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Consistent description of intruder states
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The coexistence of normal and intruder states is described within the framework of the proton-
neutron interacting boson model. It is shown that the excitation energy of the intruding
configuration and the structure of both the normal and intruding configurations can be described
without large differences between the strength of the neutron-proton quadrupole force used for ei-

ther. Detailed comparison is made for " Cd.

I. INTRODUCTION

Since the discovery of intruder excitations in atomic
nuclei, many attempts to describe the coexistence of the
"deformed" intruder states with the normal "spherical"
configuration have been undertaken. ' The intruder
states, as observed in or near to single-closed shell nuclei
mainly result from particle-hole excitations across the
closed shell. In doubly even nuclei with a certain neutron
or proton excess, i.e., the Sn and Pb nuclei or the N =82
nuclei, they are formed by 2p-2h configurations (for
single-closed shell nuclei) or 2p-4h (4p-2h) configurations,
in addition to the normal 2h (2p) states, for nuclei with
two valence holes (particles) outside the closed shell. On
the experimental side extensive measurements have stud-
ied the behavior of intruder excitations throughout large
chains of isotopes and/or isotones. These measurements
have shown that the excitation energy of the intruder
states has a minimum near midshell and that the excita-
tion energy E;„,„(0 ) in doubly even nuclei can become
so low that the intruder state becomes the first excited
state, such as in the Pb isotopes. This behavior has been
explained qualitatively as resulting mainly from the at-
tractive neutron-proton quadrupole force. The question
we want to answer is whether it is possible to describe, in
a consistent way, the correct energy of the intruder states
and the structure of the normal (spherical) states as well
as their mixing with the intruding states (Secs. II and III).
As a test we study" Cd in detail in Sec. IV.

II. CONFIGURATION MIXING IN THE
INTERACTING BOSON MODEL

The excitation energy of the lowest intruder state de-
scribed as a 2p-2h configuration in even-even nuclei is de-
scribed by the expression

E;„„(0+) =2(s —s„)—b,E „„;„+AEM+ bE„() .

The first term denotes the unperturbed energy of a 2p-2h
excitation. The second term describes the gain in pairing
energy coming from the extra pair correlation energy

among the particle and hole pair. The monopole correc-
tion AEM describes the shift in unperturbed energy for
the given 2p-2h configuration with changing neutron
number N (for proton 2p-2h intruder excitations) or
changing proton number Z (for neutron 2p-2h intruder
excitations) as caused mainly by the residual proton-
neutron interaction. The last term AE„~& takes account
of the extra binding energy gained due to the increase of
quadrupole collectivity and deformation when the num-
ber of interacting protons and neutrons becomes larger.

In order to evaluate the latter collective contribution to
the excitation energy, hE„~~, we use the interacting bo-
son model (IBM-2) approach to describe intruder
configurations near closed shells. ' Then, for instance,
the normal configuration is described as an interacting
system of N, neutron bosons and one N„proton boson
describing the 2h states with respect to the closed proton
shell. The intruder configuration is described by N neu-
tron bosons and N +2 proton bosons describing the 2p-
4h states. The IBM-2 Hamiltonian for both
configurations is diagonalized separately and an energy 6
is added to the intruder configuration that accounts for
the energy dift'erence between the regular and the 2p-4h
type of intruding configurations. This energy is given by
the three first terms of Eq. (I), so

&—=2(sp —s„)—b,E „„,„+b,E~ . (2)

SEC())) 2KAN N (4)

Finally, the lowest states in both configurations are ad-
mixed by

H;„= (ops„+„ss)' '+P(dg„+d„d„)'
The excited energy spectrum of the mixed configurations
is then obtained which takes into account the collective
contribution b,E„„to E;„,„(0 ). This term is dominated
by the attractive neutron-proton quadrupole-quadrupole
interaction tcg, g„. The lowering of the intruder state
near midshell is then described by the dependence of its
matrix element on the number of valence nucleons. This
matrix element is approximately given by the expression
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TABLE I. The parameters used in the calculation of" Cd. All units are in MeV, except g and y„
which are dimensionless. FS =0.06, FK =0.12, a =P=0.08, and 5=4.00.

0.83
0.30

—0.14
—0.15

—0.9
—0.5

—0.05
0.75

cov

—0.2
—0.2

C2v

—0.05
—0.05

co~

0.0
0.0

C2m.

0.0
0.2

For proton 2p-2h intruder excitations which induce, in
the IBM-2 approach two extra pairs, i.e., hX =2, the
main mass dependence of the intruder excitation is given
by the quadrupole energy gain which varies as

AE„))=4~N .

