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The Dirac-Brueckner-Hartree-Fock approximation is extended to the calculation of finite nuclei.
As an example, the ground-state properties of ' 0 are studied using modern versions of the one-

boson-exchange model for the nucleon-nucleon interaction. The Dirac effect yields a significant in-

crease for the radius of the charge distribution and a moderate gain in binding energy. This im-

proves the agreement with the experimental data considerably, but does not remove the discrepancy
between theory and experiment completely.

I. INTRODUCTION

Traditionally, one of the most fundamental goals of nu-
clear structure physics is to explain the properties of nu-

clei in terms of the bare interaction between nucleons.
Because of the strong nature of the nuclear force and its
singular character at short distances, special many-body
methods had to be worked out, of which we mention
Brueckner theory' and the variational approach. Calcu-
lations performed for nuclear matter soon revealed that
the predictions for the saturation properties based on a
variety of nucleon-nucleon (XN potentials show a sys-
tematic behavior: In an energy Uersus density plot the
saturation points are located along a band ("Coester
band") which does not meet the empirical area. '

There have been many attempts to overcome this prob-
lem. For example, meson and isobar degrees of freedom
have been taken into account explicitly in the nuclear
many-body problem. Indeed, the inclusion of these sub-
nucleonic degrees of freedom yields modifications in the
calculated energy and saturation density, which are non-
negligible. It has been found, however, that these exten-
sions move the calculated saturation point along the
Coester band. Therefore, this does not improve the gen-
eral situation in evaluating saturation properties of nu-
clear matter.

When Brueckner-type calculations became feasible for
finite nuclei, it soon turned out that there are problems
analogous to nuclear matter: If the energy of a finite nu-
cleus is predicted about right, the charge radius is sub-
stantially too small; on the other hand, when the radius is
predicted correctly, the nucleus is underbound by about
50%%uo.

' Again, meson and isobar degrees of freedom did
not substantially improve the situation. '

Recently, a relativistic extension of Brueckner theory
was suggested which has become known as the Dirac-
Brueckner approach. " The new method was inspired by

the new development of a relativistic theory for nucleon-
nucleus scattering. ' The basic idea of this approach is to
use, for the single-particle motion, a Dirac equation
which contains a strong (attractive) scalar and a (repul-
sive) vector field. The most significant result of this
method in nucleon-nucleus scattering is the quantitative
fit of spin observables which are only poorly described by
the Schrodinger equation. '

In nuclear matter the relativistic approach gives rise to
a strongly density-dependent repulsive e6'ect, which sub-
stantially improves the saturation density. Thus the
empirical nuclear matter saturation can be explained
quantitatively. '

Infinite nuclear matter is a hypothetical system. It is
supposed to approximate conditions in the interior of a
heavy nucleus. The simple structure of its wave functions
(plane waves) makes it quite amenable to numerical solu-
tion. However, the final goal of nuclear structure physics
is to explain the properties of real nuclei. Miller and
Green were the first to study closed-shell nuclei in a rela-
tivistic Dirac-Hartree model. ' Their work was further
developed by Brockmann, ' and Horowitz and Serot, '

and Serot and Walecka. ' However, in all of this work
(besides Ref. 16) one starts from an effective Lagrangian,
the parameters of which are adjusted to the properties of
the nuclei. Thus the relation to the fundamental bare XX
interaction is lost.

In the Dirac-Brueckner approach for nuclear matter, it
has been shown how to base the relativistic approach on
the free two-nucleon interaction and thus provide
parameter-free predictions for the nuclear many-body
system. It is now desirable to pursue for finite nuclei an
approach which is equally microscopic and sophisticated
as state-of-the-art relativistic nuclear matter calculations.
It is the purpose of the present study to start this work.
As an example, we choose the closed-shell nucleus ' O.
We will apply the meson-theoretic relativistic two-
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nucleon potentials presented in an earlier paper' (Subse-
quently denoted by paper I) in which the Dirac-
Brueckner formalism and results for nuclear matter are
also given.

