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We study the response to an electromagnetic probe of a simple system of two scalar particles
("nucleons" ) bound to form a scalar "deuteron. " The use of a covariant separable interaction allows

for an elementary solution of the Bethe-Salpeter equation for both the bound state and for the

scattering amplitude. Knowledge of the scattering amplitude allows for an exact treatment of the
final state interactions within the limitations of the model. We present results for structure func-

tions and sum rules for a large range of momentum transfer. We also present a systematic study of y
scaling and discuss the role of the final state interactions in our model. As noted by other authors,
we see that y scaling is well satisfied at the quasielastic peak; however, significant deviations from
such scaling behavior are seen in our results as one moves away from the quasielastic peak to the re-

gion of large, negative y. We also discuss the influence of final state interactions in modifying sum

rules which are well satisfied in the plane wave Born approximation at all Q'.

I. INTRODUCTION

The study of nuclear structure using electromagnetic
probes is a well explored area, and extensive further ex-
perimental studies will be performed at the Continuous
Electron Beam Accelerator Facility (CEBAF) which is
presently under construction. In the past decade many
experiments have been performed which have led us to
question whether we have a good understanding of nu-
clear structure or whether the reaction theory used in in-
terpreting experiments is sufficiently well developed such
that definitive conclusions may be drawn from the experi-
mental data. Of the various experiments performed we
may concentrate our discussion on the phenomenon of "y
scaling. " Following the original theoretical work of
West' and subsequent experimental studies there have
been a large number of theoretical investigations
dealing with the interpretation of the data. A significant
body of the theoretical work has dealt with problems as-
sociated with final state interactions ' which may inter-
fere with the extraction of nucleon momentum distribu-
tions from the y-scaling data. It is not our goal to review
that body of work. Rather we are interested in describing
a very simple relativistic model which can be solved com-
pletely. Our aim is to study the electromagnetic response
of a simple system so that we can understand the ap-
proach to scaling behavior and how such behavior is
affected by final state interactions. (We are able to dis-
cuss both x scaling and y scaling; however, it is only y
scaling which is relevant to nuclear structure physics. )

We are also able to discuss the "Coulomb sum rule" for
our problem and to see how final state interactions affect
that sum rule.

In this work we use a separable covariant interaction
to solve the two-body problem. The utility of such ap-

proximations may be seen in the work of Tjon and colla-
borators" ' which provided some motivation for the in-
vestigation reported here.

The organization of our work is as follows. In Sec. II
we describe the model and in Sec. III we discuss the cal-
culation of the "deuteron form factor. " Section IV pro-
vides a discussion of the hadronic tensor in the plane
wave impulse approximation. In Sec. V we discuss x
scaling and sum rules. In Sec. VI we return to a discus-
sion of the hadronic tensor and include the effects of final
state interactions in our calculation. Section VII is de-
voted to a discussion of y scaling, while in Sec. VIII we
discuss the numerical results we have obtained. Section
IX contains some further discussion and conclusions.

II. THE MODEL

In order to understand various properties of the elec-
tromagnetic response without obscuring our discussion
with complex algebra, we will neglect the spin of the par-
ticles in the formulation of the model, i.e., we consider a
"scalar deuteron" composed of "scalar nucleons. " Our
starting point is the Bethe-Salpeter equation, ' a linear in-
tegral equation, which provides a covariant description of
the scattering and of the bound state of two particles

T(p', p;P)=V(p', p;P)+i J V(p', k;P)G(k)
d4k

(2m. )

XG(P —k)T(k,p;P) .

(2.1)

This equation is depicted in Fig. 1. Here T is the off-shell
scattering amplitude, V stands for the set of all two-
particle irreducible graphs, " and G(k) is the Green's
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]/2
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p

function for a scalar particle with momentum k and mass
m,

G(k)=
2

1

k2 —m +is
(2.2)

We make a rank-one separable Ansatz for the interaction
V.

V(p', p;P)=kg(p', P)g(p;P) . (2.3)

The formalism we use is covariant. It may be seen that
the interaction defined in Eq. (2.3) is of S wave character
in the center-of-mass frame. The integral equation [Eq.
(2.1)] can be solved in closed form, yielding

T .P Ig(P 'P}g(P'P)
p 9pt (2.4)

FIG. 1. The Bethe-Salpeter equation in momentum space. T
is the off-shell scattering amplitude and V stands for the set of
all two-particle irreducible graphs.

A(k2) ~ (k2+ 2)1/4
m k, +A

This is a covariant generalization' of a Yamaguchi-type
expression. The factor 1/(k, +A ) reduces to 1/
( lkl +A ) in the center-of-mass frame, and this term is
the Fourier transform of a Yukawa potential local in
time:

(2.9)

I
—Ar

d4 ik xfi(r)
e
4ar

(2.10)

The second factor in g(k, ), taken to the power —,', is add-

ed in order to be able to calculate the denominator func-
tion, D (s) [Eq. (2.5)], and the norm, N [Eq. (2.7)], analyti-
cally. As our form factor, g(k, ) of Eq. (2.9}, has no
singularities, the T matrix of Eq. (2.4) satisfies exact two-
particle unitarity. " This means T would lead to real
nucleon-nucleon scattering phase shifts for s )4m . As
we do not purport, at this stage, to give a completely real-
istic description of the deuteron, we do not adjust our in-
teraction to these phase shifts, as is usually done, but we
will determine the two parameters in our model, the
range A and the strength A, of the interaction, using the
experimental values for the deuteron binding energy'
(2.225 MeV) and the deuteron charge radius' (2.10 fm).

The existence of a two-particle bound state corresponds
to a pole in the T matrix in the variable s,

D(s=M )=0. (2.6)

Here M denotes the "deuteron" mass. The vertex func-
tion of this bound state is

The denominator function, D (s), is a function of only the
invariant mass s =P,

d4kD(s)=1 iaaf
—

, g(k;P)G(k)G(P k)g(k;P) —.
(2n )

(2.5)

III. THE FORM FACTOR

X G(k +q)I (k +q;P+q), (3.1)

where Q = lql
—ru for a photon of momentum

Having determined the deuteron vertex function, we
can calculate the matrix element of the electromagnetic
current and obtain the electromagnetic form factor. In
the impulse approximation, shown in Fig. 2, we have

F„(Q')= & P+ q I J„l»
d4k=i f I (k;P)G(k)G(P —k)(2k +q)

(2n. )
P

I'(k;P) =Ng(k;P), (2.7)

k2 [P.(P/2 —k)] P(P/2 —k)—
C p2

(2.&)

The variable k, is the relative momentum in the center-
of-mass frame, i.e., it reduces to lkl for P=(M, O). (For
example, this variable was used previously in an applica-
tion of the Bethe-Salpeter equation in the study of the
bound state of two scalar particles. ' } We choose a

which we will need for the calculation of the matrix ele-
rnents of the electromagnetic current. The normalization
factor of the Bethe-Salpeter wave function, J, is calculat-
ed using charge conservation, i.e., Fo(Q =0)=1, where

F„(Q ) is the matrix element of the electromagnetic
current, which will be calculated in the following section.

