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A relativistic random-phase approximation (RPA) description of discrete excitations in closed-
shell nuclei is presented using a spectral approach, with emphasis on the nature and importance of
self-consistency. A functional derivation of self-consistent RPA equations is given, based on a non-

relativistic formalism, and its generalization is discussed. Vacuum polarization is neglected, but
consistency demands configuration spaces that include both particle-hole pairs and pairs formed
from occupied states and negative-energy states, which ensures current conservation and the decou-

pling of the spurious state. Results in the Walecka (0-co) model for various isoscalar states in "C,
' 0, and Ca, are given, including electron scattering form factors.

I. INTRODUCTION

With nuclear experimental facilities moving toward
higher momentum transfers [e.g., Continuous Electron
Beam Accelerator Facility (CEBAF)] and extreme condi-
tions [e.g, Relativistic Heavy Ion Collider (RHIC)], new
insight into the treatment of relativistic many-body sys-
tems of hadrons will be required. To draw definite and
reliable conclusions about such systems, theoretical cal-
culations must maintain general physical properties, such
as covariance, gauge invariance, and causality. One way
to do this is to use a relativistic quantum field theory
based on mesons and baryons, which is referred to as
quantum hadrodynamics (QHD). ' In this paper, we
present QHD calculations of discrete excitations in
closed-shell nuclei, with emphasis on the nature of self-
consistency in this particular problem and its role in
preserving basic physical principles.

One of the compelling aspects of QHD is the richness
of physics at the mean-field level. Mean-field approxima-
tions to QHD provide a relativistic saturation mechanism
of nuclear matter and naturally predict the spin-orbit in-
teraction. ' Self-consistency at this level ensures that the
description of nuclear matter is covariant and thermo-
dynamically consistent. Mean-field (Hartree) calcula-
tions of finite nuclei successfully describe ground-state
rms radii, charge densities, neutron densities, quadrupole
deformations, and spin-orbit splittings ' and provide
densities for calculations of elastic proton-nucleus
scattering. The predictions of spin observables, using a
simple impulse approximation in conjunction with Har-
tree densities, have been remarkably successful. We
would like to describe excitations as the consistent linear
response of mean-field ground states.

Since relativistic mean-field models have been most
successful in describing bulk isoscalar properties of nu-
clei, it is reasonable to expect that isoscalar, low-lying
collective excitations of natural parity will be well de-
scribed using a time-dependent mean-field picture. In

such a picture, all of the nucleons can contribute
coherently to the excitation through the mean meson
fields, which are themselves determined by time-
dependent fluctuations in the scalar and vector nucleon
densities. By linearizing the time-dependent Hartree
equations, we obtain the relativistic random-phase ap-
proximation (RPA}. Here we present a relativistic RPA
description of discrete collective excitations, applying a
spectra approach. These calculations provide consistent
relativistic nuclear structure input for new studies of the
inelastic scattering of polarized protons and other probes.
(Similar calculations using nonspectral methods have
been reported recently. ' }

An alternate and more general route to the RPA is to
formulate the linear response in terms of a Bethe-Salpeter
equation for particle-hole scattering. " Two questions of
consistency arise in this context. First, we must specify
both an approximation to the fermion self-energy and to
the Bethe-Salpeter kernel. In general, they cannot be
chosen independently and still maintain conservation
laws. As can be shown from the linearization described
above, the consistent linear response of a Hartree ground
state is given diagrammatically by the sum of ring contri-
butions to the polarization propagator. We will demon-
strate this relationship in the context of a functional ap-
proach to the RPA equations, which may be generalized
to higher-order approximations.

A second question of consistency arises when a mean-
field approximation to the self-energy is used. Two types
of relativistic mean-field approximations, which we shall
refer to as the relativistic Hartree approximation (RHA)
and the mean-field theory (MFT), can be applied to calcu-
lations of finite nuclei. The RHA is the full one-nucleon-
loop approximation, which incorporates the effects of the
mean fields on the states in the Dirac sea and so includes
vacuum contributions to the energy and source densities. '

The MFT is Walecka s original high-density approxima-
tion to nuclear matter; it includes self-consistent contri-
butions to the energy and the source densities from only
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the occupied positive-energy nucleons. ' Here we are in-
terested in the linear response to an MFT ground state
and how it is formulated.

One might think that the linear response of the MFT
would involve only conventional positive-energy
particle-hole configurations, as in the nonrelativistic
RPA. However, this neglects the fact that a complete
relativistic single-particle basis includes positive- and
negative-energy solutions. Recent studies of nuclear
currents in relativistic mean-field theories have em-
phasized the contribution to the MFT elastic response
from the mixing of positive- and negative-energy single-
particle solutions. ' This mixing is responsible for the
quenching of the isoscalar part of the magnetic moment
of nuclei. We show here that it is also essential for the
MFT inelastic response, and quantify its importance.

The RPA equations can be solved using either "spec-
tral" or "nonspectral" methods. In the spectral ap-
proach, the lowest-order polarization insertion (nucleon
ring) is built from Hartree propagators written in a spec-
tral representation. That is, each Green's function is
written as a discretized and truncated sum over eigen-
functions of the nucleon Dirac equation, In the nonspec-
tral approach, the ring is rewritten in terms of a sum over
occupied (positive-energy) states and a nonspectral
Green's function, which is constructed at each energy
from linearly independent solutions of the Dirac equa-
tion.

The poles of the full particle-hole (polarization) propa-
gator occur at the collective excitation energies of the nu-
cleus and the residues are proportional to the correspond-
ing transition amplitudes. " With the equation in spectral
form, one can equate residues at the poles to derive RPA
matrix equations of the same form as in the nonrelativis-
tic RPA. These matrices are diagonalized to obtain
discrete energies and RPA amplitudes in the discretized
basis. In contrast, in the nonspectral approach one evalu-
ates the response function at a given (complex) frequency
by solving the integral equation directly (by iteration or
matrix inversion). One then searches for poles near the
real axis (for discrete states) and extracts the residues to
determine transition densities. In principle, at least,
these two methods should give the same answers for
discrete excitations.