III. CONSISTENT DESCRIPTION
OF INTRUDER STATES

The quantitative verification of the inhuence of the
neutron-proton quadrupole force up to now has been
somewhat doubtful, in that the strength of the quadru-

pole force ~ describing the intruder configuration was
determined in order to reproduce the intruder energy
E;„,„(0+). This results in rather large different values for
«.(normal) and «(intruder) when describing the normal
and the intruder configuration, for instance x(n) = —0. 14
MeV and x(i)= —0. 19 MeV in Ref. 5. This is not what
one would expect since, as indicated above, the matrix
element of the quadrupole force has a strong and specific
dependence on the number of interacting nucleons and it
should be such that the additional gain in binding energy
when creating an intruder 2p-2h configuration is coming
from the specific N and N„depende nce in b,E„„[Eq.

)! 2

S

I

o+

l2;22 22+
2

!

!

!

!

!

I

I

I

I

I

!

!

!

!

I

I

!

!

I

I

!

I

I

I

I

I

0,'
I

2'2' 2' I

!I

! I

I

I
I

~

Ia I

!

2 3 ~ 2

!

I

!

I

!

!

!

I

!

!

!
~ ~

!

!

!

!

!

1
!

22
2+ i+

!

!

!

!
I

!

!

!

!

I

I

I

I

2+ I ~+

i.+ ! i.' c.' i.+ e'!
2 1 2

! 2

'I

!
!

!

!
!

!

I

I I

FIG. 1. The experimental E2 reduced matrix elements (Ref. 7} (indicated as the full squares with error bars as given in each case)
compared with the theoretical calculations. The theoretical results, for three slightly different values of cd {N„=3)equal to 0.28
MeV (left-hand point), 0.30 MeV (middle point), and 0.32 MeV (right-hand point) are given and connected with a full line. Transi-
tions starting from a given initial state are separated by the vertical dashed lines.
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(4)] and is not forced by choosing different Ir values. By
now taking ~ as also strongly dependent on this number
of nucleons, part of the argument is lost. Secondly, as
shown by Casten, many experimental quantities seem to
depend only on the product N N„, indicating a rather
constant value for K within a shell.

The purpose of our study is to show that when one uses
expression (1), which is derived from shell-model argu-
ments together with a consistent determination of the
IBM-2 parameters for the normal and intruder
configuration, a good description of the mixing of both
configurations can be obtained. The consistency we
claim is based on the fact that the IBM-2 parameters
when going from one nucleus to another within a shell
are approximately known on the basis of microscopic
studies and phenomenological studies of chains of iso-
topes. This shows that some parameters, such as ~, are
nearly constant in a shell, while others, such as g„y,
and c,, are rapidly changing quantities.

48 66

6 =0.28 0.30 0.32 EXP.

ters. We determine these parameters as follows. For
H&BM &(N„=1) the parameters of Ref. 5 are taken with
the exception of the values of g, and g as will be dis-
cussed below. The values for the N =3 Hamiltonian are
determined as follows. First, expression (2) is used to
determine the value of A. The value of the 2p-2h unper-
turbed single-particle energy, 2(E„—ez)=8.780 MeV, is
determined from the experimental one-proton separation
energies using the prescription of Ref. 9. The pairing
correction is obtained from the experimental one- and
two-proton separation energies using the prescription of
Ref. 3 and yields AEp '

g
4.366 MeV. Finally, the

IV. APPLICATION TO " Cd 2+
3+

Since the nucleus " Cd has been investigated by many
authors and an almost complete set of E2 reduced matrix
elements for the low-lying normal and intruder states be-
came available recently we have concentrated, in partic-
ular, on this nucleus. In " Cd the normal configuration
is described as an interacting system of N, =8 neutron
bosons and one N = 1 proton boson with respect to the
Z =50 shell. The intruder configuration is described by
N, =8 neutron bosons and N„=3 proton bosons. The
large set of parameters as occurring in such a mixing cal-
culation gives great freedom in the choice of the parame-
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FIG. 2. See the caption to Fig. 1, but now for the experimen-
tal diagonal E2 reduced matrix elements.

FIG. 3. Comparison between the calculated energy levels in" Cd (left part of the figure) for cd (N„=3) equal to 0.28 MeV
(left-hand side), 0.30 MeV (middle), and 0.32 MeV (right-hand
side) and the experimental data (right part of the figure).
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monopole correction is obtained from Ref. 10 and equals
AEM = —0.412 MeV. So we obtain the value
=2(sj —sj') b—E „„„+bEM=4.0 MeV. Here a
difference with the previous descriptions "' occurs
where a rough estimation of 6=5 MeV was used. This is
already an indication that the additional binding provid-
ed by an ad hoc increase in a in previous calculations will,
in our calculation, come out quite naturally. The last
correction in expression (1) is due to the p n-quadrupole
collectivity and will be given by the extra binding energy
of the N„=3 configuration with respect to the N„=1
configuration. This contribution is essentially dominated
by the neutron-proton quadrupole interaction energy, al-
though the other interaction terms also contribute. Hav-
ing determined b in a precise way, we now start from the
parameter set as obtained in Ref. 5. In order to move the
intruder state to the right energy the value of ~ has to be
lowered from —0.19 MeV to —0.15 MeV. This is exactly
the value obtained for the Ru isotopes, with six proton
holes outside the Z =50 core, by Van Isacker and Pud-
du' and is indeed very close to the value of —0.14 MeV
as used for the N =1 configuration. Finally we have ad-

justed the d-boson energy ed in order to reproduce the
8 (E2) values as discussed below.