To further simplify the problem we choose the covari-
ant form factor, g(k;P), to depend only on a single vari-
able k, . We put g(k;P) =g(k, ), with

P P-k P+q
FIG. 2. The elastic electromagnetic form factor in the im-

pulse approximation. The large filled circles denote the vertex
functions, l {k; P) or I ( k +q; P +q), and the single lines are
the propagators of scalar "nucleons. " 'the double line
represents the deuteron of momentum P or P +q, which is on
its mass shell (P'=M } both in the initial and the final state.
On-mass-shell particles are denoted by the crosses.
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q=(ci, q). In the case of elastic scattering, the final

deuteron, of momentum P+q, stays on its mass shell,
i.e., (P+q} =P =M . Therefore, the Bjorken scaling
variable' x —=Q /(2M') has the value x =1 and the
form factor is a function of Q only.

In the above equation we approximated the photon-
"nucleon" vertex by the coupling of a pointlike spin 0
"nucleon" to the photon. In a more realistic investiga-
tion of the deuteron properties one would definitely have
to choose a more realistic photon-nucleon vertex, involv-

ing the correct spin structure and the form factors of the
nucleon, as is done, for example, in Ref. 12. Taking into
account the gauge invariance of the electromagnetic
(e.m. ) current matrix element, i.e., the fact that

q "F (Q ) =0, as is demonstrated in Appendix A, we can
write

P P-4 P+q

FIG. 3. The elastic electromagnetic form factor calculated in
the "pole approximation. " In contrast to Fig. 2, the spectator
nucleon of momentum P —k is now on its mass shell, as is indi-

cated by the cross through the corresponding nucleon line.

(3.2) 5(M —ko —E(k))
G(P k)~H—(P —k) = 2m—i

2E(k)
(3.6)

2A

2A+(4m —M )'
(3.3)

As the elastic e.m. form factor reduces at Q =0 to the
total charge, ' i.e., Fo(Q =0)= 1, Eq. (3.3) can be used to
normalize the relativistic deuteron wave function.
Another common procedure to calculate the normaliza-
tion factor is to use the relation

For Q =0, the integral of Eq. (3.1) can be performed
analytically,

Fo(Q =0)=N M
m(4m' —M')'"

3

where E(k) =( ~k~ +m )' . Equation (3.6) is valid in the
rest frame of the deuteron, i.e., P=(M, O). (This tech-
nique is described in Ref. 15.) In this manner we can im-
mediately perform the ko integration and avoid the con-
sideration of branch cuts. The elastic e.m. form factor is
now strictly real, as expected.

Figure 4 shows the e.m. form factor, Fo(Q ), calculat-
ed using Eq. (3.1) (solid line) and its "on-shell-spectator"
approximation calculated with Eq. (3.6) (dashed line), as
functions of Q . We see that the above approximation is
very good up to Q =5 GeV . At about Q =15 GeV,
Fo(Q ) changes sign, while Fo(Q ) calculated in the
"on-shell-spectator" approximation does not. This leads

N =
aM

D(s=M ) —1
(3.4)

With the specification of the covariant form factor
g(k; P ) [Eq. (2.9)], D (s) may be calculated from Eq. (2.6),
with the result

4A.AD(s)=1+
m [2A —i(s —4m )' ]

(3.5)

Thus D(s) is real for s (4m and has a cut in the com-
plex s plane for s )4m . Equation (3.4) leads to the same
expression for the normalization factor N as is obtained
from the use of Eq. (3.3). For Q~WO, however, the calcu-
lation of A(Q ) [see Eq. (3.2)] cannot be carried out
analytically and, as a consequence, we have to evaluate a
three-dimensional integral numerically. We do this by
making use of Gauss quadrature. In the case of integra-
tion over an infinite domain, we use Gauss points and
weights on a finite interval and transform them via suit-
able rnappings. Furthermore, the covariant form factors,
g(k, ), give rise to two branch cuts, which complicate the
contour integration in the ko plane.

We could greatly simplify this calculation, if we would
put the spectator nucleon of momentum P —k on its mass
shell, as is shown in Fig. 3. This means that in the calcu-
lation we would replace the free propagator G(P —k} by
the corresponding "on-shell" expression, ' H(P —k):

F,(~ )

10

10

I

10

10

10

10
l

10
0.001 0.01 01 1

Q [Gev ]

10

FIG. 4. The electromagnetic form factor, Fo(Q }, as a func-
tion of Q, the four-momentum transfer squared. The full line
corresponds to the exact IA calculation and the dashed line cor-
responds to the "pole approximation, " where the spectator nu-
cleon of momentum P —k is put on its mass shell, as is shown in
Fig. 3.
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to the deviation seen in Fig. 4, which appears in a region
~here the two form factors are already very small. The
reason why the "on-shell-spectator" approximation of
Eq. (3.6) is very good is that the major contribution to the
integral of Eq. (3.1) comes from the particle pole of
G(P —k). We only make a very small error, if we pick
up only this pole, as is done when using Eq. (3.6), and
neglect the contributions coming from the poles of G(k)
and G(k+q) or from the branch cut. The validity of this
approximation is due to the highly nonrelativistic charac-
ter of the bound state. In order to avoid confusion with
the notion of an "off-mass-shell" form factor to be intro-
duced shortly, we will call the use of Eq. (3.6) for the
evaluation of the form factor the "pole approximation. "
The details of this calculation are given in Appendix B.

From the slope of the curve for Fc(Q ) vs Q at Q =0
we can extract a value for the charge radius of the deute-
ron:

BFc(Q )
r, = —6

QQ2
(3.7}

Q =O, x=1

The experimental value, ' r, =2. 10 fm, fixes the range pa-
rameter A of the potential to be A=200 MeV. With this
result and using the deuteron mass M, which is deter-
mined by the deuteron binding energy, '

E& =2.225
MeV, we find, upon combining Eqs. (2.6) and (3.5), the
parameter which specifies the strength of the potential:
A. = —7.23. In this manner the two parameters of our
model are fixed.

We will see in the following sections, that for the inves-
tigation of the final state interaction (FSI} we will also
need the "off-shell" matrix element of the e.m. current,
i.e., F„(x,Q ) for x%1 or s =(P+q) AM—. Such an ob-

ject appears in our analysis due to the use of a separable
interaction. One can see from Figs. 2 or 3, that for
s )4m both particles of momentum P —k and k +q can
simultaneously go on their mass shells. This means that,
after carrying out the ko intergration, the integrand of
the integral over the angle 8 has a pole in cos8 in the
domain [ —1, 1], if (and only if) s & 4m . Because we do
not have an analytic expression for this integrand in the
case of the "off-shell" matrix element, F„(x,Q ), we can-
not perform appropriate subtractions which facilitate the
evaluation of the integral without ambiguity. Due to the
existence of this additional pole it is therefore problemat-
ic to numerically calculate the off-shell quantity
F„(x,Q ) for x%1. However, if we use the "pole ap-
proximation" of Eq. (3.6), we have an analytic expression
for this integrand and we can perform a useful subtrac-
tion, using the formula

F(x=0.5,Q )
2

0

1.5

0.0001 0.0010

I

0.0100 0.1000

Q [ Gev ]

1.0000 10.0000

FIG. 5. The "oft'-shell" electromagnetic form factor,
Fo(x, Q'), for x=0.5, calculated using the "pole approxima-
tion" as a function of the momentum transfer, Q2. The full line
corresponds to the real part of F0, while the dashed line
represents the imaginary part.

as described above, for x—:Q /(2M')=0. 5, as a func-
tion of Q . The imaginary part of Fc(x, Q ), the dashed
line, is identically zero for s & 4m or Q & x(4m
—M )/(1 —x). This means that for elastic scattering,
i.e., x = 1, F (x, Q ) is real for all Q .