The results of paper I have shown that nuclear matter
saturation can be explained quantitatively in the Dirac-
Brueckner-Hartree-Fock approximation. An important
question of our present study is if in finite nuclei the rela-
tivistic approach will be equally successful. First results
of this study have been published in Ref. 20.

In Sec. II we present the formalism we use for the
Dirac-Brueckner approach to finite nuclei. Section III
contains the results and a discussion. An outlook is given
in Sec. IV.

II. DIRAC-BRUECKNER APPROACH
FOR FINITE NUCLEI

U= Us+ Y Uv (2)

where Us is an attractive scalar and Uk, (the timelike
component of) a repulsive vector field (notation as in Ref.
21). M is the free-nucleon mass.

The solution of Eq. (1) is

]
u(p, s)= +s

2M
(3)0 'P

E +M

with

We start by summarizing the basic formulas used for
the Dirac-Bruckner approach to nuclear matter (cf. paper
I).

As mentioned in the Introduction, the essential point
of the Dirac approach is to use the Dirac equation for the
single-particle motion:

(P —M —U)u (p, s) =0,
with

u(q', s' )u(q, s )u( —q', s„')u( —q, s„)
gs (q' —q) +rn,

where q (q') and s,s„(s',s„') denote the relative
momentum and spin projections, respectively, of the two
nucleons before (after) the interaction.

Defining

and

V(q', q;P) = V(q', q)
M

EP+q
(10)

G(q', q;P) = M G(q', q;P)
M

Ep+q

we can rewrite Eq. (7) in more convenient form:

and a Pauli operator Q(k, P), which prevents scattering
of nucleons in states below the Fermi surface. P is one-
half the center-of-mass momentum, and q, k, and q' are
the initial, intermediate, and final relative momenta, re-
spectively, of the two particles interacting in nuclear
matter. In Eq. (7) we suppressed spin (or helicity) and
isospin indices. For

l
P+q

l
and l

P+k
l

the angle average
is used.

Itis crucial to note that Us, Uv, M, V, and G depend on
the density p of nuclear matter (which is not indicated ex-
plicitly in our notation).

The essential difference to standard Brueckner theory
is the use of the potential V in Eq. (7). Indicated by the
tilde, this meson-theoretic potential is evaluated by using
the spinors [Eq. (3)] instead of the free spinors applied in
free-space two-nucleon scattering as well as in conven-
tional ("nonrelativistic") Brueckner theory. For example,
the contribution to the potential V(q', q) from an isoscal-
ar scalar boson exchange (of mass m, and coupling con-
stant g, ) is

&
q's' s„'

l V, lqs s„)

M=M+U, ,

g (M 2~ 2)1/2

and y, a Pauli spinor. The normalization is

(4)
G(q', q;P, z)= 0'(q', q;P)

d k+ J V(q', klP)
(2~)'

u(p, s)u(p, s)=1 .

The relativistic G matrix is obtained as solution of the
Bethe-Goldstone type of equation:

G(q', q;P, z)= V(q', q)

d'k M1 k —, M
+ P+k

X ' G(k, q;P, z),Q(k, P)
z —(EP+k+EP —k )

with

z =E,~q+E~ q,

x ' G(kqP, ),
Z (6P+k +EP k )

(12)

&rnly p +Mlm &
—M+U(m)M

E
(13)

=E —M+ Uv,

implying for the starting energy

(14)

P+q P —
q

For the s.p. potential

where we express the energy denominator in terms of the
single-particle (s.p. ) energies which are defined by
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U(m)= (m ~U~m ) = (m ~U$+yoUy~m )

M
Us+ Uv

a Brueckner-Hartree-Fock (BHF) definition is used:

U(m)=Re g (mn ~C(z)~mn n—m ),
n «kF

(17)

(m ~y p. +M~m &
—M

1 M
A A

+ g (mn ~C(z)~mn nm—).1

, n «kF
(18)

from which the constants Uz and Uv are determined in a
self-consistent way.