In this work, we apply spectral methods. This ap-
proach lets us clearly show that the negative-energy
states (which have been omitted from previous spectral
RPA calculations' ) are required to obtain a consistent
result; while quantifying their importance. In particular,
we show that configurations with negative-energy states
are needed to realize the spurious state as a decoupled
zero-energy state and to maintain current conservation.
Our calculations also provide a useful check of nonspec-
tral calculations. '

We restrict our discussion to isoscalar excitations, al-
though extending the formalism given here to isovector
excitations is straightforward. Since ground-state (bulk)
properties in the Hartree approximation are mostly
determined by the isoscalar mesons, only the isoscalar
particle-hole interaction is significantly constrained by a
consistent treatment of the excited states. As argued

above, we may expect a successful description of collec-
tive isoscalar excitations in the RPA, but a good descrip-
tion of isovector excitations does not necessarily follow.
In fact, other authors have found that the isovector
particle-hole spectrum is not realistically described in the
Hartree-RPA approximation, ' and suggest that a more
sophisticated treatment is required (e.g., Hartree-Fock).

The outline of the paper is as follows. In Sec. II we
discuss self-consistency and conserving approximations,
and outline a functional approach to consistent RPA
equations. In Sec. III we present the spectral realization
of these equations and discuss their solution. Selected re-
sults for ' C, ' 0, and Ca are given in Sec. IV, with il-
lustrations of current conservation and the decoupling of
the spurious state. Section V contains some final discus-
sion and a summary.

II. SELF-CONSISTENCY
AND CONSERVING APPROXIMATIONS

Self-consistent approximations to the many-body prop-
erties of strongly interacting nonrelativistic systems have
been extensively studied. ' ' But can we make trunca-
tions of a (strongly interacting) relativistic quantum field
theory that are self-consistent in some sense? In theories
that can be treated perturbatively, one can work con-
sistently to a given order in the coupling constant. This
is not a useful prescription for strong-coupling theories,
which we consider here, where nonperturbative approxi-
mations are essentia1. Another approach is to work to a
given order in a different expansion parameter, such as A

in a loop expansion, which is nonperturbative in the
mean meson fields. However, the ordinary loop expan-
sion has not proven useful (beyond one loop) for quantum
hadrodynamics. ' As an alternative, we will focus on a
prescription for nonrelativistic self-consistent approxima-
tions.

We begin by specifying what we hope to achieve by
working self-consistently. We cannot solve the full field
theory so we must make approximations, and strong cou-
plings imply that diagrams at every order in the cou-
plings must be included in any useful approximation.
But, to the greatest extent possible, we want to maintain
the constraints imposed by symmetries (Ward identities)
and basic physical principles (e.g. , causality). (This is a
principal motivation for the QHD approach to the rela-
tivistic many-body problem. ') Self-consistency can help
to define physically reasonable truncations that maintain
desirable features of the full theory. In addition, given an
approximation to the ground state (or equilibrium state)
of a relativistic system, we want to know how to con-
sistently describe the linear response so that symmetries
are preserved. Self-consistency can ensure that the same
correlations that are important in determining the
ground state (in some approximation) determine the be-
havior of small deviations from equilibrium. '

These considerations are particularly important here
because self-consistency plays a greater role in relativistic
models of nuclei than in nonrelativistic descriptions. For
example, the single-particle wave functions for nonrela-
tivistic Hartree-Fock in nuclear matter are simply Pauli
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6N~X=X[G]=+
6G

(2. l)

and the propagator is determined self-consistently
through Dyson's equation:

spinors times plane waves. In relativistic Hartree in nu-

clear matter, the wave functions are plane waves multi-

plied by four-component spinors, which must be deter-
mined self-consistently. In practice, it will usually be
necessary to relax self-consistency to make a calculation
tractable. This can be particularly dangerous in the rela-
tivistic many-body problem because of the characteristic
large mass scales (e.g. , the meson mean fields) and so we

need to be aware of the sensitivity of observables to viola-
tions of self-consistency. While in nonrelativistic nuclear
physics the penalty is often small and more convenient
approximations can be used, substantial and essential er-
rors can be made in the relativistic approach. The iso-
scalar "magnetic moment problem" provides a charac-
teristic example. (See Ref. 8 for details and other refer-
ences. }

To gain insight into defining useful truncations of rela-
tivistic field theories, we can look at schemes for deriving
nonrelativistic self-consistent approximations. The
many-body problem in this case involves fermions or bo-
sons interacting via instantaneous two-body potentials.
Baym and Kadanoff showed how to generate a class of
self-consistent approximations to self-energies and corre-
lation functions that conserve particle number, energy,
and momentum, and which are thermodynamically con-
sistent. ' ' Furthermore, spurious modes due to sym-
metries broken by the self-energy appear as zero-energy
poles in the linear response function. These are called
conserving approximations. The approach they
developed provides guidelines for selecting the partial
summation of diagrams that determine an approximation
to the self-energy and linear response functions.

It is natural to try to apply the same approximations or
their analogs to relativistic models. However, generaliz-
ing the Baym-Kadanoff formalism to a relativistic quan-
turn field theory to address these questions is not straight-
forward because of new aspects of the relativistic prob-
lem, such as dynamical mesons, retardation, and ultravio-
let divergences. In a fully interacting field theory, we
must deal with Dyson's equations for the nucleon and
meson propagators, as well as the infinite hierarchy of
equations for the vertices. As a result, not all nonrela-
tivistic approximations remain conserving when made
relativistic. Nevertheless, the mean-field approximation
can be formulated by adapting the nonrelativistic frame-
work, and we do so below.