As mentioned before we modified the values of g, and
with respect to those used in Ref. 5 for the normal as

well as for the intruder configuration. This is motivated
by the recently measured quadrupole moments of the
three lowest 2+ states: Q (2,+ ) = —0.27 e b

(+0.01,—0.02), +0.69 e b (+0.03,—0.04), +0.22 e b
(+0.08,—0.20). The large and positive quadrupole mo-
ment of the second excited 2+ state is in contradiction to
all previous calculations where a negative quadrupole
moment of —0.31 e b was obtained. Since the quadru-
pole moments in IBM-2 are mainly determined by the
sum y„+y, the experimental values of Q(2i+) and

Q(2z+) are used to determine the sum g„+g as —0.95
for N„=1 and 0.25 for N„=3. This was done before
mixing the two configurations. Furthermore, using the
value for g = —0.90, obtained by Sambataro for "Cd, '

for the normal configuration and y = —0.50, obtained by
Van Isacker and Puddu for "Ru, ' for the intruder
configuration, we obtain the values y„=—0.05 for the
normal and g =0.75 for the intruder states. Here, we
should mention that the resulting spectra and elec-
tromagnetic properties are not very sensitive to the fact
that g„ is different in the N„=1 and N =3 system, as
long as the above sums are fulfilled. They are both some-
what larger than the values of Refs. 14 and 13, namely,
g = —0.2 and 0.4. However, in the calculation of" Ru
no transitions were fitted and Fahlander et al. measured
a somewhat smaller quadrupole moment for the first ex-
cited state in " Cd than the one used by Sambataro to fit

Ir
In order to calculate the E2 transitions for the mixed

states we use the quadrupole transition operator as
defined in Ref. 5:

' "=
i Q.+Q, i+ &(Q.+Q. )g (5)

where (Q +Q,, ), (i=1,3) is the quadrupole operator
acting in each subsystem. The effective charge e& was
taken to be 0.103 e b, which is the value obtained in the
description of the Ru isotopes. ' The charge e, was fitted
in order to reproduce the 8(E2;0,+~2, ) giving

ei =0.086 e b. The ratio e&/e, =1.2 obtained in this way
is smaller than the one of 1.6 used in Ref. 5.

Using a =P=0.08 MeV as obtained in Ref. 5, we final-

ly adjust the boson energy cd for the intruder
configuration taking into account experimental energies
and the 8 (E2) values. It emerged that we have to lower
cd from the value of 0.6 MeV, given for " Ru in Ref. 13,

TABLE II. The mixed wave functions as obtained from the present calculations. For each state the wave function is given for c,d

(N = 3) equal to 0.28 MeV (first row), 0.30 MeV (second row), and 0.32 MeV (third row). The notation ~i ), ~i ) denotes the ith state
with J in the configuration spaces N =1 and N =3, respectively.