IV. THE HADRONIC TENSOR IN PLANE WAVE
IMPULSE APPROXIMATION

k+q

In this section we will consider inclusive inelastic un-
polarized electron-"deuteron" scattering. We again use
the impulse approximation and neglect the spin of the nu-
cleons and the deuteron. The process to be discussed is
illustrated in Fig. 6. The corresponding cross section
may be written as

Jy+h f x Jy+h f x fy-
y —h X g lC y —h X

(3.8)

P P-k

This means that for s &4m the integral over the angle 0
becomes a principal value integral and, further, F„(x,Q )

takes on an imaginary part, as can be seen from Eq. (3.8).
Figure 5 shows the "off-shell" e.m. form factor Fo(x, Q )

calculated, using the "pole approximation" of Eq. (3.6),

FIG. 6. Inelastic electron-deuteron scattering in the one-
photon exchange approximation. The four-momentum of the
virtual photon is q =(co,q). The deuteron momentum is P; the
spectator nucleon has momentum P —k and the struck nucleon
has momentum k before and k+q after the absorption of the
photon.
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do do
dE'dQ dQ k+q

+2W&(Q, x }tan (4.1)

where E' is the energy of the final electron, 0 is the
scattering angle, and

do'

dQ M

4a E' 9
Q4

cos (4.2}

is the well-known Mott cross section ' for the scattering
of relativistic electrons in the Coulomb field of a spin 0
particle with infinite mass. The Lorentz-invariant
structure functions, 8', and 8'z, depend on the two sca-
lar variables, Q =

~q~
—co, the squared four-momentum

transfer, and x =Q /(2P q), the Bjorken scaling vari-
able, ' which reduces to x =Q /(2Mco) in the rest frame
of the deuteron. Here co=E —E' is the energy loss of the
electron and q =(co,q) is the four-momentum of the ex-
changed photon. In this case the photon of four-
momentum q is spacelike, so that Q

=——
q )0.

The structure functions specify the symmetric part of
the hadronic tensor 8'„,

FIG. 7. The hadronic tensor W„„ in the plane wave impulse

approximation (PWIA). The large filled circle denotes the
deuteron vertex function, I (k;P); the single lines stand for the
propagators of scalar "nucleons" and the double line represents
the deuteron. The crosses indicate that the corresponding parti-
cle is on its mass shell.

tors [Eq. (3.6)], Eq. (4.6) involves the deuteron vertex
function 1(k;P) [Eq. (2.7)], calculated in Sec. II. In
deriving Eq. (4.6) from Eq. (4.4) we further replaced the
actual e.m. current by the current of free pointlike scalar
particles. Clearly this is an approximation.

We proceed by projecting out the structure functions
8', and W2 using the identities

q„q„W2(Q,x)
W„„=—g„,— "2 W&(Q, x }+P„P„

P "P'8' = —rM 8' +y M 8' (4.7a)

W„„= fd4x e'~ "(P,~[J„(x),J„(0)]IP,) .
2m

(4.4)

(4.3)

where P„=[P„(Pq)q„/q —]. No other terms appear
in Eq. (4.3) due to Lorentz invariance, current conserva-
tion (q"W„„=W„,q"=0), and parity invariance. It is

the goal of this section to calculate the spin-independent
structure functions, 8', and W2, and the hadronic tensor,

W„„ in the plane wave impulse approximation (PWIA).
That is, we neglect the effects of the final state interaction
(FSI). In Sec. VI these elfects will be taken into account
and we will see how they modify 8'„.

The hadronic tensor can be expressed as an integral
over the expectation value in the deuteron ground state
of the e.m. current commutator:

+r ~2

with the kernels

X w, 2H(P k)H(k +q)—, (4.8)

'2
(P q)(k q)Wi-

q
(yM )

and

z (k.q)

q
(4.8a)

JM V
q q (4.7b)

q

Here yM =P„P"=M— (P q) /q—. Solving for the
structure functions we find

The amplitude, W„, is proportional to the discontinuity
across the cut along the line co & 0, of the forward virtual
Compton scattering amplitude, T„,where

N2 — 3W] +4 k
(k ) (4.8b)

T„„=if d x e'q "( P~TD[J„( )Jx„(0)]~P )D. (4.5)

X(2k+q)~(P —k)H(k+q) . (4.6)

In addition to the free [Eq. (2.2)] and "on-shell" propaga-

In Eq. (4.5) the current commutator of Eq. (4.4} is re-
placed by a time-ordered product. In the plane wave im-
pulse approximation (PWIA), depicted in Fig. 7, we have

4

W„=— f I (k;P}G (k)(2k+q)„
2~ (2m. )'

5(M —ko —E(k))
H(P —k ) = —2mi

2E(k)
(4.9)

where E(k) =(~k~ +m )', eliminates the ko integration
in Eq. (4.8). The "on-shell" propagator,

Up to this point we have not chosen a special Lorentz
frame and all our expressions are fully covariant. In or-
der to continue with our analysis, we have to specify a
reference frame. We choose the rest frame of the deute-
ron, i.e., P =(M, O). The use of the "on-shell" propaga-
tor, H(P —k) [see Eq. (3.6}],
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5(ko+ co E—( k+ q) }
H(k +q) = —2mi (4.10a)

vari
&

s —2(M+co)E(k)
Ik I I ql 2 k

I I ql

2E(k+q)

where E(k+q) =(lk+ql +m )', restricts the angle be-
tween the photon momentum q and the integration vari-
able k and thus leads to the presence of a 5 function in
the variable cos0:

and G (k) = 1/[M —2ME(k)] [see Eq. (4.9)]. For the co-
variant vertex function, g(k, ), we take the expression
given in Eq. (2.9), where k, is replaced by lkl, since we
are working in the rest frame of the deuteron. The in-
tegrals of Eq. (4.13) are carried out numerically, again us-

ing Gaussian quadrature. The results of these computa-
tions will be exhibited and discussed in Sec. VIII. It
should be noted that below the elastic threshold, where
the target stays intact and only recoils, the structure
functions necessarily vanish. Thus, for

(4.10b) s=M +2M' —Q &4m (4.15)

f dlkl-f dlk,
with

(4.1 1)

This eliminates the integration over cos8 in Eq. (4.8). Be-
cause we must require that I cos8 & 1, this 5 function fur-
ther leads to a constraint in the lkl integration, i.e., it re-
stricts the range of the integration over lkl:

F&(g,x) =Fz(g, x ) =0. The condition expressed by
Eq. (4.15) can be derived from Eq. (4.10b), because only if
s )4m, can the 5 function contribute to the integral. If
we express Eq. (4.15) in terms of the Bjorken scaling vari-
able, x, and keep in mind that x is by definition positive,
we get

and

1/2
4ma= —' (M+co) 1—

2 S

—
Iql (4.11a)

0&x & &1.
4m —M +Q

(4.16)

This shows that our model leads to the proper support
for the structure functions, i.e., 0 & x & 1.