First, we present a functional version of the Baym for-
malism schematically; more details can be found in Ref.
18. One introduces Nz, the set of two-particle irreducible
Feynman graphs, considered as a functional of the one-
body propagator G: 4~=42[G]. A conserving approxi-
mation starts with an approximation to 4z, which can be
made diagrammatically by specifying a subset of the
graphs. Then the proper self-energy is determined by a
functional derivative:

G=GO+GOX[G]G . (2.2)

(The signs are for bosons/fermions. ) Finally, the correla-
tion function L satisfies a Bethe-Salpeter equation whose
kernel is found from X[G]:

L=+GG+GG L .
5G

(2.3)

Examples of symmetry-conserving approximations in the
nonrelativistic problem include the Hartree, Hartree-
Fock, and Brueckner-Hartree-Fock approximations.

If a symmetry of the Hamiltonian is associated with a
unitary transformation U, so that

[U,H]=0, (2.4)

and the propagator is transformed G according to

G= UGU (2.5)

then

4z[G]=&2[G] and X[G]=X[G] . (2.6)

If 6=G, then [U, X]=0 and U is a self-consistent sym-
metry, which is maintained as Dyson s equation is iterat-
ed. An example is gauge invariance that leads to current
conservation. If GAG, then X[G]AX[6], and U is a
broken symmetry. However, as demonstrated in Ref. 18,
the construction from 42 implies that the particle-hole
Green's function L has a pole at zero energy. An exam-
ple of a broken symmetry is translational invariance,
which is broken by the mean-field propagator for a finite
nucleus. The zero-energy pole in this case is the isoscalar
1 spurious state.

III. RELATIVISTIC SPECTRA RPA

A. Consistent RPA equations

In adapting the conserving-approximation formalism
to the relativistic mean-field approximation, lowest-order
meson propagators and vertices replace the potential, but
the rest of the development goes through basically un-
changed. However, this works only because of the sirn-

plicity of the Hartree approximation. Generalizing to
higher approximations requires fundamental changes, be-
cause the interaction is mediated by dynamical mesons.
As a result, 42 will become a functional of the full meson
propagators and vertices. Such functionals are intro-
duced in the effective action formalism of Refs. 19 and
20, but a generalized conserving-approximation formal-
ism does not yet exist.

In the nonrelativistic problem, the simplest subset of
graphs for 42 leads to the Hartree approximation and to
the RPA. It is also the basis for our relativistic treatment
of the MFT as a conserving approximation. Specifically,
the relativistic mean-field 4z is
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@2[GH]=——g, fd(1)d(2)Tr[GH(1, 1+)] tors. ' The trace is over Dirac indices and isospin and we
use the shorthand

X bo(1 —2)Tr[GH(2, 2+ )] fd(1)= fd'x, dt, . (3.2)
——g„ fd(1)d(2)Tr[y„(1,1+)]

XDg (1—2)Tr[y (2,2+)], (3.1)

where GH is the self-consistent Hartree propagator, the
1+ notation indicates the time-ordering prescription for
single-fermion closed loops (see Ref. 1), and ho and Dlo"

are the noninteracting scalar and vector meson propaga-
I

Note that Lorentz covariance dictates the use of the full
interaction in (3.1) (i.e., y" and not just y ). This is be-
cause we need to consider arbitrary variations of GH,
even though in the spherical ground state the three-
vector contribution (the meson field V) vanishes.

The mean-field self-energy is defined by a functional
derivative:

5~'z[GH]

5GH(1, 2)

=5 (1—2) ig, f—d(3)60(1—3)Tr[GH(3, 3+ )] y„i—g„f d(3)DO" (1—3)Tr[y„GH(3, 3+ )]:—5 (1—2)[X,(1)—y„X&(1)], (3.3)

[y„[i@'+X"„(x)] [M+—X,(x)] j GH(x, x') =5 (x —x') .

(3.5)

Equation (3.5) can be solved by expanding the Green's
function GH in a standard spectral representation

dco —ice( t )
—t2 )

GH(1, 2) =
2

G (Hr, , r~;a))e

GH(ri, r2, co)=gP '(r, )t/i (r2)G (co),
(3.6)

where the Dirac indices are implicit. Then the Dyson
equation for the nucleon propagator is

GH(1, 2)=Go(1,2)

+fd(3)d(4)Go(1, 3)XH(3,4)GH(4, 2), (3.4)

where Go is the noninteracting Green's function. By
operating with Go and using the definitions above, we
find

As it stands, (3.6) leads to a divergent self-energy when
substituted into Eq. (3.3) because of contributions from
the occupied Dirac sea, so we must renormalize. If we
follow this path, we define the RHA. [Note, however,
that we would have to extend the framework implied by
Eq. (3.1) to deal with the counterterms. ] The usual MFT
prescription is to keep only contributions to the self-
energy (or in the RPA rings) from terms that are explicit-
ly density dependent. Equivalently, one normal orders
operator products in the vacuum of the self-consistent
problem. However, simply eliminating G (co) is not an
acceptable solution within the conserving-approximation
framework because GH(1, 2) would not then satisfy Eq.
(3.5): The positive-energy solutions alone are not a com-
plete set.

However, we can make an alternative ansatz for GH,
which we will designate GH, which accomplishes the
MFT prescription by shifting the negative-energy poles
to the lower-half plane, as if the Dirac sea were empty.
In particular,

where P (r) is a complete set of eigenstates with eigenval-
ues e, including positive and negative eigenvalues, and

8( —e ) 8(e eF) 8(e~ —e )8(e—)
G (co)= + +

co —e~ —rg co—e~+rg co —e~ —tg

8( —e ) 8(e —e~)
G (co)= . +

&~+ &'g &~+ &'g

8(eF —e )8(e )+
N —6 —lq

(3.9)

=G (co)+G (co), (3.7)

G (a))=2ni5(~ e)8(e~ e)8—(e ) . — (3.8)

where eF is the Fermi energy. In the first two lines, we
have separated the negative-energy [8( —e )], unoccu-
pied positive-energy [8(e —eF )], and filled positive-
energy [8(ep e }8(e )] states. The third line is another
useful grouping of these terms. The Feynman (G ) and
density-dependent (G } parts of the Hartree Green's
function are defined by

8(e } 8( —e }
G (co)= +

CO E~+2'g CO E~ l'g

This new propagator is also constructed from a complete
set of solutions to the Dirac equation, and satisfies
Dyson's equation. (We also modify Go in the same
manner. } The integrals in the self-energies pick up only
the positive-energy occupied state poles, as desired.
Thus, we reproduce the normal-ordering prescription of
the MFT using the analytic structure of GH. Further-
more, we maintain the same spectral content: The
modified propagators will give us the same ground-state
and excited-state observables (energies and densities) as
obtained through the MFT prescription.

