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The results of a nonrelativistic calculation of the exclusive *H(p,2p)n cross section and inclusive
‘H(Zf,p)X cross section and tensor analyzing power T, based on an expansion of the scattering 7
matrix up to double scattering, are presented. Five different wave functions, including Reid with
soft core, Paris, Bonn, Amsterdam, and Moscow, as well as two NN phase-shift amplitude sets, VPI
and Saclay-Geneva, are used. Detailed comparison with the data available indicates that double
scattering is indeed important for both reaction channels. For (p,2p) the complete calculation re-
moves a discrepancy of a factor of 2 to 8 present if comparison is made with the impulse approxima-
tion only; the Paris wave function gives the best results. For (d. ,p) the complete calculation results
agree fairly well with both cross section and T,, data up to =200 MeV/c. However, neither an
enhancement in d2c, nor an abrupt turn toward less negative T, values, both occurring for g > 250
MeV/c, can be explained by the present calculation. Neither the wave functions nor the NN ampli-
tudes used are Lorentz invariant, but the kinematics is treated relativistically. Possible causes for
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the discrepancy are briefly discussed.

I. INTRODUCTION

There is now a considerable amount of deuteron break-
up data, both from the (p,2p) and the (d,p) reactions, for
energies ranging from a few hundreds of MeV to several
GeV. The question of whether these data can be used to
test model wave functions of the deuteron, or even better,
determine the deuteron wave function, has not received a
definite answer so far. Can, or do, reactions induced by
strong interaction reveal the presence of additional de-
grees of freedom in the deuteron, besides n and p? The
virtual pions from the meson current are probably better
seen in electromagnetic interaction. The presence of the
A— and N* isobars, which are predicted to contribute an
increasingly important part of the deuteron wave func-
tion at very short distances, might be observable in
breakup data.

Following the observation of an unexpected, wide peak
in the 0° proton spectrum for the breakup of 7.2-GeV
deuterons on 2C by Ableev et al.,! it was speculated that
this could be the signature of the six-quark component of
the deuteron, or of A excitation. A consecutive study of
the same reaction at a deuteron energy of 4.2 GeV on
'2C,2 and then at 2.1 and 1.25 GeV on targets of 'H, “He,
12C, Ti, and Sn indicated® a similar peak at the same pro-
ton momentum, for all targets, if a transformation of the
proton momentum to the deuteron center of mass was
made. The data in Ref. 3 included both cross sections
and tensor analyzing powers T,,. Approximate target in-
dependence was also observed for T,. The T, measure-
ment of Ableev et al.* for 7.4-GeV deuterons on '2C
confirmed this apparent universal character for the
breakup data, for both cross section and T,,, with the
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deuteron frame proton momentum ¢q playing the role of
an approximate scaling variable. Both the energy and the
target independence of inclusive cross sections and T,
suggest that these observables are determined for a
significant part by the internal structure of the deuteron.
In this paper we analyze the empirical evidence for one
target, hydrogen, on the basis of a simple model of the re-
action which lends itself to a parameter-free calculation.

In the case of the exclusive channel 2H(p,2p)n, no
direct evidence for a peak corresponding to the one seen
in inclusive (d,p) has ever been discovered. However,
severe deviations from the impulse approximation (IA)
are well documented in recent work by Punjabi,> Ep-
stein,® as well as older work (for references see Refs. 5
and 6). It is now apparent, as will be discussed in some
detail in the present analysis, that these deviations from
IA are due, for a large part, to rescattering. One does ex-
pect that A (or N*) excitation should also play a role, but
the present work indicates that this role in 2H(p,2p)n is
probably small compared to rescattering.