' 1/2
4mb= —' (M+co) 1—

2 S
+ Iql (4.11b)

F,(g, x )=MWi(g, x ),
Fz(g, x ) =co Wz(g, x ),

(4.12a)

(4.12b)

we finally obtain from Eq. (4.8), using Eqs. (4.9)—(4.11),

F,(g,x)=
2

2( Ikl2)G~(k)w.
277 a 2E(k)

Heres =M +2M' —
Q .

If we now define the dimensionless structures func-
tions,

V. x SCALING AND SUM RULES

In this section we investigate the asymptotic behavior
of the structure functions, F,(g,x ) and Fz(g, x), in the
deep-inelastic or Bjorken limit, where Q ~ co and
co~ ~, for finite x. In this context it is not necessary to
take the final state interaction into account, because the
corrections to F, and F2 coming from the FSI vanish for
large Q, as will be seen in the next section. We can
therefore use the PWIA expressions [Eq. (4.13)] for F,
and F2, which have been derived in Sec. IV.

We shall show that our model exhibits Bjorken scal-
ing. That is, in the deep-inelastic limit, the dimension-
less structure functions become functions of a single, di-
mensionless variable, x,

(4.13a) F, ~(g,x)~F) ~(x) . (5.1)

and

Fz(g, x ) =6x F,(g,x )

q

b 2

2(lkl2)Gz(k)w,
2~ a 2E(k)

Here the kernels w', and w2 are

s —2(M+ co)E(k)
Iql 2lkl ql

2

(4.13b)

(4.14a)

and

w& = [4m Q +[M +g —2ME(k)] l, (4.14b)
2lk

I I
ql'

We shall further show that our model obeys a Callan-
Gross relation, which, in the case of scalar particles, is

F, (x)=—0 . (5.2)

We will also demonstrate that the "Coulomb sum rule, "
F~(x)f dx =1

0 x
(5.3)

is satisfied. In the following all expressions will be given
up to leading order in 1/Q only.

We start with the kernels [Eq. (4.14)] of the integrals of
Eq. (4.13}. In the Bjorken limit they take the form

2M
w', ~ [2M(1 —x)E(k) —M (1—x) —m ] (5.4a)

lklg'

and

where E(k)=(lkl +m )'~ . N is the normalization fac-
tor of the deuteron wave function, calculated in Sec. III,

2M2x 2

(5.4b)
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1 ma~a(x)=- —M(1 —x)
2 M(1 —x)

(5.5a)

The only other terms in Eq. (4.13), which depend on the
photon momentum, are the limits of integration a and b,
given in Eq. (4.11). We find

with E(k)=(lkl +m )' . The limits of integration, u

and u, are given in Eq. (5.9). For I, we have

2I,=2 " - l"l"'" 2(lkl2)G2(k)
2m o 2E(k)

and
X2[M —E(k)] . (5.11)

b~ ~00 .
2Mx

(5.5b)

As the kernel for F,(Q,x) decreases as I/Q with in-

creasing Q, we see that F, (x) vanishes in the Bjorken
limit. Thus, our model satisfies the Callan-Gross relation
for scalar particles [Eq. (5.2)], while F2(Q, x) stays finite
and exhibits scaling behavior, i.e., F2(Q, x ) ~F2(x). We
have for Q ~ ~,

and

F, (Q,x)~F, (x)=0 (5.6a)

F2(Q, x )~F2(x)=
2

2ir a(x) 2E(k)

2M xXG (k)

where we have used Eq. (5.5a) and defined

u =u( kl)= M —&(k)—lkl

M

and

(5.9a)

(5.6b)

Using Eq. (5.6b), we can explicitly calculate the mo-
ments of F2(x), defined as

I„=f dx x "F2(x ) . (5.7)

In some cases such expressions can be related to matrix
elements of the vector or axial vector current and we ob-
tain sum rules. In the case of spinless particles we can
only derive a single sum rule. Before we can perform the
integration over x in Eq. (5.7) we have to go through
some algebra. It is a simple exercise to show that for
every integrable function A (x, k

l ),

f ' « f" dlkl&(x, lkl) = f "dlkl f"~»«, lkl},

(5.8)

X2koG(k)I (k;P) . (5.12)

If we evaluate this integral in the deuteron rest frame [use
Eqs. (4.9) and (2.7)], we see that the integrand is indepen-
dent of the polar and azimuthal angles and that Eq. (5.12)
reduces to Eq. (5.11).

The integral of Eq. (5.11) can only be evaluated numer-
ically. The result is that Fo(Q =0), calculated from Eq.
(5.11), deviates only in the fourth digit from 1, the value
of Fo(Q =0) specified for a calculation done without
inaking the "pole approximation" of Eq. (3.6). This
choice, Fo(Q =0)=1, was used to normalize the deute-
ron wave function. Therefore, our model satisfies the
"Coulomb sum rule"

F2(x)
x =F0 =0 =1, (5.13)

where the e.m. form factor Fo(Q =0) is calculated in the
"pole approximation" of Eq. (3.6), i.e., by putting the
spectator nucleon on shell. (See Fig. 3.) We stress that
our ability to derive this sum rule in the PWIA is based
upon the accuracy of the "pole approximation" in the
calculation of the form factor Fo(Q =0). The accuracy
of that approximation depends upon the nonrelativistic
nature of the bound state considered here, as mentioned
earlier.

We end this section by pointing out that all the results
presented in this section are independent of the specific
choice made for the deuteron wave function, as long as
we use a separable rank-one interaction.

If we recall the work of Sec. III, we see that this is exact-
ly the elastic form factor Fo(Q ), for Q =0, calculated in

the "pole approximation. " To verify this, we just use the
approxiination of Eq. (3.6) in Eq. (3.1}and find

F (Q =0)=i f I (k;P)G(k)H(P —k)
d4a

(2n )

M —&(k)+ lkl

M
(5.9b)

2M~x ~+
(5.10)

If we keep in mind that F2(x) is strictly zero for x & 0, we
see that we can extend the range of the x integration in
Eq. (5.7} to —oo. We finally obtain for the moments, I„,
of F2(x)

2

2( lk l2) G2(k)
2m o 2E(k)

VI. THE EXACT CALCULATION FOR THE
HADRONIC TENSOR INCLUDING FSI

In the plane wave impulse approximation, described in
Sec. IV, we neglected the interaction between the specta-
tor nucleon and the nucleon which absorbed the photon,
as can be seen from Fig. 7. Clearly this is an approxima-
tion, because any interaction between these two particles
would modify the response of the system to the external
probe. We may take this Anal state interaction (FSI) into
account by using distorted waves, as is depicted in Fig. 8.
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(In previous publications ' it was shown that inserting
a wave operator 0 into a reduced Feynman graph is
equivalent to the use of distorted instead of plane waves. )

Now the spectator nucleon, of momentum P —k', and the
struck nucleon, of momentum k'+q, undergo an interac-
tion described by the wave operator 0, before they are
put on their mass shells. It is obvious that in the con-
struction of 0 we have to use the same separable rank-
one interaction, i.e., the same T matrix, which we used
for the construction of the deuteron bound state. This
leads to our writing 0=1+GGT, with T taken from Eq.
(2.4). More specially,

k'+q k+q k+q

P P-k' P-k P-k P

FIG. 8. The exact calculation for the hadronic tensor 8'„„.
The wave operator, 0 contains the final state interactions (FSI)
between the spectator nucleon and the struck nucleon.