Finally, the energy per particle in nuclear matter is ob-
tained in lowest order by

MM+p —M . (22)

To be consistent with the treatment of the medium
dependence of the interaction, we apply the effective-
density approach for the calculation of the kinetic ener-

gy. This means that in calculating the kinetic energy for
a nucleon in the BHF state m, we use an effective mass
M, which is obtained from nuclear matter of density p
[Eq. (21)]. Since we have to evaluate the matrix elements
of the operator t in a basis of harmonic-oscillator states
(used to represent the BHF states), we expand t in

powers of p /2m:

tm

2

Pm 2MM M Pm
2 ~

2 2

2M M 2M
3M —4M M

2M

harmonic-oscillator basis. The medium dependence of
the Dirac spinors is also refiected in the first term on the
right-hand side (rhs) of Eq. (13)—the "kinetic energy"—
which in more explicit form reads

In Eqs. (17) and (18) it is used:

~ =~m+~n . (19)
2

'3
Pm

2M
6M M —5M +

2M
This summarizes the Dirac-Brueckner-Hartree-Fock
(DBHF) formalism for nuclear rnatter.

We now discuss our approach to finite nuclei. The
Brueckner equation, which is given explicitly for the case
of plane-wave states in Eq. (12}, is solved directly for the
nucleus under consideration. The techniques which are
applied to solve the BHF equations for finite nuclei in a
self-consistent way are identical to those described in Ref.
9. Also, here we use a basis of harmonic-oscillator states
to expand the self-consistent BHF states and consider an
appropriate Pauli projector Q in the Bethe-Goldstone
equation for finite nuclei (see Ref. 9 for details).

In the relativistic extension of the BHF approach, one
has to account for the fact that the Dirac spinors are
modified in the nuclear medium, which yields a density
dependence for the matrix elements of the meson-
exchange interaction P' [Eq. (10)]. In the present ap-
proach, we determine this medium dependence of the in-
teraction 0from the'calculations in nuclear matter using
an effective-density approximation: For each pair of in-
teracting nucleons we evaluate an average density

This expansion is used in Eqs. (13) and (18}. As we will
discuss later, the expansion up to third order has proven
to be sufficiently accurate for the examples under con-
sideration.

III. RESULTS AND DISCUSSION

To study the effects of the Dirac phenomenology, we
consider three relativistic one-boson-exchange potentials
(OBEP) which were presented in paper I where also the
results for nuclear matter were given. These potentials
differ essentially in the strength of the tensor force. A
measure for this strength is the predicted D-state proba-
bility of the deuteron which is 4.5%, 5.1%, and 5.5% for
potentials A, B, and C, respectively. Depending on the
strength of the tensor force, the potentials lead to rather
different predictions for the energy of a many-nucleon
system.

This can be seen from the results of conventional BHF
calculations displayed in Fig. 1 In this figure we show
the calculated energy per nucleon and the inverse value
of the radius of the charge distribution for the ground
state of ' O. Note that we call a calculation "convention-
al" or "nonrelativistic" in which the Dirac effects are ig-
nored: The relativistic potential f'[Eq. (10)] and the ki-
netic energy [Eq. (22)] are used as calculated in the vacu-
um (i.e., with M =M).

As in nuclear matter, we obtain much more binding
energy using the weak tensor force potential A as com-
pared to 8 or C, which have stronger tensor force com-
ponents. This behavior is easily understood in the follow-
ing way: A strong tensor force yields large attractive
contributions to the scattering matrix T because of terms
of second and higher order in the potential iterated in the
Lippmann-Schwinger equation. Since all potentials were
adjusted to fit the empirical phase shifts, a weak tensor

Pmn +Pm Pn (20)

with

p' = fd r P' (r)P (r)p' (r), (21)

where P (r) is the BHF s.p. wave function and p(r) the
density of ' 0 as obtained from the BHF Slater deter-
minant. The density dependence of the interaction &in-'
troduces an additional self-consistency requirement since
the BHF wave function P depends on the interaction f
and vice versa. As usual, this self-consistency is achieved
in an iterative scheme.