Substituting GH into Eq. (3.5) yields the familiar Dirac
eigenvalue equation for the ground-state MFT,
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I
—ia V. +P[M —g, go(r}]+g„[VO(r)—a V(r)])g (r)=e f,(r), (3.10)

where g, go=——X, is the scalar mean field and g„VO ———X"„ is the vector mean field [with V"=(VO, V)]. There are solu-
tions for both positive and negative energies. The self-energies are evaluated using GH in Eq. (3.3), which results in the
usual MFT meson equations.

Finally, we can apply Eq. (2.3} to write the Bethe-Salpeter equation for the propagator L, defined as

L(1,2;1',2')= —I(]p]]IT[/(1)f(1')p(2)g(2')]I]I']])—(]IIOIT[g(1)f(1')]I'Po)(]TOIT[p(2)p(2')]I]po) I . (3.11)

The consistent MFT/RPA kernel follows from

5X (1,2) 4 4 ~ 2 (1) 2 v (3)

56H(3, 4}
=5 (1—2)5 (3—4)[ ig—5 (1—3)—y' 'ig D"'(1—3}y' ']s 0 p u 0 v

=i5 (1—2)5 (3—4)V(1,3), (3.12)

which implies that L is defined by a ring sum, as expected. The last line in (3.12) defines the particle-hole interaction V.
To study particle-hole excitations, it is suScient to consider I. with 1'= 1+ and 2' =2+, which defines the polariza-

tion Green's function H:"

i II.„,d(1, 2) = (]I]OI T[p, (1)fb(1)g, (2)gd(2)] I]110)—(]p]]If.(1}fb(1}I]po}],']po g, (2)p„(2)I]po }
dco IC4l(f

l t2 )=i II(r], rz', co)e (3.13)

For later convenience we have indicated Dirac spinor indices explicitly (they will usually be suppressed). The Fourier
transform of the polarization function has simple poles at the discrete particle-hole excitations of the system, with resi-
dues given by the particle-hole amplitudes. Because of the simple form of the kernel (3.12},we can consider an equation
for II instead of the full L. (This is not possible beyond the Hartree/RPA approximation. )

Then the integral equation for the modified MFT/RPA polarization, II&p~, is given by [see Eq. (2.3)]

11„„(1,2}=11„(1,2)+ fd(3)d (4)Il„(1,3)V(3,4)II„„(4,2), (3.14)

where V(1,2) is given by Eq. (3.12) and IIMFT, the MFT noninteracting polarization propagator, is constructed using
GH,

I

] IIMFT(rl r2 co) f 2
GH(r], r', 2co+co)GH(r2, r],'co )

I

=g@r])g (r])P (r2)fp(r&) f 6 (co+co')6 p(co') .
a,P

Applying Eq. (3.9), we obtain

IIMFT(r], r2', co)= y yp(r])y (r])ll p, p(co)y (r2)qp(r2),
aP;a'P'

II . ~ (co)=5 5MFT &aP &Pa

~—e +rg ~+aaP Pa

N p=p hp+v, hp,

(3.15)

(3.16)

where E'ap=E'a 6'p, and p, h, and U are the particle, positive-energy hole, and negative-energy state regions defined
by

p =8(e —ez}, h =8(e~ e)8(e —), v =8( e) . — (3.17}

Thus, we find contributions from particle-hole pairs and from pairs made of negative-energy states and positive-energy
holes.

If we had used GH instead of GH in Eq. (3.15), we would have found

G (co+co')Gp(co')=6 (co+co')Gp(co')+6 (co+co')Gp(co')+G (co+co')Gp(co')+6 (co+co')Gp(co') . (3.18)

The usual MFT prescription of including only explicitly density-dependent contributions would require the 6 6& term
in (3.18) to be removed by hand. From this point of view, we remove the full vacuum polarization, leaving minus the
part of the vacuum response that is Pauli blocked in the nuclear medium. The resulting polarization propagator HM„T
would have the same spectral content as IIMFT (which is what we care about), but the poles involving negative-energy
states would be in the opposite half-plane.

Expanding HRpA ~n the particle-hole basis,
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ARPA(r„r2, c'o ) = g fp(r, )g (r, )A p "&(co)g (rz)g&(r2 )

ap; a'p'

we get from (3.14),

A "' (~)= A "~(~)+A M (~)K(~)A RPA(~) .

(3.19)

(3.20)

We have defined

K p p(c.o) = (a—,P'l V(co)lP, a'),
and the matrix elements by

&a,pl V(~)la', p')= f d r, f d r2[pp(r))p (r2)V (~12)g .(r))g&(r2)l

(3.21)

(3.22)

V.(&12)= —PA 44m r)2

—rn, r&2
U e+(1—a, a2)

4m
(3.23)

I p ,fr=5 5.pp(N p+Np ) .