Here we make an attempt to find a consistent explana-
tion for a number of specific features of the exclusive
2H(p,2p)n cross-section data at large recoil momenta,
and the 0° inclusive 'H(d,p) cross section and T,, data
for all kinematics investigated experimentally so far. The
comparison of these different pieces of information is
made on the basis of a nonrelativistic calculation includ-
ing one- and two-step nucleon-nucleon (NN) interactions
without isobar excitation and without pions in the inter-
mediate or final states, real or virtual. The calculation is
based on a generalized form of the multiple-scattering
series of Glauber’ truncated to double scattering, keeping
only the energy-conserving part of the scattering matrix
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as developed by Wallace® for 2H(p,2p)n. The numerical
input basis consists of noncovariant elastic NN ampli-
tudes obtained from a phase-shift analysis of the NN da-
tabase by the Virginia Polytechnic Institute and State
University (VPI) and Saclay-Geneva!® Collaborations.
Five nonrelativistic deuteron wave functions were used.
These include Reid soft core'' (RSC) with 6.47% D state,
the ones derived from the Paris!> and Bonn'* NN poten-
tials, with 5.77 and 4.38% D state, respectively, and the
quark-model-based wave functions of the Amsterdam'*
and Moscow University'® groups with 5.47 and 6.78% D
state, respectively. In spite of the obvious limitations of
this approach, it was thought that the results of such a
calculation might help establish whether additional de-
grees of freedom, besides the nucleon ones, might have a
visible effect in the deuteron breakup data presently avail-
able.

In Sec. II some details of the calculation will be dis-
cussed; in particular, we will show how the kinematics at
the two interaction vertices of the two-step diagrams was
handled. Likewise, a spurious pole occurring for double
scattering will be discussed. In Sec. III the cross-section
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predictions for the exclusive cross-section measurements
of Ref. 6 will be compared with the data. In Sec. IV the
calculation of the cross section and tensor analyzing
power for the inclusive in-flight breakup of tensor polar-
ized deuterons on hydrogen will be described in some de-
tail and the results compared with the data of Ref. 3. A
conclusion will be offered in Sec. V.

II. THE CALCULATION

The calculation is based on the earlier work of Wal-
lace;® it has been partially described in several earlier
publications (Refs. 3 and 5) with details given in the
thesis of Punjabi.!® Here we will succinctly repeat the
most important features, and concentrate on details of ki-
nematics which were not discussed earlier.

Labeling the particles involved in the reaction
’H(p,2p)n with the numerals 2(1,34)5, the exclusive,
threefold differential cross section for a deuteron with
spin projection M along the quantization direction, ex-
pressed in terms of the scattering matrix elements 7T, is
given by

(d’0 /d0,d0,dT,),, =

where L =1-8 labels the eight orthogonal final three-
nucleon spin states and S is the spin of the incoming pro-
ton; the subscript 4 symbolizes antisymmetrization. In
the calculation,

Ty ps = pspsps, L T|0’M§Ph5 )

is the sum of single- and double-scattering terms; it con-
tains the contributions from six independent terms, in-
cluding the single pp scattering term IA,,, another
single-scattering term with np interaction IA, ), and the
four double-scattering terms illustrated diagrammatically
in Fig. 1. The contribution from the terms, including
three or more scatterings, are presumed to be can-
celled by the principal part of the propagator
G=1/(E —H,+ie); therefore, only the energy-
conserving part of G is kept in the multiple-scattering ex-
pansion of the 7 matrix, which then has the following
terms:

T=Tpp +Tpy —imT,,8(E —H, )Ty inT,,8(E —Hy)7,,
—imTpy8(E —Ho)7,, —im7,,8(E —Hy)1,,, , ()
where p and n are the constituents of the deuteron and

the “prime” labels the incident proton. Only terms
which include single and double scattering among the

2(27)°32myp, |Espy —psE4cos6,5| Fo

S {pspsps, LITIO,M;p,,S) 417, (1)

final-state nucleons have been kept in (2). The neglect of
the principle part of G is compatible with the Glauber’
approach and, because numerous studies!’ have proven
the validity of this approximation, it will not be discussed
further here. However, an evaluation of the contribution
of the principal part may well be necessary in the near fu-
ture if a full understanding of the successes and limita-
tions of the present calculation is to be obtained.
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FIG. 1. The four double-scattering diagrams included in the
complete calculation, showing the labeling of the reaction parti-
cipants as used in Sec. II.