Formally, in the finite nucleus calculation, we also use
Eqs. (13), (17), and (18). Note, however, that the states m
and n now represent s.p. states of ' 0 expanded in a
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with an occupation probability

(24)

terms in the expansion [Eq. (23)] reduce the repulsive
effect of the kinetic energy. Therefore, the binding ener-

gy obtained in the BHF calculation with the relativistic
treatment of the kinetic energy is larger than for the non-
relativistic approach. This gain in binding energy is ac-
companied by a reduction of the calculated radius, and
thus both results are located on the "Coester band. "

In Table I some results of conventional (nonrelativistic)
renormalized BHF calculations are listed. The renormal-
ized BHF approach is a slight modification of the BHF
approximation in solving the many-body problem. In the
renormalized BHF approach the single-particle potential
U is defined by

-9.0
0.35 0.40 0.45

Inverse Radius ( frn )

0.50

FIG. 1. Conventional BHF calculations for ' O. Results are
plotted for the calculated energy per nucleon, 6/A, vs the in-

verse charge radius applying potentials A, B, and C, as denoted.
The point marked by a is obtained from a BHF calculation us-

ing the nonrelativistic approximation for the kinetic energy (ap-
plying potential A). For comparison we also show results from
former nonrelativistic calculations using an OBE potential
("OBEP")(Ref. 7) and a model which includes effects due to vir-

tual 6-isobar excitations ("Isobar" ) (Ref. 9). The error bar
denotes the empirical point.

component must be accompanied by a more attractive
central component to give the same attraction in the vac-
uum. In the Bethe-Goldstone equation [Eq. (12)], the
Pauli operator as well as the different s.p. energies in the
energy denominator reduce the contributions of higher
order as compared to the corresponding terms in the
Lippmann-Schwinger equation. This loss of attraction is
larger for a potential with a stronger tensor force, leading
to less binding. Moreover, a system of nucleons (interact-
ing by forces of short range) that is more bound tends to
have a smaller radius. These two aspects essentially ex-
plain the "Coester band" for the ground state of ' 0 es-
tablished by the BHF results using potentials 3, 8, and
C.

Our present results, ignoring the Dirac effects, fit into
the "Coester band" obtained in earlier calculations. As
examples, we display in Fig. 1 the BHF result from an
older OBEP application ("OBEP") (Ref. 7) and from a
calculation which takes virtual 6-isobar excitation into
account ("Isobar" ). Again, none of these results fit the
empirical point.

To demonstrate the effect of the relativistic treatment
of the kinetic energy, we show for the case of potential 3
the BHF result with the expression for the kinetic energy
replaced by the nonrelativistic approximation, which is
the first term in the expansion [Eq. (23)]. This result is
denoted by the small letter a in Fig. 1. The higher-order

P„= 1 —g nm mn nm —P
m&F BZ

(25)

TABLE I. Ground-state properties of ' 0 in a nonrelativistic
renormalized BHF calculation. Given are results for the single-

particle energies and occupation probabilities of the occupied
proton states, the total energy per nucleon, @/A, and the radius
of the charge distribution, r„accounting for the finite size of
the proton and correcting for center-of-mass motion. The last
column displays the experimental data. Energies are in units of
MeV, radii in fm. Results are given for the potentials C, B, and

A, including the effects of the Coulomb interaction between
protons.

S 1/2
—39.73

0.906

—44.37
0.907

—50.46
0.907

Experiment

—40%8

P3Z2
—16.98

0.926

—19.49
0.930

—22.89
0.935

—18.4

I 1/2
—11.64

0.924

—13.24
0.929

—15.44
0.935

—12.1

—4.49 —5.35 —6.56 —7.98

2.465 2.380 2.291 2.70+0.05

These occupation probabilities take into account that the
two-body correlations lead to a depletion of the Fermi
sea. The deviation of P„ from one is related to the wound
integral and, therefore, also a measure for the amount of
correlations. Occupation probabilities for the proton-
hole states in ' 0 are listed in Table I. As to be expected,
the deviation from one is largest for the potential C,
which has the strongest tensor components among the
potentials under consideration. It should be noted, how-
ever, that even the occupation probabilities obtained for
C are larger than those obtained for old phenomenologi-
cal potentials like Reid soft core (P„=0.88) which typi-
cally have a stronger tensor component. Since the occu-
pation probabilities are close to 1, the modifications of
the renormalized BHF as compared to BHF are small.
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Therefore, the improvements of the BHF approach as
compared to the BHF results are too small to get close to
the empirical point. As an example, we mention that for
potential A the calculated binding energy per nucleon is
shifted from 6.4 MeV (radius 2.23 fm) in the BHF ap-
proximation to 6.56 MeV (2.29 fm) in the renormalized
BHF approach.

