , can be separated into a deviation for the levels
with mainly a (Hico character and one for the intruder
states. In this section we will restrict ourselves to the lev-
els of the first kind. The rms deviation for these levels is
equal to 0.51 MeV. It is interesting to compare this value
with that of other calculations. Therefore we present in
Table V the rms deviations for (%co levels for several in-
teractions obtained earlier for p shell nuclei. All these in-
teractions are mass independent and have been deter-
mined from approximately 75 levels in the complete p
shell, i.e., 3 =4—16, except for the (8—16)POT of Cohen

It is interesting to investigate whether conclusions
about the nature of the effective interaction can be drawn
from the present empirical set of Talmi integrals. The
definition of Talmi integrals, (11), implies that the abso-
lute values of the Talmi integrals for a short-range in-
teraction decrease rather strongly for increasing p.
Furthermore, negative values for all Talmi integrals I
means that the corresponding potential is attractive,
while positive values indicate repulsion. Finally, a
change in sign of the value of the Talmi integrals for in-
creasing p indicates a repulsive potential for short dis-
tances that becomes attractive at larger distances, or vice
versa.

It follows from the errors of all parameters presented
in Table III that in particular the p ~ 3 and the central
S =0, T=O integrals are poorly determined. The largest
5 errors ( ~ 0.2) belong to the p= 4 Talmi integrals. Thus
these parameters occur with the smallest coeScients in
the equations used in the least-squares fit. It means that
effects of possible long-range parts of the interaction are
not clearly visible.

Another general remark concerns the differences in the
values of the 5 and e errors of each parameter. A rela-
tively large e errors means that the parameter is strongly
correlated with other parameters. An example is the cen-
tral S =1,T =O,p =0 Talmi integral. In general this can
be said of all central Talmi integrals. Each of them is
rather well determined when all other parameters are
kept fixed, but their mutual correlations make them less
accurately determined.

The S =0, T=1 and S =1,T=O channels clearly show
an attractive character. For the others channels no con-
clusions are drawn, since the numerical values of the Tal-
mi integrals are not well enough determined.
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and Kurath, ' who included only 35 levels in the nuclei
A =8—16. The rms deviation for the (8 —16)POT,
presented in Table V, is obtained by calculating the bind-

ing energies of the present, much larger set of 75 levels.
From Table V one sees a significant improvement for

the present calculation concerning the overall rms devia-
tion compared to the other calculations. Furthermore it
is interesting to observe that the rms deviation of a previ-
ous calculation, taking into account only the 13 lowest-
order Talmi integrals in a mixed (0+2)%co model space, "
is considerably reduced by the inclusion of all 29 Talmi
integrals. These 16 additional Talmi integrals contribute
to matrix elements of the Hamiltonian between two 2Am

states or between a OAu and a 2fico state, but not to ma-
trix elements between two Okco states.

It is interesting to refer here also to our recently ob-
tained results in a Olios space in which three-body forces
have been taken into account as well. ' ' The latter pro-
cedure considerably improves the description of 0%co

states. However, it cannot treat intruder states.

X. INTRUDER STATES

In the past one of the major problems, when increasing
the model space from Ofico to (0+2)%co, was the far too
strong repulsion resulting from the mixing of several 2Am

states with OA~ states, ' the so-called "mixing catas-
trophe. " Some formal studies of this mixing concern
the renormalization of realistic interactions in limited
model spaces ' and not the construction of an empiri-
cal interaction.

In previous calculations on p-shell nuclei the values of
the Talmi integrals were determined by a fit, where in-
truder states were excluded. In such calculations the
low-lying Okapi states are pushed down by the new 2%co

states. If one tries to reproduce the binding energies of
these low-lying OAco states by a simple renormalization of
the interaction, then the problem persists in a similar
way. The OAco states will be calculated at the correct en-
ergy, the intruder states will be shifted to much higher
energies and wi11 be obtained far too high in the spec-
trum.

However, with the present interaction a solution is
found by the inclusion of 36 intruder states in the fitting
procedure to determine the values of the Talmi integrals.
This approach gave a good overall fit to all levels includ-
ed. The inclusion of the intruder states in the fitting pro-
cedure apparently modified the interaction such that,
without configuration mixing between the Ohio and 2%co

spaces, the lowest (Hicu state in a nucleus is calculated far

above the lowest 2A'co state. With the same interaction
applied in the mixed (0+2)fico model space, the low-lying
Ohio states are pushed down due to mixing with mainly
higher-lying 2'~ states and end up below the 2Acu states.
So the mixing of OAcu and 2%co model spaces causes again
a very large shift of energy levels. However, in contrast
with previous calculations we obtain in the present ap-
proach that this mixing shifts the predominantly OAco

states to roughly the correct position.
One should emphasize here that the present interaction

cannot be used in the small (Hico model space, since the
shell-model picture mould completely break down if, for a
realistic interaction, the pure 2A~ states would indeed lie
below the Otic states.