Then from (3.20), we find

A RPA( )
—1 A MFT( )

—1 K( )

where

II MpFT p(N) 1=5...5p p(~ e-.p)(N.p Np. ) —. —

(3.24)

(3.25)

(3.26)

We invert (3.25) by considering the eigenvalue problem,

where r, 2=~r& —rzl, and m, , =—m, „—~ incorporates-2
the effects of retardation. Because the interaction V is

used in matrix elements of four-component Dirac spi-
nors, its form is deceptively simple. If the interaction
were to be reduced for use with conventional two-
component spinors, it would become an infinite series of
terms with complicated radial and spin dependencies
(e.g., tensor, spin-orbit, etc.). We note once again that it
is important to keep the full interaction for consistency.

Equation (3.20) can be reduced to an RPA matrix
equation for discrete states by introducing a Lehman rep-
resentation and equating residues at excited-state poles. '

We give an alternative derivation here, based on the dis-
cussion in Ref. 11~ Within the extended particle-hole
space, we can define an inverse for the polarization ma-
trices such that H 'H =I, where

A p~p(a)„)=Neap[5 ~5ppe p+K p .p(cc)„.)]N .p

(3.30)

gN p(X'"p'", Y'"p" )
ap

X p
y(n) ~n~n, n' &

ap
(3.31)

and completeness relation

8 p p(ru„)=. N p[K p p~(co„)]N .p .

These are the equations we actually solve. If we had fol-
lowed the usual MFT/RPA prescription, we would have
obtained the same equations, although the labels of X and
Y for negative-energy configurations would be switched.
The observables of interest (excitation energies and tran-
sition densities) are the same.

In these equations, co„ is the energy difference between
the excited (positive-energy) collective particle-hole exci-
tation and the ground state. For the states we consider, it
is much smaller than the meson masses, and so retarda-
tion is negligible for the matrix elements in (3.23). (This
has been verified numerically; see below. ) If we neglect
retardation, properties of solutions to the nonrelativistic
RPA carry over directly. The solutions of the RPA
equations (3.29) satisfy the orthogonality condition

y[A MFT
( )

—
1 K (~ )]g(n) —0

a'p'
(3.27) cd

(n)

N pN p+A„(„) (X("p)', —Y'"p)')=N p5 .5pp1,
n

a'p'

The states in (3.27) are restricted to the particle-hole basis
defined by the identity matrix (3.24). We can write the
eigenvectors C'

p more conventionally as where

(3.32)

(3.28)

Substitution of (3.28) into (3.27) gives the relativistic
spectral RPA equations,

A,„=l, for n )0;
= —1, for n(0.

We may now use (3.25) and (3.27) to find a solution to

~(n)~ ap;a'p' ~ ap;a'p' Xa'p'

~ap a'p' ~ap a'p' Ya'p'

X'ap)

~neap y(n)
ap

(n) (n)e (n) (n)e
RPAA

CO CO„+1' CO+Cd„('g
(3.33)

where

(3.29)
Thus the solutions of (3.29) are indeed the poles of the
polarization operator.
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B. Form factors and current conservation

To calculate inelastic electron scattering form factors,
we follow the discussion in Ref. 1 and introduce an
effective electromagnetic current operator, to be used
with relativistic Hartree wave functions:

M~M'(q) —= fd x j~(qx) YJM(Q)p'"'(x)

= ( J„M„OO(JM )M,'"'(q)/&2J+1,

TJL~(q)—:f d xjI (qx)YJL~(Q) J'"'(x)

:—( J„M„OO~JM ) TJI'(q)/&2J+ 1,

(3.37)

J "(x)='f(x)y"Qg(x)+ B„(g(x)i(.cr""P(x)),
2M

(3.34)

where the field operators are in the Heisenberg represen-
tation, and

where jL is a spherical Bessel function, and YJL~(Q) are
the vector spherical harmonics. The longitudinal and
transverse form factors are given in terms of the reduced
matrix elements, Mz"'(q) and TJI'(q),

Q
—= —,'( I+r3),

A, =A, —,'(I+r3)+A, „—,'( I —r3)
(3.35)

F (q)= ~MJ("'(q)~

F'(q) =
~ TJ '"'(q) ~'+

( TJ "'"'(q))'
(3.38)

are the charge and anomalous magnetic moment opera-
tors. The momentum dependence of the single-nucleon
form factors is folded into the nuclear form factors at the
end of the calculation. The idea is that the nuclear struc-
ture in mean-field models is dominated by neutral mesons
while the single-nucleon structure, at least within QHD,
is predominately determined by charged mesons, which
are beyond the scope of the Hartree/RPA. Thus, it is
reasonable to decouple these contributions.

Matrix elements of the current between the closed-shell
ground state and the RPA excited states (labeled by n)
define the transition currents. In terms of the RPA am-
plitudes, transition current densities are given by

J"'"'(r)=-,'gc' q*(tt (r)y"PZ(r))
aP

2+N @[X'J—"g (r)y"Pp(r)
aP

+ Y'."p'fp(r)y"4. (r)] (3.36)

for the Dirac part of the isoscalar current, with analo-
gous expressions for the anomalous current. %ith

»'"'(r) —=(p'"'(r), J'"'(r)),

the multipole charge and current densities for transitions
between the ground state (with J=O) and the RPA excit-
ed state (with J=J„)are defined by '

where the electric and magnetic reduced matrix elements
are given by

Tjel( n )
( q )

1/2

zj+( q
(n)

J+1+ 2J+1
Tmas(n)(q) T (q)

' 1/2

TJ"I ((q)

(3.39)

Explicit expressions for reduced matrix elements of rela-
tivistic multipole operators have been given else-
where. ' '

The current conservation relation for IIRp~(1, 2) can be
derived most easily by considering an equivalent formula-
tion of conserving approximations, ' ' in which we con-
sider the propagator 6 (1, 1') in the presence of a nonlo-
cal source U(2, 2'). lf we can determine G with a given
approximation for the self-energy (which also depends on
U), the consistent particle-hole correlation function L is
given by

L(12.1 2)= 56 (11)
5U(2', 2)

(3.40)

This is the same I. as derived from 42. ' As before, II is
obtained by setting 1'=1+ and 2'=2+.