The extended BHF definition for the single-particle po-
tential [Eq. (24)] can also be understood to include rear-
rangement terms in the single-particle potential. There-
fore, one may consider the single-particle energies result-
ing from the renormalized BHF approach as a first ap-
proximation to a prediction for separation energies of sin-

gle nucleons. Having this in mind, Table I demonstrates
another problem of conventional BHF or renormalized
BHF calculations. Considering, e.g. , the results obtained
with potential A, one finds that the calculated single-
particle energies show more attraction than the empirical
ones. The total binding energy, however, is still below
the empirical value. For potentials 8 and C the results
for the single-particle energies get closer to the experi-
mental data, while the result for the binding energy gets
worse.

In the BHF approximation the total energy 6 and the
single-particle energies e are related by

Dirac Effects versus Density
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-4.0
S /, /10

Radius

2.6

-5.0
bg4
Q

2.5 &

'a
cd

-e.o y

Energy

2.4

-7.0
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FIG. 2. Effect of Dirac spinors, determined for nuclear
matter at various densities, on properties of ' O. As a function
of the density parameter po, used for the effective mass M and f',

results from Dirac-BHF calculations are given for the total en-

ergy per nucleon (solid line), the single-particle energy of a pro-
ton in the lowest s&&2 state (divided by 10 dot-dashed line), and
the radius of the charge distribution (dashed line; see scale on
the right side of the figure).

+t
m ~F

(26)

where e (1 ) stands for the single-particle (kinetic) ener-

gy of a nucleon in the self-consistent single-particle state
M. This relation is approximately also valid in the renor-
malized BHF approach. To obtain a more attractive to-
tal energy 8 without lowering the values for the single-
particle energies, the relation Eq. (26) must be broken.
This could be achieved by going beyond the BHF approx-
imation and including terms of higher order, or by a
mechanism which reduces the repulsion due to the kinet-
ic energy. The kinetic energy is reduced when the radius
of the nucleus becomes larger. Thus the problem of the
mismatch in single-particle energies and total energy and
the problem of obtaining too small a radius are related.

In order to study the effects of the change of the Dirac
spinors in the nuclear medium on the calculated ground-
state properties of ' 0, we consider, as a next step, the in-
teraction V between Dirac spinors of nuclear matter at a
given density po using the effective mass M determined
for nuclear matter at that density po. This means that we
perform a Dirac BHF calculation as outlined in Sec. II,
but instead of determining the densities p „[Eq. (20)]
and the effective mass M in a self-consistent way, we use
M at po. Results of such calculations are displayed in
Fig. 2 as a function of po. As an example, we consider
potential C. The results for the other potentials are very
similar.

It can be observed from Fig. 2 that the single-particle
energy for a nucleon in the lowest s&&2 state gets less at-
tractive with increasing density po. This is due to the fact
that the change of the Dirac spinors in the nuclear medi-
um yields less attractive matrix elements for 0' with in-

creasing density. As discussed in paper I, this can essen-

tially be attributed to a supression of the (attractive) one-
sigma exchange. The reduction of the attractive com-
ponents in P'also yields an increase of the radius calculat-
ed for ' 0 with increasing po. Note, however, that the
dependence of the single-particle energy and the radius
on po becomes flat at higher densities (the highest density
displayed in this figure, p0=0. 15 fm, is about equal to
the saturation density of nuclear matter). This is due to
the fact that the kinetic energy decreases with increasing

po and counterbalances the reduced attraction from the
interaction. There are two mechanisms which are re-
sponsible for this decrease of the kinetic energy: First,
the decrease of M with po and, second, the increase of the
radius for ' O. %hile the first mechanism also takes
place in nuclear matter, the second effect is a typical
feature of finite systems. The decrease of the kinetic en-

ergy with an increase of po has an even larger effect on
the total energy [see Eq. (26)]; the binding energy in-
creases with increasing po. This is different from nuclear
matter where the Dirac effects lead to a decrease of the
binding energy at all densities.