The resulting rms deviation EE, , =0.65 MeV for in-
truder states shows that it is possible to describe these
states in an acceptable way using all 29 Talmi integrals.
This is in contrast with a previous (0+2)Rco calculation, '

in which only 13 of the 29 Talmi integrals were deter-
mined. With that interaction it was not possible to repro-
duce the intruder states, because of the mixing catas-
trophe. This demonstrates the necessity to parametrize
the interaction with all 29 Talmi integrals, and not only
with the 13 lowest-order integrals. Moreover, the in-
clusion of the intruder states as input for the fitting pro-
cedure is essentia1. Their omission would not lead to a
strongly improved description of the predominantly (Hico

states, but the fitting procedure becomes even less stable
than it already is in the present calculation.

In total 36 intruder states were included in the fitting
procedure. Compared to the rms deviation of the
predominantly 0%co levels, AE, , =0.51 MeV, it follows
that the binding energies of the intruder states are not
calculated with the same accuracy, since their rms devia-
tion is AE„,=0.65 MeV. However, the use of the
(0+2)Rm model space gives the first opportunity to de-
scribe them, and we expect a more accurate description
in a space where 4A'co components are also taken into ac-
count, see Hayes et al.

XI. RADIAL EXCITATIONS

In this section an interesting effect will be discussed.
During our calculations we noticed that in several of the
calculated spectra some levels appear with a relatively
low excitation energy, which cannot be identified with ex-
perimental states.

As an example we will take the spectrum of Be. In
Fig. 1 we show the lowest four calculated 0+ and 2+
states together with the experimentally known states with

TABLE V. rms deviations for the same set of 73 predominantly (Hico levels in A =4—16 nuclei for
several interactions.

Hamiltonian parameters

2 single-particle energies+
11 two-body matrix elements

A'co+21 relative matrix elements
Ace+ 13 Talmi integrals
Ace+29 Talmi integrals

Reference

Cohen et al. '

van Hees et al.
Wolters et al. "

Present calculation

Model space

(0+ 1)Ace

(0+ 2)%co

(0+2)km

rms deviation
(meV)

1.07

0.75
0.68
0.51
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FIG. 1. Experimental and lowest four calculated 0+ and 2+

states in 'Be.

cles. This decay process leads to a continuum in the en-
ergy spectrum. One can consider the calculated low-
lying states, which belong to the class of radial excita-
tions, as a simulation of this continuum by a very limited
number of discrete states. Because their spatial symrne-
try can be written as [f]=[44], they can be identified as
2a clusters. It also implies that in a much larger model
space, one expects to find a large number of such 0+
states representing the continuum above the breakup
threshold for Be, which lies 0.09 MeV below the ground
state energy.

We suggest a possible way to identify the radial excita-
tions by using the operator r = g& rk, where A is the
number of nucleons. This is the essential part of the iso-
scalar electric monopole operator O(C, L=O,M=O). It
has vanishing matrix elements for transitions OAco~OAco

or 2fico~2fico, but nonvanishing matrix elements between
0%co and 2%co states. It is also used to identify breathing
modes.

We thus calculated the reduced matrix elements
( 0 f II gk r& II

%'; ) . The initial state 'p; and final state pf
are wave functions with identical J;T, where
represents the yrast state. If we take for +f all wave
functions with the considered J;T combination, except
4;, we can also obtain the ratio Rf defined as

the same spins and partities. There is a very poor agree-
ment with the excitation energy of the second experimen-
tal 0+ state. However, at higher excitation energy there
are two other theoretical candidates for this experimental
state. With the assignments made in Fig. 1 the calculated
second 2+ state also has no experimental counterpart.
The appearance of these additional levels is not a draw-
back of the present effective interaction, but an effect due
to the discretization of continuum states, as will be dis-
cussed below.

The additional states can be classified as radial excita-
tions. States belonging to this classification have always a
companion at a lower binding energy with the same
quantum numbers J;T. By the term radial excitation of
the low-lying member we mean that the angular part of
the wave function of the higher-lying member state is
about the same as that of its low-lying companion. The
radial part, however, has changed, because a particle has
made a jump to a different major shell, e.g. , Op ~ 1p, so a
change in the harmonic-oscillator radial quantum num-
ber n. Because such an excitation corresponds with an
additional harmonic-oscillator kinetic energy of 1%co, i.e.,
2X —,'fico, the high-lying state is expected at about 1%co

above the energy of its low-lying companion. However,
effects of configuration mixing may change the energy of
the radially excited state. We should emphasize here that
the radially excited states are nonspurious. The spurious
states with the center of mass in a N=1,1.=0 state, that
have the same structure as the radially excited states are
removed from the low part of the spectrum according to
the procedure explained in Ref. 2.

Let us consider again Be. This nucleus is particle un-
stable, since Be decays in about 10 ' s into two a parti-

Rf=
X(&+f II Xrkll~, &)'
f' k

for f,f'Wi . (16)

TABLE VI. Calculated total summed r strength with and

Rf values for several 0+ excited states. See text for further ex-
planation.