4@k, k }
. AG(k +q)G(P —k')g(k'+q;P+q}g(k+q;P+q)

q, q; q = m — i
D($)

(6 1)

where s =(P+q) is the invariant mass, D(s) is the denominator function [Eq. (3.5)], g is the covariant form factor [Eq.
(2.9)], and G is the Green's function for a free spin 0 particle [Eq. (2.2)].

If we make use of the wave operator, as indicated in Fig. 8, we find that two more Feynman diagrams contribute to
W„, in addition to the one already shown in Fig. 7 and calculated in Sec. IV. These additional diagrams are depicted
in Figs. 9(a) and 9(b). They lead to the following corrections in W„,:

b,, W„„= 2 P„A( Q, x)P„B( Q, x) + P„B(Q,x)P, A*(Q, x) (6.2a)

for the process shown in Fig. 9(a) and

A,
2

bb W„„= P„A (Q,x )E(Q,x }P„A'(Q, x)
N D(s)

(6.2b)

for the process shown in Fig. 9(b). Here we have used the following notation: P„A (Q,x )
=F„(Q,x ),—where A (Q,x )

is an "off-shell inelastic e.m. form factor, " defined for x41. As already discussed in Sec. III, it is not possible to make
an accurate calculation of this form factor without using the "pole approximation" [Eq. (3.6)]; that is, we had to put the
spectator nucleon of momentum P —k on mass shell. However, it was shown in Sec. III that this is an excellent approx-
imation up to very high Q . Thus for A (Q,x) we find

pk)(Pq)(kq)
d4IA=if, r(k;P)G(k)H(p —k)

(2m. )

' G(k +q)I'(k +q;P+q), (6.3)

where yM is defined after Eq. (4.7) and all other terms in Eq. (6.3) were previously discussed in Sec. III.
We may also define a "doubly-on-shell inelastic e.m. form factor, "B(Q,x), where

(p k }
(P q )(k q )

d kB = f I (k;P)G(k)H(P k)—
2~

' H(k+q)I (k+q;P+q) . (6.4)

This quantity is calculated in analogy to Eq. (6.3); the only difference is that in Eq. (6.4) the particle of momentum k +q
is also on its mass shell.

Finally, E(Q,x ) may be called the "doubly-on-shell denominator function, " calculated in analogy to [1 D(s)]IA. —
[see (2.5)], but again with both intermediate nucleons on their mass shells. This yields

—1 d kE(Q,x)= f „g(k+q;P+q)H(k+q)H(P —k)g(k+q;P+q) .
2m (2m. )"

(6.5)

In Eqs. (6.4) and (6.5) the same combination of 5 func-
tions occurs as in the calculation of the structure func-
tions in the PWIA, i.e., in Eq. (4.8). This leads to the
same kinematical constraints as those found in Sec. IV,
i.e., s &4m and a restriction for the ~k~ integration with
the limits given in Eq. (4.11}. Using these results, Eqs.

(6.4) and (6.5) reduce to simple one-dimensional integrals,
which are evaluated in the deuteron rest frame by means
of Gaussian quadrature.

From Eq. (6.2) we see that the FSI corrections to W„„
contribute only in F2(Q, x). If we analyze the asymptot-
ic behavior of these corrections in the deep-inelastic limit,
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several GeV and where the virtual photon probes the par-
ton substructure of the nucleon. However, we are here
interested in quasielastic electron-deuteron scattering,
where the momentum transfer, although large, is much
smaller than in the deep-inelastic regime. It is, therefore,
appropriate to change to another description.

It was predicted by West, ' and later observed by oth-
ers, that in this case the reduced cross section, F(Q,y),
scales in terms of a variable y. However, the proper
definition of both the scaling function, F(y },and the scal-
ing variable, y, have been the subject of extensive discus-
sions. The fact that different authors used different scal-
ing variables and functions leads to considerable con-
fusion. In this investigation we shall follow the notation
favored by Butler and McKeown.

According to the y-scaling hypothesis, in the impulse
approximation the differential cross section for lepton-
nucleus quasielastic scattering can be written as '

P Pk' P+q Pk P+q Pk P

FIG. 9. Additional Feynman diagrams for the calculation of
the hadronic tensor W„, arising from the FSI between the spec-
tator and the struck nucleon. The diagrams exhibit a factoriza-
tion property due to the separable nature of our interaction.
The double line, labeled P+q, represents an intermediate oQ
shell "deuteron" bound state, formed by the struck and the
spectator nucleon, before they are put on their mass shells (as is

indicated by the crosses). The appearance of this bound state
arises through the presence of the T matrix in the wave operator
0 [see Eq. (6.1)]; the structure of the diagrams is again due to
the separable nature of the interaction and gives rise to the
necessity of calculating "off-mass-shell" form factors, F„(x,Q'),
as described in Sec. III.

we find that the extra terms in F2(Q, x) decrease with Q
as (1/Q ) ~, (1/Q ), and (1/Q ), respectively. This
shows that the FSI corrections vanish very fast with in-
creasing Q and that they therefore do not contribute to
the structure functions in the Bjorken scaling limit.
These terms, however, modify the approach to scaling.
This will be discussed in Sec. VIII, where we present the
results of our numerical calculations.

The fact that the FSI corrections vanish with these
unusually high powers of 1/Q was also observed by
Rosenfelder for the case of a nonrelativistic separable
interaction. In our case it is due to the factorization
property of the diagram in Fig. 8 and therefore to the
separability of the interaction used. It would be interest-
ing to study the behavior of the FSI at large Q in a cal-
culation which does not make a separable Ansatz for the
interaction.

VII. y SCALING

In the preceding sections we expressed the response of
the deuteron to the virtual photon in terms of the struc-
ture functions, F, and Fz, which, in general, are func-
tions of Q, the four-momentum transfer squared, and
the Bjorken scaling variable x =Q /(2M'). This nota-
tion was adopted from deep-inelastic electron-nucleon
scattering, where the momentum transfer is in excess of

d lr

dF. 'd 0
do
dQ

+N
~

F(Q'y}.

F(Q',y)=, f pn(p)dp .
b

(2~) a
(7.2)

The limits of the integration, a and b, arise from the
energy-conserving 5 function, which is also the origin of
the factor m /~q~ in Eq. (7.1). As ~q~ becomes larger and
larger, the upper limit b tends towards infinity and the in-
tegral of Eq. (7.2) becomes a function solely of a, which
we will now call ~y~.

F(Q',y) F(y)= f pn(p)dp .
(2m )

(7.3)

However, the definition of y, which depends on the form
of the energy-conserving 5 function, hinges on the kine-
matics of the model. There are a number of options: rel-
ativistic or nonrelativistic kinematics; inclusion or
neglect of recoil, binding effects and/or excitation of the
core, etc. With the choice of relativistic kinematics, we
may specify energy conservation, in the case of electron-
deuteron scattering, using the relations

co+M=(~p+q~ +m )' +(~p~ +m )' (7.4)

Here p+ q is the three-momentum of the struck nucleon
after the absorption of the photon and —p is the momen-
tum of the recoiling spectator nucleon, whose excitation
is neglected. This leads to

1/2
1 4mp;„=—a =—(M+co} 1— —

Iql (7.5a)

' 1/2
1 4mp,„=b=—(M+co) 1— + Iql (7.5b)

In this expression E' is the final electron energy, Z(N) is
the proton (neutron) number of the target, and

I d o /d 0 I & ~ „~ is the elastic electron-proton (neutron)
cross section.