After we have discussed the influence of the change of
Dirac spinors in the medium as a function of po, we now
turn to calculations in which this density is determined in
a self-consistent way. As outlined in Sec. II, we deter-
mine a self-consistent value for the density parameter p
individually for each pair of interacting nucleons [see
Eqs. (20) and (21)]. This density is used in the evaluation
of f . Also the effective mass, which is needed in calculat-
ing the kinetic energy, is determined for each single-
particle state separately. In order to test the sensitivity of
the results on this choice for p and M, we have also per-
formed calculations in which we have determined one
global value for these quantities obtained by averaging
over all states.
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TABLE II. Ground-state properties of ' 0 in a renormalized Dirac-BHF calculation. Results are
presented for the potentials C, B, and A using the effective-density approach for the treatment of Dirac
effects with densities p „different for each pair of interacting nucleons as described in Eqs. (20) and
(21). The column labeled "global" shows results obtained by replacing the individual densities p „by
the average density of all states (using potential A). For further details see Table I.

$1/2
—34.31

0.919

—39.15
0.921

—44.25
0.924

Global

—42.53
0.926

Experiment

—40+8

P3y2
—15.34

0.933

—17.09
0.937

—19.77
0.942

—20.18
0.942

—18.4

P&yi
—9.44

0.928

—9.94
0.932

—11.16
0.937

—11.88
0.937

—12.1

—4.95 —5.84 —7.08 —6.97 —7.98

rc 2.610 2.534 2.450 2.447 2.70+0.05

A comparison of the individual and global self-
consistency requirements is made in Table II, where for a
renormalized Dirac-BHF calculation we compare the two
choices using potential A. The differences for the calcu-
lated total energy per nucleon and the radius of the
charge distribution (0.1 MeV and 0.003 fm, respectively)
are negligible. The differences are slightly larger for the
calculated single-particle energies, and it can be observed
that the spectrum of single-particle energies obtained
from the global approach is slightly more compressed.
However, the differences are small enough to conclude
that the dependence of the results on how the effective
densities are determined is not very significant.

Another approximation, which has been used, is the
truncation of the expansion of the operator for the rela-
tivistic kinetic energy [Eq. (23)]. For the results listed in
the tables and figures, we have included all terms up to
third order in p /2M. If we only include terms up to
second order, the resulting energy is typically changed by
0.1 MeV per nucleon and the radius by 0.01 frn. Thus the
expansion seems to converge rather well, and the
difference between the third-order approximation and the
complete expansion should be even smaller.

Results for the ground-state properties of ' 0, calculat-
ed in the BHF approximation with and without inclusion
of the effects of the Dirac phenomenology, are displayed
in the energy versus inverse radius plot of Fig. 3. The re-
sults for the conventional BHF calculations are indicated
by the crosses, and those for the relativistic approach are
given by the circles. For each potential the results are
connected by a straight line. It is seen that for all cases
under consideration, the inclusion of the Dirac effects in-
creases both the calculated energy and the radius of the
charge distribution, considerably (see discussion above).
Thus the predictions by the theory are moved towards
the empirical point. The relativistic effects seem to be
slightly larger for potential A as compared to B and C.

This may be due to the fact that the nuclear densities
which occur in calculations using potential 3 are slightly
larger than those for the other two potentials. Including

Dirac BHF for ' 0
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0
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0
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)
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FIG. 3. Relativistic and nonrelativistic BHF calculations for
' O. Using potentials 3, 8, and C, results of conventional BHF
calculations (crosses) and Dirac-BHF calculations (circles) are
displayed in an energy versus inverse radius plot. See also Fig. 1

the relativistic features in the BHF approach, a new
Coester band is formed, which is closer to experiment.
However, the Dirac effects are not large enough to bring
the theoretical predictions to a complete agreement with
the empirical point; in fact, they make up for only about
half of the original discrepancy in conventional BHF cal-
culations.