Nucleus

4He

Total strength (b )

0.30 p+
p+
p+

100XRf

86.9
1.0
6.5

'Be 10.00 p+
Q+

p+

72.5
1.5

13.5

12C 11.73 p+
Q+

p+

46.0
0.0
0.0

14C 16.95 p+
03+

p+

3.5
17.8
48.4

16O 19.60 0+
03+

Q+

19.3
20.6
30.4

A small value for Rf means that 4'f cannot be considered
as a radial excitation of %', , while a large value means the
opposite. Therefore the operator r might be useful for
identifying the radial excitations. In Table VI we show
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the obtained ratios, defined in (16), as 100XRf for the
lowest excited 0+ states in He, Be, ' C, ' C and ' O.
Besides, the total summed r strength is presented. From
this table it follows that in He, Be, and ' C the radial
excitation of the ground state is mainly concentrated in
the 02+ state, whereas in ' C and ' 0 the r strength is
much more fragmented. In ' C the 02+ state is not a radi-
ally excited state, since it can be reproduced already in
the Okapi model space. It should be noted that the total
summed strengths in the current (0+2)trtco calculation are
smaller than the ones built on pure (Hico states, for which
sum rules are published. This is a consequence of two
effects. First, the 2%co components in the ground state
produce some r strength for 4fico states that are not in
the model space. The second effect consists of the fact
that the presence of 2A~ components in the wave func-
tions leads in general to destructive interference.

Experimentally, some of these 02+ states are observed,
while others are not found. The reason for this is the
threshold above which a nucleus becomes particle unsta-
ble. If the radially excited state lies below this threshold,
it can be measured experimentally as a bound state in the
spectrum. However, if it lies well above the threshold, it
is not possible to observe this level experimenta11y, be-
cause it is part of the continuum, as a result of the fast
decay of the nucleus. The third possibility is that one
finds it close to the threshold, which means in practice
that it is observed experimentally.

Consider again the 02+ states given in Table VI, which
are identified as radial excitations. The 02+ states in He
and ' C are obtained close to the threshold and therefore
are also observed experimentally. The 02+ state in Be
cannot be observed, because it is calculated far above the
breakup threshold. In particular in Be one should there-
fore expect a considerable amount of 80 strength in the
continuum at low energies. In this case it might be very
difficult to detect this strength experimentally, however.

Because the operator r is also involved in the calcula-
tion of 8 (60) values, we present in Table VII the matrix
elements (4f ~~ g„'rk~~%;), where n~ denotes the number
of protons. We compare our calculated matrix elements
with the experimentally known values. ' It follows
that the theoretical values are about 30%%uo too small, but
that the relative numbers are very well reproduced.

Furthermore, it should be mentioned that states, which
can be considered as a part of the discretization of the
continuum, might have been also obtained in other calcu-
lations. However, note that these states cannot be
classified as radially excited states. An example is the —,',+
state at E„=8.5 MeV in He (a+n in a relative
n = 1,1=0 orbit) for an interaction in the (0+1)fico model
space. For this very broad state one has observed 1=0
spectroscopic strength in the proton-knockout reaction
Li(e, e'p) below E„=16MeV in He. Another exam-

TABLE VII. Calculated and experimental (Refs. 27 and 28)
n

values for the matrix elements ( +f ~~
gk~ rk

~~
4, ) (fm ).

Nucleus

4He
12C

16O

0,
02

02

0~

04

0)

Calculated

0.77
3.56
2.98
3.08
3.73
2.08

Experiment

1.10+0.16
5.37+0.22
3.66+0.55

4.40+0.44
3.3 +0.7

pie is the first 1 state in Be (a+a in a relative
n =2, l=1 orbit), obtained with another interaction also
in the (0+ 1)A'co model space.

Summarizing, the following criteria have been used to
identify radially excited states:

(i) The value of the ratio Rf defined in (16) should be
~ 0.5.

(ii) The energy should be roughly about lh'co above the
predominantly (Hico yrast state with the same J and T.

A radially excited state might belong to the discretiza-
tion of the continuum if its energy is well above the
threshold for decay by particle emission and its symmetry
corresponds with the symmetry of the open channel.

XII. CONCLUSIONS

This work was performed as part of the research pro-
gram of the Stichting voor Fundarnenteel Onderzoek der
Materie (FOM) with financial support from the Neder-

landse Organisatie voor Wetenschappelijk Onderzoek
(NWO). The numerical calculations for this work were

performed on a CDC-205 computer with financial sup-

port from the Stichting SURF through the Nationaal
Fonds gebruik Supercomputers (NFS).

The main conclusions from the present approach to
correlate a large number of observables in A =4—16 nu-
clei with a mass-independent phenomenological interac-
tion are given in the following points.

The average deviation between theoretical and experi-
rnental level energies is considerably smaller than in pre-
vious calculations.

Properties of many intruder states can be reproduced
correctly.

Although the mixing between (Hico and 2Acu states can
be very strong, the mixing catastrophe can be avoided.

The expansion of the model space gives rise to the
presence of radially excited states.

In a subsequent paper the spectra of many nuclei, the
structure of the obtained wave functions, and the values
of several observables will be presented. More additional
information about the present results can be found in
Ref. 7, which is available upon request.
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