Now consider the equations for G H in the presence of
an external source U:

fd(1")t[iy„()",„—M —XU(1")]5 (1—1")—U(1, 1")IGH(1",1')=5 (1—1'),

fd(1")6 (1,1")I5 (1"—1')[ iy„dI'„M—X(1"—)]——U(1",I')] =5 (1—1'),
(3.41)

where the derivatives in the second equation act to the
left. If we subtract these equations, set 1'=1+, take the
Dirac trace in the spinor indices associated with 1, and
then take the functional derivative with respect to
U(2, 2') and set U =0, we obtain a current conservation
relation for L(1,2;1,2'). It has singular pieces [propor-
tional to 5 (1—2) and 5 (1'—2')] coming from the time
derivative of the time-ordering theta functions in L [see

I y„I,ba", 11,"b',d(1,2)=0, 1&2 . (3.42)

(One can show an analogous relation in the other vari-
able. ) The terms involving the self-energies cancel au-

Eq. (3.11)] and the equal-time commutation relations for
the fermion fields. We avoid these terms by considering
separate coordinates 1 and 2 (1%2), with 2'=2+, and find
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tomatically euen if they are not consistent, but only be-
cause the self-energies are local in space-time in the
mean-field approximation. Thus, current conservation in
the RPA requires completeness [in Eq. (3.41)], but not
consistency of the interaction.

After taking the Fourier transform in time, Eq. (3.42)
is satisfied for all co, and in particular, for co=co„. In this
case, we obtain the current conservation relation for the
transition current [using Eqs. (3.36) and (3.33)]:

iso„p'"'(r)+V' J'"'(r) =0 . (3.43}

Equation (3.43) implies that the longitudinal part of the
multipole current, L~"'(q), is proportional to the charge
density. That is,

qL&"'( q) +co„M&"'(q)=0,
where

1/2

(3.44)

L'"'(q) =i J+1
2J+1

J+ 2J+1

Tz"x+ t (q)

' 1/2

(3.45)

This relation is tested (and verified) numerically below.
One can also prove Eq. (3.43) directly using the matrix
RPA equations and completeness of the single-particle
basis. '

C. Calculational details

We make an angular momentum and isospin reduction
of (3.28) and (3.30},and reduce (3.29) to a (generalized) ei-
genvalue problem for states of total J and T, exactly as in
the nonrelativistic case. To evaluate the matrix elements,
we expand the Yukawa functions in spherical harmonics
and Bessel functions. The problem is then reduced to
Slater integrals and standard angular momentum cou-
pling coefficients and reduced matrix elements. (See Ref.
13 for formulas and further details. ) The RPA eigenval-
ues and eigenvectors are obtained as the result of stan-
dard matrix inversions.

As we have stressed, the single-particle spectrum in the
Hartree approximation, namely the eigenvalues of the
Dirac equation that describes nucleon motion, includes
both positive- and negative-energy states. For spherical
nuclei, there are a relatively small number of weakly
bound positive-energy states and then a positive-energy
continuum starting at the nucleon mass. In contrast, the
strong scalar and vector potentials add in the effective
negative-energy potential, leading to a large number
(several hundred) of bound negative-energy states. For
example, there are eight bound s&/z negative-energy lev-

els in ' 0 for the mean-field model of Ref. 7.
We approximate the exact GH(r„r~) by discretizing

the continuum solutions and truncating the sums to a
finite number of terms. The positive and negative con-
tinua are discretized by imposing boundary conditions on
the single-particle wave functions at a radius R several
times the nuclear radius. Various choices for the bound-
ary conditions can be made, including those used in bag

models. In practice, the most convenient choice is to set
either the upper or lower (but not both) components of
the Dirac spinors to zero at R and normalize to one in-
side the sphere. This generates an orthonormal basis that
is approximately complete. The discretization can be
tested by varying R and the type of boundary conditions.
For the calculations presented here, all results are in-
dependent of the boundary conditions once the sums
have converged (i.e., with a large enough configuration
space).

All calculations in this paper are in the cr-co model with
parameters from Ref. 7 (except as noted below for Ca).
The ground-state parameters completely determine both
the single-particle basis and the unperturbed energies, as
well as the isoscalar particle-hole interaction. (In non-
relativistic calculations with phenomenological poten-
tials, the unperturbed energies are generally taken from
experiment or otherwise adjusted to get good fits to ex-
perimental data. )

IV. RESULTS

In this section, we present calculations of selected low-

lying collective T=O states in ' C, ' 0, and Ca, with
particular emphasis on the role of negative-energy basis
states in spectral RPA calculations. We use the mean-
field parameter set from Ref. 7: g, =109.6, m, =520
MeV, g, =190.4, and m„=783 MeV. This parametriza-
tion provides a reasonable description of the ground-state
properties of closed-shell nuclei (binding energies, rms ra-
dii, charge densities), although the surface energy and
compressibility are somewhat too large. We note that
mean-field models that include nonlinear self-couplings
for the scalar mesons (P and P terms in the Lagrangian)
provide superior descriptions of ground-state properties,
particularly for deformed nuclei. However, applying
these models to an RPA calculation of excited states is
technically much more difficult than for the linear mod-
el, because the scalar-meson propagator no longer has a
simple Yukawa form.

The discretized single-particle basis is obtained by ap-
plying boundary conditions at a radius several times the
nuclear radius (12 fm in ' 0), as described above. A large
configuration space is necessary to ensure that traces of
the spurious 1 are eliminated from physical 1 states;
we used up to 200 configurations in our calculations.
This included positive-energy states up to several hun-
dred MeV's in the continuum and the entire bound
negative-energy spectrum of states.