For the two IA terms, the Tp,’s take the following
form:

Typs =(2m) 2 2my)" 287V's

+1
X ¥ [Apus(6,6)

m=—1

where the A4, ,,s are linear combinations of half-off-shell
NN amplitudes as given in Appendix A. These are then
approximated by on-shell two-body elastic NN ampli-
tudes M,,.,,, which are the M and M, (I',]=—1,0,1)
corresponding to transitions between the singlet and trip-
let states of the interacting NN pair, respectively. As
shown in Ref. 5, Sec. ITA, the M, are evaluated on
shell, at an energy and at the pp or pn scattering angles 6
and ¢ obtained from the final-state prescription; the ener-
gy is given by the invariant energy V's of the interacting
NN pair, and the c.m. angles from the invariant four-
momentum transfer ¢, both s and ¢ being calculated in the
final state. The + sign in Eq. (3) is required for the an-
tisymmetrization of the three-body final state; it is deter-
mined by the different symmetry properties of the eight
orthogonal final three-nucleon spin states; the sign is —
for L=1-6 and + for L =7,8.

]

im(2my)/?
TLMS— 427 d3/2 zzf d ql<p3p4’L|
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The single-scattering cross section (which is called the
impulse approximation IA,, here) then reduces to the
well-known form

SP3P421
—psE, cosl,s)

d’c _

Pi(Espy
X[M_ | +M3 +M3 +M3,
+HMZ+ME)]1IP(ps)]?

=K(do/dQ¥_ |d(ps)|?, (4)

where |®(ps)|? is a theoretical single-nucleon momentum
distribution describing the internal motion of the specta-
tor nucleon in the deuteron, here the neutron. K is a
phase-space factor and (do /d Q) is the on-shell elastic

pp differential cross section in the c.m. frame of the col-

liding nucleon pair.

For the first of the double-scattering diagrams the in-
tegration over the component of the internal loop vari-
able q (see Fig. 1) parallel to P3,=p3;+py,

[ d%q8(E —E;~E,~Es), (5)

gives the denominator of the expression for T, for the
first of the diagrams in Fig. 1:

<P34—Q’P5’L'!Tp'n ]pl,q,L”)(L"ICD(q)lS)

(6)
tI:’34Eq

—qE 34c0s8, |

For any outside kinematics specified by (p;, p3, P4 Ps), the denominator in (6) goes through 0, and therefore generates

a pole, at a value
E,=3E3
which corresponds to
= 1(E2, —4m?)1”?
because, in general,

62 =arccos[( —M3,£2E,E,;)/2qP3,] .

(N

This discontinuity in the integrand of (6) has no physical reality but results from dropping the principal part in G and
allowing only one of the particles on the triangle to be off shell. Its effect is limited to a small angular range around 9‘;
and can be eliminated by interrupting the integration accordingly. The error resulting from this approximation is es-
timated to always remain smaller than 5% in the present calculation.

Similar expressions apply for the three other diagrams of Fig. 1. To calculate the remaining two-fold integral in Eq.
(6) over d’q, relative to Ps,, we first rewrite it in terms of the singlet-triplet NN amplitudes:

o (q Ws Vs

Ty s =2iV 2my(2m) 3“[ d q, z [Bfuys(6,6,6,0") F Bl ys(m—6,m—¢,0',6")] PuE, —qEyicosd,|
4 34

m=—1

(8)

—

The B’s are bilinear combinations of the NN amplitudes
M,,.,, which are given in Appendix B.