In the simple impulse approximation F(Q,y) is related
to the nucleon momentum distribution n (p):
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These are exactly the same limits of integration as we
found for the structure functions in the PWIA in Sec. IU.
[See Eq. (4.11).] Thus, the scaling variable y is defined as

F(g2y) IqlF, (g2x)=1
Pl Q)

1 j2
1 4m

y =—(M+co) 1—
2 S

—
Iql (7.6)

+ F (Q,x )tan
M 2

(7.9)

This y differs from West s original scaling variable y~
which is the minimum value of the three-momentum of
the nucleon which absorbs the virtual photon. This nu-
cleon is on its mass shell initially and in the final state in
the West' analysis and nonrelativistic kinematics are
used 6, 28

It can be seen from Eq. (7.3) that the reduced cross sec-
tion, F(y ), is maximal for y =0. This is the so-called qua-
sielastic peak. The region of physical interest, however,
is the domain y & 0, where the energy transfer to the nu-
cleon is small enough so that we may neglect pion pro-
duction. Furthermore, Eq. (7.5) shows that the y-scaling
limit is the same as the Bjorken limit, where g ~ ao, but

Q /co stays finite. Only in that case does the upper limit
of the integration, b, tend to infinity, while the lower lim-
it, a = lyl, stays finite. In that case Eq. (7.3) is valid and
Eq. (7.6) reads

In the next section we will see that the kinematical factor
I ql /o~ in Eq. (7.9) plays a very crucial role in the diff'erent

approach to scaling observed in the y- and x-scaling re-
gime.

VIII. NUMERICAL RESULTS AND DISCUSSION

F (Q,x)

0, 12 (a)

0, 10

Before we discuss the topic of y scaling and the effects
due to the final state interaction (FSI), we will first
present our results for the structure functions, Fi(g, x)
and F2(g, x), calculated in the plane wave impulse ap-

1 fny= —M(1 —x)—
2 M(1 —x)

(7.6a)

1 I

0.08

0.06—

After having defined the scaling variable y in terms of
Q and x, we will now determine the scaling function
F(Q,y). If we compare Eqs. (4.1) and (7.1), we see that
the reduced cross section, F(g,y}, can be expressed in
terms of the structure functions F,(g,x) and F2(g, x),

F(Q,y)=(zcr +Ncr„)

IqlF (gpx),X

pp4 i;

0.02

0.00—
0.01

F (Q,x)
10-

0.1

T '1

1 10 100

Q' [GeV']
1000

+ F,(g,x )tan2lql z (7.7)
(b)

Here we have used the reduced nucleon cross sections,

o.

p, n

d0'

dQ
(7.8)

where (do/dQ) „ is again the elastic electron-nucleon
cross section and (do /dQ)M is the Mott cross section.

Equation (7.7) shows that in the scaling function,
F(g,y), the spin-dependent dynamics of the nucleon and
the nucleon form factor are somehow divided out, as they
contribute both to the structure functions, F, and F2,
and to the reduced nucleon cross sections cr „. There-
fore, our simple model, where we neglected the spin and
the form factors of the nucleons, might be a reasonable
approximation in this case. Our model yields o. =1 andP
cr„=0 and Eq. (7.7} then reads

0

0.01 100

I I I

0.1 1 10 1000

Q [Gev ]

FIG. 10. The dimensionless structures functions, F, (Q,x }
(a} and Fz(Q', x} (b}, are shown as functions of Q', the four-
momentum transfer squared, for fixed values of the Bjorken
scaling variable x. The dashed line corresponds to x =0.45, the
full line corresponds to x=0.50, and the dotted line corre-
sponds to x =0.55. The calculations were carried out in PWIA,
i.e., the FSI between the struck and the spectator nucleon was
neglected.
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F2(x)I,—:f dx =1.
0 X

(8.1)

In order to investigate the effects due to the final state in-

proximation (PWIA}, as described in Sec. IV. Figure
10(a) shows the dimensionless structure function

F&(Q,x) [Eq. (4.13a)] vs Q, the magnitude of the
squared four-momentum transfer, for fixed values of the
Bjorken scaling variable x. Figure 10(b) shows Fz(Q, x)
[Eq. (4.13b)] as a function of Q for fixed x.

As already noted in Sec. V, F,(Q,x) vanishes in the
scaling limit, i.e., for Q ~ ac and fixed x. This is due to
the spin 0 nature of our "nucleons. " Since F& is a purely
transverse structure function, it is related to the photo-
absorption cross section for photons of helicity +1. Such
photons cannot be absorbed by spin 0 particles with col-
linear momentum. F2(Q,x) stays finite in the deep-
inelastic limit and exhibits scaling behavior. However, it
does not reach its asymptotic value, F2(x), until Q =100
GeV, as can be seen from Fig. 10(b). This is far above
the kinematical domain where quasielastic electron-
deuteron scattering experiments are carried out
(Q =1—10 GeV ). This implies that the experimental
data should not scale at all in terms of the variable x.

Figure 11 shows F2(Q,x}vs x for four different values
of the momentum transfer, Q, lying between 0.1 and 100
GeV . With increasing momentum transfer, the response
of the deuteron to the virtual photon is more and more
dominated by a sharp peak at x =—,'. This so-called quasi-
elastic peak (QEP) results from quasifree scattering from
individual, moving nucleons and it can be used to ex-
tract an average Fermi momentum as well as the nucleon
effective mass.

It was shown in Sec. V that our model satisfies a
"Coulomb sum rule" in the Bjorken limit,

teraction (FSI) on the structure function F2(Q, x), we
now define the quantity

F2(x, Q )I,(Q )= f dx (8.2)

Equation (8.1) then reads I,(Q ~ac )=I,=1. In Fig.
12 we present I,(Q ) as a function of Q . The dashed
line corresponds to the PWIA calculation, described in
Sec. IV, in which case the effects of the FSI are neglected.
The full line corresponds to the exact calculation using
distorted waves, as described in Sec. VI, where the effects
of the FSI are fully taken into account. The surprising
result is that, for the PWIA calculation, I,(Q ) is ex-
tremely close to its asymptotic "sum rule" value for all

Q under consideration. The exact I,(Q ), however,
approaches its asymptotic value at about Q =1 GeV .
We see that the approach to scaling for I,(Q ) is com-
pletely governed by correlations, which arise through
the FSI between the struck and the spectator nucleon and
which are neglected in the PWIA. Inspection of Fig. 12,
and a detailed comparison of Fz(Q, x) in the PWIA and
in the full calculation, respectively, show that the
modifications due to the FSI for the structure function F2
vanish at a momentum transfer of about Q =1 GeV . [It
was shown in Sec. VI that for our model the FSI correc-
tions do not contribute to F, (Q,x). ] This might sug-

gest that the effects due to the FSI could be completely
neglected for the analysis of quasielastic electron-
deuteron scattering experiments for Q ) 1 GeV . Such a
result, however, pertains only in the consideration of sum
rules and different conclusions are drawn when we study

y scaling, for example.
We now turn to a consideration of y scaling. As al-

ready pointed out in Sec. VII, quasielastic electron-
deuteron scattering can be described more appropriately
in terms of the scaling variable y and the response func-

10

F (Q,x)

b', &, (Q )

8 -'

0.8

0.6

2 —.