With a large enough space, energies and transition den-
sities are stable with respect to the size of the basis and
independent of the boundary conditions. We illustrate
this conclusion in Fig. 1, where we plot the position of
the spurious T=O, J =1 state and two low-lying col-
lective states in ' 0 as a function of the total number of
configurations, with both positive-energy and negative-
energy configurations included (dashed lines). As seen in
the figure, a large number of configurations (over 150) are
needed to achieve convergence. The results with different
values of the cutoff were qualitatively similar, although
the number of configurations needed for stability in-
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FIG. l. Energy of the spurious state and other low-lying iso-
scalar states in ' 0 in a spectral RPA calculation, as a function
of the size of the configuration space.

creased with the cutoff value, and small values of the
cutoff (below 10 fm) tend to significantly distort bound-
state wave functions.

Figure 1 demonstrates that the spurious 1 state ap-
pears as a decoupled zero-energy state in the RPA spec-
trum, if a sufficiently complete configuration space is
used. The contribution from configurations with
negative-energy states is essential to achieve this result.
The dotted line shows the energy of the spurious state
when only positive-energy particle-hole configurations
are included. In this case, the energy drops rapidly with
larger spaces but soon becomes imaginary and never ap-
proaches zero. We also note that the contribution to the
interaction from the three-vector omega exchange is
needed to decouple the spurious state.

We show in Fig. 2 the low-lying T =0 negative-parity
states in ' 0, along with certain experimental levels that

we might hope to describe as particle-hole excitations.
For clarity, only the lowest states of each J are shown.
The first column shows the unperturbed levels from the
ground-state calculation. The second column is the RPA
spectrum when only particle-hole configurations are in-
cluded and the third column is the full RPA spectrum,
including all states. Retardation effects are negligible for
these low-lying states, because the excitation energies are
much smaller than the meson masses. This was verified
by iterating the RPA equations with frequency-
dependent masses for the mesons.

Overall, the spectrum in the third column is very
reasonable for a fully self-consistent RPA calculation,
especially in view of the large cancellations inherent in
relativistic models. It is also evident from the second
column that configurations with negative-energy states
play a significant role in determining the energy levels,
particularly for the very collective states. To test the
RPA wave functions, we consider inelastic electron
scattering to these states.

First, we tested the conservation of transition currents
as a function of the number and type of configurations
employed. In Fig. 3, we plot the ratio (with appropriate
factors of q and co) of the matrix elements of the transi-
tion charge and longitudinal current densities for the
T=O, J =3 state in ' 0 for q =1 fm ', which typifies
our results. This ratio should be equal to 1 for all values
of q, and we see that it does approach that value if
enough configurations are used. (The number of
configurations needed to converge to one increases with
the momentum transfer. ) The dotted line shows that
current is not conserved if only the particle-hole
configurations are used. Thus, the negative-energy states
are necessary for a correct description of the transition
densities.

Calculated electron scattering form factors for selected
low-lying collective natural parity states in ' 0, ' C, and

Ca are compared with data in Figs. 4—11. In each of
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1ds/a (1pg/p)15—
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FIG. 2. Energy levels of selected low-lying states in ' 0 in a
spectral RPA calculation.

FIG. 3. Ratio of transition charge to longitudinal current
densities for the low-lying isoscalar 3 state in ' 0, as a function
of the configuration space size. The densities are evaluated at

q =1.0fm
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FIG. 7. Transverse form factor for the 7.1 MeV isoscalar 1
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' pair (solid) and to data (Ref. 25).

FIG. 9. Longitudinal form factor for the 4.5 MeV isoscalar
5 state in Ca. The RPA curve (dot-dashed) is compared to
an unperturbed 1f,~, (1d3/2) ' pair (solid) and to data.

In Ca, we find the low-lying 4.48 MeV 5 state at 4.0
MeV in the RPA with a longitudinal form factor in good
agreement with experiment (Fig. 9). However, the collec-
tive 3.76 MeV 3 state appears at an imaginary energy
with the parameter set of Ref. 7. Imaginary frequencies
in the RPA indicate instabilities of the Hartee ground
state. A calculation using a truncated basis reveals that
this instability is driven by the particle-hole response
from high in the continuum. If we truncate the particle-

hole space at several "shells" (-50 MeV in the continu-
um), the energy of the 3 is real (about 2 MeV) and the
form factor is reasonable (dot-dashed curve in Fig. 10).
The energy and collectivity of this state are very sensitive
to details of the interaction and can be made real in the
full calculation by slightly adjusting the parameters of the
model. For example, when Ca is calculated with the
scalar-meson coupling squared reduced by 2% and the
scalar-meson mass adjusted to reproduce the same nu-

0 J=3 T=O 6.13 MeV Ca J=3 T=O 3.76 MeV
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FIG. 8. Longitudinal form factor for the 6.1 MeV isoscalar
3 state in ' O. The RPA curve (dot-dashed) is compared to an
unperturbed 1d, /2( 1p, ~, )

' pair (solid) and to data (Ref. 25).
FIG. 10. Longitudinal form factor for the 3.8 MeV isoscalar

3 state in Ca. (See text for explanation of curves).
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clear matter saturation properties as in Ref. 7, the 3
state is found near 1 MeV and the form factor is given by
the double-dot-dashed curve. Instabilities of the mean-
field theory ground state have also been observed in other
contexts. (See Ref. 24 and references cited therein. )

Finally, we consider the unnatural parity transitions,
for which the nuclear response is mediated solely by the
three-vector part of the m meson interaction. Here the
character of the results (and problems) is very similar to
those found in calculations of elastic magnetic scatter-
ing. In particular, the calculated electron scattering
form factors for the unnatural parity states do not de-
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FIG. 12. Dirac current in momentum space for the 17.8 MeV
isoscalar 4 state in ' Q. (See text for explanation of curves).

q (fm ')

FIG. 11. Transverse form factor for the 17.8 MeV isoscalar
4 state in ' O. The RPA curve (dot-dashed} is compared to an
unperturbed 1d5/, (lp3/2) pair (solid) and to a nonrelativistic
reduction (dots). Data are from Ref. 26.

scribe the experimental data unless significant quenching
factors are applied. A typical example is the 4 state,
shown in Fig. 11. The RPA curve reproduces the experi-
mental momentum dependence but requires a quenching
factor of about 0.3.