Some results for renormalized Dirac-BHF calculations
are listed in Table II. We find that the Dirac effects not
only improve the results for the total energy and radius,
but also yield a much better simultaneous description of
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single-particle energies and total energy. For the case of
the potential A, the single-particle energies are in reason-
able agreement with the empirical results, and the total
energy is only off by 1 MeV per nucleon.

It has been a long-standing problem in microscopic nu-
clear structure calculations to obtain spin-orbit splitting
in the single-particle energies sufficiently large to agree
with the empirical values. Our results listed in Table II
for potential A are even overestimating the energy
difference between p3/2 and p&&2 states. This success is

partly due to the inclusion of relativistic features in the
BHF calculation. Note, however, that in our calculations
the nonrelativistic results listed in Table I are already
quite close to the empirical values. This may be attribut-
ed to the modern XN interactions fitting recent two-
nucleon data used in the present study.

The occupation probabilities are getting slightly larger
when relativistic features are taken into account (com-
pare Tables I and II). This may be an indication for the
fact that iterated one-pion-exchange contributions, which
are to a large extent responsible for the deviation of the
occupation probabilities from 1, are reduced with de-
creasing effective mass for the nucleon, if a pseudovector
coupling is used for the pion. This effect is taken into ac-
count only for the relativistic approach.

IV. SUMMARY AND OUTLOOK

In the present paper we have studied the effects of the
Dirac phenomenology on the calculation of ground-state
properties of finite nuclei (' 0) within the framework of
the Brueckner-Hartree-Fock (BHF) and renormalized
BHF approach considering three modern versions of rela-
tivistic OBE potentials which fit the XN phase shifts.
The self-consistency problem of the BHF equations has
been solved directly for the finite nucleus. The density
dependence of the interaction and the kinetic energy,
which is due to the change of the Dirac spinors in the nu-
clear medium, is deduced from the studies in nuclear
matter and treated in an effective-density approximation.
The final results are not very sensitive to the details of
this effective density approach.

The effects of the Dirac phenomenology yield an in-
crease of the calculated binding energy per nucleon and
the radius of the charge distribution. This moves the re-
sults off the "Coester band" of conventional BHF calcu-
lations and closer to the empirical value. The remaining
discrepancy is about one-half of the failure of the original
nonrelativistic BHF approach. A substantial improve-

ment can also be seen in the simultaneous description of
single-particle energies and the total energy. The degrees
of freedom, which are due to the finite size of the system,
lead to self-consistency effects which are quite different
from those in nuclear matter.

It must be pointed out, however, that although the
Dirac-BHF approach yields considerable improvements
in predicting ground-state properties of finite nuclei, it is
not able to provide a completely satisfactory agreement
with the data. Thus one may raise several questions:
Why does the approach, which is successful in describing
the ground-state properties of nuclear matter starting
from a realistic NX interaction, not work equally well in
finite nuclei? Can one move the remaining discrepancies
by improving the effective-density approximation for the
Dirac effects. This will be studied. Since, however, the
results were rather insensitive to the details' of this ap-
proach, we do not expect very large corrections. Also, an
extension of the conventional many-body theory, beyond
BHF, could remove the discrepancy. Typically, the
effects of many-body correlations increase with the densi-
ty of the system under considerations. Therefore, such
improvements should affect the saturation properties of
nuclear matter much more than those of ' 0, which has
an average density of only one-half of the nuclear matter
density. Thus there is not much hope that the solution of
the remaining problems may come from these aspects.

Calculations in finite systems are much more sensitive
to the range of the interaction between the constituents
than calculations in infinite systems. There are several
indications (see, e.g. , Ref. 23) that a nuclear medium does
not only lead to a decrease of the effective masses of the
nucleons, but also reduces the effective masses of the
mesons, especially the o meson. This will increase the
range of the attractive component of the XX interaction,
which should lead to larger radii and more binding ener-
gy. This could be a clue for solving the remaining prob-
lems in calculating the gross features of finite nuclei in a
microscopic way.
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