0.4

0.2—

0.2 0.4 0.6 0.8

FIG. 11. The structure function F2( Q', x) is depicted as func-
tion of the Bjorken variable x for fixed values of Q . The full
line labeled a represents the result for Q' =0. 1 GeV', the dotted
line represents Q'= 1 GeV', the dashed line is for Q'= 10 GeV',
and the full line labeled b corresponds to Q = 100 GeV, where
F2(Q', x) has already reached its scaling value, Fz(x).

0

0.001 0.01 0.1

Q [Gev ]

FIG. 12. The quantity I,(Q ), defined in Eq. (8.2), is shown
as a function of Q . The dashed line represents the result of the
PWIA calculation and the full line represents the exact calcula-
tion where the effects due to the FSI are taken into account.
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' 1/2
4m

y =—' (M+cu) 1—
2 S

—
Iql (8.3)

[see Eq. (7.6)], and F(Q,y ) is given by

F(Q,y )=— Fz(Q, x )
1

m cu

+ F (Q,x )tan
M ' '

2
(8.4)

tion, F(Q,y), than in terms of x and F, 2(Q, x). In the
following we will therefore present our results in this no-
tation. Note thaty is given by

grows. This result is in full agreement with other calcula-
t,ons s, s, ~0 made previously.

Furthermore, Fig. 14 shows that as we consider greater
(negative) values of y, scaling deteriorates progressively
and the importance of the FSI grows. Large negative y
corresponds to x near 1. At x =1, elastic scattering from
the deuteron is the only allowed process and hence the
FSI becomes extremely important in this region and re-
sults in large scaling violations in F(Q,y), even for large
Q, as was pointed out in Ref. 4. Therefore, we can con-
clude that for large negative y values, the FSI are still
significant at the experimental kinematics ( Q

~ & 10 GeV )

and our response function, F(Q,y), does not yet scale.

[see Eq. (7.9)]. From Eq. (8.4) we see that, because of the
second term on the right-hand side, the relation between
F&(Q,x) and F2(Q, x ) and the quantity F(Q,y) explic-
itly depends on the scattering angle 8. The calculation
shows, however, that 2lqlF, /M is always less than one
percent of IqlF2/cu and for forward scattering we can,
therefore, neglect the second term in Eq. (8.4). As previ-
ously pointed out by Butler and Sick, this is equivalent
to assuming that the convection current contribution to
the transverse part of the cross section is small compared
to the magnetization current contribution, because only
then is the cross section proportional to a single response
function. In this approximation Eq. (8.4) thus reduces to

F(Q,y)= — F2(Q,x) .
1 q (8.4a)

m co

10

10

10

10

10

10
"e

F(Q y) [GeV ]

(a}
Figure 13(a) shows the response function, F(Q,y), cal-

culated in the PWIA, vs y, for different values of the
four-momentum transfer Q . Figure 13(b) shows the ex-
act F(Q,y), where now, and in contrast to Fig. 13(a), the
effects due to the FSI are taken into account. Finally,
Figs. 14(a) —14(e) show F(Q,y) as a function of the
momentum transfer Q for six different y values between
0 and —1 GeV. The dashed line corresponds to the
PWIA calculation and the full line corresponds to the ex-
act calculation. This way of presenting the results is
called a y-scaling plot and shows most clearly the effects
due to the FSI.

One observes that, in general, the FSI corrections van-
ish with increasing Q, as was already pointed out in Sec.
VI. We also see that at the quasielastic peak (QEP), i.e.,
for y =0, the contributions from the FSI are very small.
Furthermore, it can be seen from Fig. 14(a) that, at the
QEP, F(Q,y) indeed exhibits remarkable scaling behav-
ior. This is in correspondence with an analysis of the ex-
perimental data made in Ref. 8. However, the regions
away from the QEP are of major physical interest, be-
cause, by means of Eq. (7.3), they may be related to the
high-momentum components of nuclear wave functions.
Such components, in principle, contain valuable informa-
tion about the short-range behavior of nuclear interac-
tions and of correlations, and are dilcult to measure in
other reactions. In this regime, away from the QEP, the
fu11 calculation approaches scaling from above with in-
creasing Q, as do the data, while the PWIA response
function increases for fixed y as the momentum transfer
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FIG. 13. The response function F(Q',y) [see Eq. (8.4a)] is
shown versus the scaling variable y, defined in Eq. (8.3), for
different Q . In (a) the effects due to the FSI were neglected
(PWIA) and in (b) those effects were fully taken into account.
The labels refer to different values for Q2, the square of the
four-momentum transfer: a, Q'=0. 1 GeV'; b, Q'=0. 3 GeV', c,
Q =1.0 GeV; d, Q =3.2 GeV; e, Q =10.0GeV .
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FIG. 14. y scaling plot: F(Q,y) vs Q for fixed values of the scaling variable y. The dashed lines show the results of the PWIA
calculations where the effects due to the FSI between the struck and the spectator nucleon were neglected. The full lines represent
the exact calculations ~here the final state interactions were taken into account. The values of the y-scaling variable are (a) y =0
GeV, (b) y = —0.2 GeV, (c) y = —0.4 GeV, (d) y = —0.6 GeV, (e) y = —0.8 GeV, (f) y = —1.0 GeV.
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This makes it difficult to determine the nucleon momen-
turn distribution in the nucleus in a model-independent
way, which was the final goal of those y-scaling experi-
ments which have been performed.

For moderate negative values of y, say y~ (0.4 GeV,
the FSI corrections become small for Q ) 5 GeV . How-
ever, the response function, F(Q,y), does not scale up to
the highest Q, as can be seen from Fig. 14. This again
shows that the common procedure of using quasielastic
scattering experiments to determine the nuclear momen-
tum distribution is questionable unless one is able to ex-
trapolate the experimental data to large values of Q
where FSI are less important. Finally, we note that Ji
and McKeown suggest, in a recent publication, ' that the
FSI may cause the experimental response function to
scale at a smaller Q than the PWIA calculation would
predict. This effect of precocious scaling cannot be
confirmed by our investigation.

IX. DISCUSSION AND CONCLUSIONS

In this work we have studied a simple model of two
scalar particles interacting by means of a covariant separ-
able interaction. The simplicity of the model allows for a
comprehensive study of the electromagnetic response.
The use of a covariant formalism means that we automat-
ically include relativistic kinematics in our calculations
and leads to an attractive formalism. However, we do
not claim that we have constructed a satisfactory theory
of the dynamical relativistic aspects of the bound state or
of the scattering problem. While we have calculated the
electromagnetic response up to quite large values of the
momentum transfer, it is clear that nuclear physics appli-
cations are limited to the lower values of Q', where nu-
cleons rather than quarks are the appropriate degrees of
freedom.

Various useful observations may be made on the basis
of our analysis. First we see that, in this model, our abili-
ty to obtain sum rules is related to the essentially nonrela-
tivistic nature of the "deuteron" bound state. It is in-
teresting to see that the "pole approximation" is extreme-
ly accurate for the evaluation of the electromagnetic form
factor and that the accuracy of that approximation leads
to a "Coulomb sum rule" that is very precisely repro-
duced in the plane wave impulse approximation. We
have also seen how final state interactions lead to the ob-
servation that the sum rule is only reproduced for large
Q, where the final state interaction may be neglected (see
Fig. 12). It is also of interest to extend our study of final
state interactions to targets of larger mass number, so
that we may understand how such interactions would
affect attempts to measure the Coulomb sum rule in in-
clusive (e, e') reactions on nuclei.