To clarify this result, the transition current (Dirac part
only) for the lowest 4 state in ' 0 is shown in Fig. 12,
with curves for the uncorrelated 11~&2( i@3/g)

' particle-
hole pair (solid), a nonrelativistic reduction' (dots), RPA
with only particle-hole configurations (dashed), and the
full spectral RPA (dot-dashed) calculations. The M/M'
enhancement of the valence current with respect to the
nonrelativistic current is further enhanced at finite q in
the RPA by the particle-hole response. (Note the
dramatic enhancement that occurs when only particle-
hole configurations are included. ) This result is con-
sistent with calculations of the linear response in nuclear
matter and the elastic response in finite nuclei. ' The
discrepancy between the predictions and the data can be
reduced but not eliminated by including vacuum polar-
ization corrections.

V. SUMMARY

In this paper, we presented consistent relativistic RPA
calculations of discrete excitations in closed-shell nuclei,
using a spectral approach. We have shown how the
mean-field theory (MFT) of the nuclear ground state,
which omits contributions to the self-energy from the
Dirac sea, and its linear response (RPA ring sum) can be
accommodated in the nonrelativistic framework of con-
serving approximations. However, this adaptation re-
quires that the negative-energy poles in the conventional
Hartree propagator be shifted to the lower-half plane.
With this change, the equations that follow from the
standard MFT/RPA prescription of keeping only (explic-
itly) density-dependent contributions to the self-energies
and RPA rings are duplicated, while the conserving prop-
erties of the relativistic RPA follow directly.

We find that contributions from configurations built
from holes (occupied positive-energy states) and
negative-energy states are essential for a complete and
convergent description of the low-lying states in the
RPA, in practice as well as in principle. In particular,
they are needed to preserve current conservation and the
decoupling of the spurious translational state, and con-
tribute to the collectivity of excited states. When these
configurations are included, we find a reasonable descrip-
tion of the isoscalar collective states (natural parity). In
contrast, the electron scattering form factors for unnatur-
al parity states consistently overpredict the data, just as is
found in relativistic mean-field calculations of elastic
magnetic electron scattering. '

The spectral techniques used here rely on a discretiza-
tion and truncation of the continuum. Care must be tak-
en that the response is not distorted by these approxima-
tions. As we have shown, large configuration spaces are
needed to obtain stable, converged results, which implies
that our approach is inefficient and limited. We note,
however, that consistent and accurate spectral calcula-
tions with much smaller configuration spaces (and much
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less computational effort) are possible by using "opti-
mized" single-particle basis functions, based on b
splines.

As an alternative, one can turn to a nonspectral ap-
proach, ' which offers some advantages. For example,
the negative-energy contributions to the response are in-
cluded automatically and both positive- and negative-
energy continuua are treated exactly. Thus, this method
is well suited to describing a wide range of inelastic nu-
clear response, from discrete states through the giant res-
onance region to the quasielastic region. Nonspectral
methods have recently been used to include vacuum po-
larization corrections to the calculation of low-lying ex-
cited states, using a local density approximation. It is
interesting to note that much less collectivity is predicted
in these RHA/RPA calculations than in the MFT/RPA
calculations, despite a reasonable description of ground-
state properties.

Which is the more appropriate mean-field description?
While the MFT is (usually) more successful phenomeno-
logically, one could argue that the RHA is a more con-
sistent and complete mean-field treatment. In terms of
linear response, the RPA ring contributions in the MFT
can be identified as the usual particle-hole response minus
the Pauli-blocked piece of the vacuum response. Keeping
only part of the vacuum response seems unnatural at
best; a theoretically complete. treatment at the mean-field
level would include the effects of the mean-fields on the
Dirac sea nucleons, as well as on the occupied positive-
energy states.

On the other hand, while the RHA may be conceptual-
ly more complete than the MFT, the treatment of the
vacuum might not approximate physical reality very well.
After all, theoretical consistency does not always imply
correct physics. Indeed, the role of vacuum corrections
in hadronic field theories is a subject of controversy be-
cause of arguments that the composite nature of nucleons
is not handled correctly. For example, the authors of
two recent papers argue that the physics of the loop
corrections is wrong because it is not consistent with the
I /N, expansion of QCD. It is argued that the vacuum
physics must be modified if a hadronic field theory is to
describe nature, and should be treated separately from

"valence" nucleon physics (due to positive-energy occu-
pied states). However, as we have seen, even the ap-
parent separation of valence and vacuum physics in the
ground-state MFT still requires considering Dirac sea
states in the RPA.

What about consistent relativistic calculations of linear
response beyond the mean-field level? Blunden and
Mccorquodale have applied relativistic Hartree-Fock
(HF) wave functions to spectral RPA calculations, in-
cluding both direct and exchange matrix elements of the
interaction (and neglecting retardation). ' Their ap-
proach is basically a relativistic generalization of stan-
dard nonrelativistic HF/RPA. Their calculations pro-
vide insight into the nature and importance of the isovec-
tor interaction and the role of exchange contributions in
determining the energy spectrum. However, they worked
with a comparatively small configuration space, and only
positive-energy basis states were included, so these are
not fully consistent calculations. In fact, a fully con-
sistent formulation of relativistic HF/RPA is not known
at present.

Finally, we need to know if vacuum effects can be
modified or separated out in the relativistic many-body
problem beyond the mean-field level, without sacrificing
basic physical principles. To address these questions, ex-
tensions of the functional approach to generating con-
serving approximations to a full relativistic field theory
treatment, based on the generalized effective action for-
malism of Refs. 19 and 20, are being considered. Wheth-
er good truncations of hadronic field theories beyond the
mean-field level are possible is not obvious, however, un-
like the nonrelativistic case. This is an important prob-
lem for future study.
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