0+

0+

—0.073
—0.067
—0.058
—0.021
—0.030
—0.041

0.370
0.491
0.644

—0.919
—0.864
—0.759

—0.034
—0.033
—0.029
—0.042
—0.046
—0.054

14&

—0.046
—0.044
—0.039
—0.019
—0.027
—0.036

0.924
0.866
0.760
0.367
0.488
0.641

0.027
0.035
0.045

—0.127
—0.102
—0.081

0.001
0.001
0.001

—0.035
—0.027
—0.021

14&

0.005
0.008
0.011

—0.024
—0.022
—0.019

2+

23+

—0.126
0.070

—0.028
—0.077
—0.112
—0.117

—0.376
0.747

—0.915
0.796
0.559
0.283

—0.115
0.076

—0.032
—0.089
—0.149
—0.196

—0.037
0.021

—0.007
—0.036
—0.050
—0.059

0.899
—0.605
—0.306

0.382
0.765

—0.921

0.144
—0.254
—0.257
—0.451
—0.253

0.126

—0.004
—0.007
—0.013
—0.025
—0.023

0.020

—0.019
0.033
0.037
0.036
0.022

—0.010

0.883
0.935
0.959

—0.010
—0.006
—0.004

0.032
0.024
0.022

0.002
0.002
0.001

0.459
0.344
0.272

—0.083
—0.077
—0.070

0.009
0.009
0.009

—0.033
—0.033
—0.032
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to 0.3 MeV. The parameters so determined are listed in
Table I. The reduction of ed with a factor of 2 is similar
to that which obtained in a description of backbending in
the Dy isotopes. ' When varying around cd=0. 3 MeV
all features of the quintuplet of states around 1.2 MeV
can be reproduced although not simultaneously for the
same value of cd. This is due to the fact that all five
states are mixing at the same time. To show this we give
in Figs. 1 and 2 the experimental E2 matrix elements
and the theoretical values for c.d=0. 28, 0.30, and 0.32
MeV, respectively. In Fig. 3 we also show the corre-
sponding energy spectra obtained with these three values.
Of the three values the last one best reproduces the exci-
tation energies. In general, the E2 matrix elements are
described in a qualitative way. They still show quite a
strong dependence on the admixtures of the normal and
intruder configuration as well on admixtures between the
states of both configurations among themselves. This is
illustrated in Table II where we show the wave functions
for the states belonging to the quintuplet around 1.2
MeV. Since in "Cd this mixing happens at the same
time for the second and third 0+ state, the second, third,
and fourth 2+ state, and the first and second 4+ state, an
exact reproduction of all the E2 matrix elements is hardly
achievable. Finally, we mention that in our calculation

we can make the ratio

8 (E2;03+~2' )/8 (E2;03+~2)+ )

go to infinity due to an exact cancellation of the normal
and intruder contribution making the denominator equal
to zero. The very large experimental value of 40000 for
this ratio is, in this sense, an indication of the mixing as
pointed out in Ref. 11, albeit in a more schematic way.

The values of a and P, as used above, are still some-
what arbitrary concerning their microscopic understand-
ing. In order to show their inhuence we have calculated
the spectrum and E2 matrix elements using the values
a= —0.25 MeV and P= —0. 16 MeV as obtained from
the shell-model arguments used in Ref. 5. The larger
mixing matrix element deteriorates the fit of the energy
spacings, due to the fact that levels with the same J re-
pel each other more. On the other hand, the E2 matrix
elements are reproduced rather well by this calculation,
as shown in Fig. 4. In this figure, we also give the results
for the simple vibrational mixing calculation and the cal-
culation of Ref. 5. Finally, for completeness, we compare
in Table III the theoretical and known experimental E2
matrix elements for the decay of the higher-lying 04+, 24+,

and 2&+ states.
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FIG. 4. The ratio between the calculated and experimental F2 reduced matrix element for di6'erent theoretical calculations. The
empty circ1es are the present mixing calculations with a= —025 MeV and P= —0. 16 MeV ( O ), the triangles the present mixing cal-
culations using the parameters of Table I (6 ), the squares the previous mixing calculation ( ), the full circles the results of the sim-
ple vibrational mixing calculation (~); both are taken from Ref. 7. The two dashed lines correspond to a deviation with a factor of 2
and with a factor of 5, respectively.
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J+ J+
i f

o4+

2+
24'

p+
p+
2+
2'

25+ 0,+

03+

p+

2I
2+

Theory

0.023
0.259
0.0067
0.171
0.047
0.119
0.47
1.197
0.030
0.59
0.0
0.0105
0.205

Experiment

0 09'
0.26'
0.056
0.86
0.87
0.08
0.28b

1.33
0.042
0.61
0.61'
0.33
0.28

'The experimental matrix elements are uncertain because of the
influence from uncertain signs of interference terms.
The experimental matrix elements are obtained assuming no

M1 admixture following Ref. 7.

V. CONCLUSION

We have shown that by using a description, expressed
by (1), in order to determine the relative excitation energy
of intruder configurations with respect to the normal
configuration, one can obtain a consistent value for the

TABLE III. Comparison between the theoretical and known

experimental E2 matrix elements for the decay of the higher-

lying 04+, 24+, and 2&+ states in " Cd.

f(J, JJE2()JI )[ (eb)

quadrupole strength K in both the normal and &ntruoer

state. After reducing the d-boson energy for the intruder
state by a factor of 2, as done in Ref. 15, a good descrip-
tion of the energy spectra is obtained. In order to calcu-
late the E2 transition matrix elements we used the mea-
sured quadrupole moments in " Cd to determine the
quadrupole operator and determined the e6'ective charges
from the 8 (E2;0,+ ~2,+ ) values in "Cd and the Ru iso-

topes. From this, a good description of the mixing of the
lowest intruder states with the normal deformed states
can be obtained. We have not discussed the higher-lying
levels around 2.5 MeV, since we expect these states to
eventually show 4p-6h contributions. It ~ould be in-

teresting to see whether an approach along the lines of
Ref. 15 would be able to explain the states at higher ener-

gy. Calculations for the whole region of even-even Cd
nuclei (98 ~ A & 130) are in progress.
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