Another topic, which has received a good deal of atten-
tion recently, is that of y scaling. Our studies confirm
some of the observations made by other authors: We
have seen that, in the PWIA, y scaling is approached
from below as Q is increased [see Fig. 13(a)], while the
approach is from above if final state interactions are in-
cluded [see Fig. 13(b) and Fig. 14]. Scaling behavior is
well reproduced at the quasielastic peak; however, there

are significant corrections due to final state interactions
at large negative values of y. Again, it is of interest to ex-
tend these studies to larger nuclei, where one hopes to ex-
tract the momentum distribution of the nucleons in y-
scaling studies.

In summary, we may say that, while great effort has
been expended in studying nuclear properties in various
inclusive and exclusive electron scattering reactions, the
theoretical interpretation of the data has been somewhat
limited by the belief that simple forms of the impulse ap-
proximation may be used to interpret the data obtained.
One reason that such simple approximations have been
used is that, to a first approximation, the mean-field ap-
proximation appears to give satisfactory results. Howev-
er, difficulties in the interpretation of the longitudinal
response in (e, e') reactions have led various authors to
question our understanding of nuclear structure within
the context of the mean-field approximation. ' For exam-
ple, correlations in the target may lead to a shift of
strength to higher energies and final state interactions
may play some role in modifying our interpretation of the
experimental data. These issues have not been resolved
and require further study. In a future work we hope to
extend our studies to larger systems in an attempt to un-
derstand how configuration mixing in the target and final
state interactions of the struck nucleon modify our inter-
pretation of the electromagnetic response of nuclei. In a
future publication we will also discuss the momentum
distribution n (p) which can be derived from the response
function F(y) [see Eq. (7.3)]. This will involve a discus-
sion of the nonrelativistic limit of our calculations.
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APPENDIX A: GAUGE INVARIANCE
OF THE DEUTERON CURRENT

X(P+P' —2k)„G(P' k)I (k;P') . —(A 1)

We see from Eq. (A 1) that F„ is a symmetric function of
P and P'. This leads to the result

F„=(P+P')„F(P +P', P P') . (A2)

If we contract F„ofEq. (A2) with q" =(P' P)", we find—
q "F„=(P' P)F(P +P', P.P') —. (A3)

In general, it is not trivial to show that the e.m. current
is conserved. However, the demonstration of gauge in-
variance is simple for our separable model. We start
from Fig. 2, where we replace the integration variable k
by P —k. If we further call the final deuteron momentum
P+q=P', we obtain the e.m. current matrix element,
F„(x,Q ), in analogy with Eq. (3.1):

d4kF„=iJ I (k;P)G(P —k)G(k)
(27r)
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This is our final result. It shows that in the elastic case,
i e., if the final deuteron is on its mass shell,
P' =P =M, the matrix element of the e.m. current
satisfies the gauge invariance condition, q"F„=O. How-

ever, this is not true if P' WM, as can also be seen from
Eq. (A3). In that case we will simply neglect the longitu-
dinal part of F„(x,Q ) and also use Eq. (3.2).

zz= —E(k)+ic
t

z3 =M —E(k)+i E,

z4=M+E(k) —ic,
z, = —co+E(k+q) —is,
z6= ru—E—(k+q)+is,

(B3b)

(B3c)

(B3d)

(B3e)

(B3f}

APPENDIX 8: THE CALCULATION OF THE
ELASTIC ELECTROMAGNETIC FORM FACTOR

If we carry out our calculation in the rest frame of the
deuteron, we find, upon using Eqs. (3.1) and (3.2), the
elastic e.m. form factor

F (Q')=2i 'q'
Q (2tr )

x f dlkl k 'g(lkl')

x f '
d cos8I(lkl, cos8) . (Bla}

Here

ko —colklcos8/ qI( kl, cos8) =f dk g(k, )

(Blb)

X is the norm which is fixed by the condition
Fo(Q =0)=1, and g(lkl ) and g(k, ) are the covariant
form factors, defined in Eq. (2.9), with

k, = lkl [1—(cos8) ]

+ lql'
k, -M-

M' q I

2

(B2)

z, =E(k)—i c,t (B3a)

For the elastic process, Fo is a function of Q only, be-

cause then cu and lq are fixed by means of the relation
x =Q /( 2M ' ) = 1.

The term (k, +m )'~ in g(k, } [see Eq. (2.9)] leads to
two branch cuts in the complex ko plane, one in the
upper and one in the lower half plane. The term
1/(k, +A ) in g(k, ) is responsible for two singularities of
the integrand of I( lkl, cos8) where, once again, one is in
the upper and one is in the lower half plane. Thus, no
matter how we perform the contour integration in the
evaluation of I(lkl, cos8), the presence of g(k, ) always
contributes one branch cut and one pole.

However, by far the most important contributions to
I( lkl, cos8) arise from the poles, z, to z6, of the propaga-
tors G(k), G(P —k), and G(k+q). We find

where E(k)=(lkl +m )' and E(k+q}=(lk+ql
+m )' . z„z&, and z, are the positive energy (particle)
poles of the propagators G(k), G(P —k), and G(k +q),
and z2, z4, and z6 are the corresponding negative energy
(antiparticle) poles.

Due to the highly nonrelativistic character of the
"deuteron" bound state, i.e., the very weak binding, the
nucleons are close to being on-mass-shell and propagate
mostly as free particles. Their propagation as antiparti-
cles is highly suppressed and, thus, the antiparticle poles
of the propagators, z2, z4, and z6, contribute only a negli-
gible portion to the integral I(lkl, cos8) of Eq. (Blb).
This means that, if we close the path for the contour in-
tegration in the upper half plane, our result will be com-
pletely dominated by the residue of the pole at z3, and, if
we close the path in the lower half plane, it will be dom-
inated by the sum of the residues of the poles at z, and

z5 ~

In the "pole approximation, " we replace the free prop-
agator G(P —k) by its corresponding "on-shell" expres-
sion [see Eq. (3.6)]:

5I ko —[M —E(k)]]
G(P k) ~H(P ——k) = —2m i . (B4)

2E(k)

If we evaluate I( l
k l, cos8) of Eq. (Blb) by contour in-

tegration in the upper half plane, it is a sum of five terms:
the branch cut and the pole contribution arising from
g(k, ), the contributions from the antiparticle poles of
G(k) and G(k +q), zz and z&, and the contribution of the
particle pole of G(P —k) at z3. Applying the "pole ap-
proximation" of Eq. (B4) is equivalent to dropping the
first four terms in this sum. That this is an excellent ap-
proximation can be seen from Fig. 4, where we compare
the full calculation with this approximation. Especially
for small Q, the deviation between both calculations is
about 1 part in 10 and thus far below the accuracy of
our numerical computations. Again, the reason for this
excellent agreement is the highly nonrelativistic character
of the "deuteron" bound state, i.e., the fact that due to
the weak binding the nucleons propagate almost ex-
clusively as free particles, with the admixture of antiparti-
cle components to the "deuteron" wave function being
quite small.
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