For fixed kinematics (p;, p3, P4, Ps) the integration over
d 2q , can be transformed into one over Gq, the angle be-
tween q and the total momentum of particles p and p’,
which is equal to P,, by momentum conservation. The

momentum ¢ in general is double valued. The relation
between g and 6, is obtained by solving the quadratic
kinematical equation for the three-body final state includ-
ing particles 5, p, and p’ (see Fig. 1):

g =[P;,€}40080,+E ,(€3,—4m?D?)"/?]/2D*,  (9)
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where
D2=E§4—P§4c0529q, e§4=M§4+mﬁ—m§
and
M%,=E% —P2,, E,=E,+E
34 34 340 Li3g 3 4 -

The limits of the integral are ¢ _ and g, obtained with
cosf, ==*1. The maximum value of 6, occurs when the
argument of the square root in (9) vanishes.

The two-dimensional integral in (8) is carried out nu-
merically by incrementing 6, from O to its maximum
value and back to zero, calculating ¢(6,) at each step,
and changing the sign (x) in the g solution in (9) as the
maximum angle is passed. At each step of 6, the col-
lision energy and the scattering angles at the first vertex
(0,¢), and (6',¢') at the second vertex, are calculated
again using the final-state prescription. Then the B’s are
calculated from the NN scattering amplitudes at the cor-
responding angles, and ®j; at the corresponding q(6,)
value. The only approximation made in the integration
of Eq. (8) is the replacement of the ¢ dependence of the
amplitudes by a value averaged over ¢.

In Ref. 3 we indicated how a relativistically invariant
inclusive cross section for 'H(d,pp) could be obtained by
integrating the threefold cross section, where the detect-
ed proton is particle 4 and M is the projection of the
deuteron spin:

d’c

_ 1 1
o 2027) 32my,

pipri
P1lEsp; -E3P5C05935|

x2|<TLMS>A|2
LS

(10)

over the full solid angle of unobserved particle 3,

E, 4d% _E4 fdQ
= 3
pi dQdpy |, pi

d’c

M

The invariance of Eq. (12) allows one to calculate in-
clusive (d,p) observables with the same code as the ex-
clusive (p,2p) reaction, provided the calculation is done
at p; =p, /2 and the angle of particle 4, which is detected
at 0° in (d,p), is set to 180°. One feature of this calcula-
tion discussed further in Sec. IV A beLow, is that, as one
approaches the kinematic limit in (d,p), which is the
maximum laboratory proton momentum occurring when
M35—m, +m,, the denominator in the phase-space fac-
tor K and the solid angle of particle 3 both tend towards
0, apparently resulting in an increase of the inclusive
cross section near the kinematical limit.

III. COMPARISON
WITH EXCLUSIVE (p,2p) DATA

We have calculated the unpolarized exclusive cross
sections d >0 /d Q,d Q,d T}, for the large recoil momentum
data in 2H(p,2p) at the incident proton energies of 500
MeV in Ref. 6. In this reaction, because of the choice of
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kinematics, the dominant interaction is pp and the VPI
and Saclay-Geneva phase-shift amplitudes give very simi-
lar results; the differences between the results obtained
with these two sets of NN amplitudes are of a few percent
at most and will not be discussed here. However, the
data of Ref. 6 do test the wave function used in the calcu-
lation; the Paris, Bonn, and Moscow wave functions give
significantly different results in these kinematics with
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FIG. 2. (a) The ratio (data-theory) for the exclusive 2H(p,2p)
500-MeV data of Ref. 6. The data are for one proton detected
at 14°, the other at 53°, 62°, 73°, and 85°; the crosses are for the
impulse approximation (IA,, , ,,), and the squares are for the
complete (MS) calculation. The Paris wave function and the
VPI NN amplitudes are used. (b) Same as Fig. 1 but for one
proton at 30°, the other at 68°, 75°, 83°, and 90°.
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FIG. 3. Same as Fig. 2(b) but for the Moscow wave function
(+), the Paris wave function (square), and the Bonn wave func-
tion (full circles), in all cases for the complete calculation (MS)
and VPI NN amplitudes. Only the Paris wave functions gives
ratios (data-theory) consistently close to 1.

large neutron recoil momenta.

The cross-section data from the same experiment as
above, but limited to the small recoil momentum region
presented in Ref. 5, were shown to be systematically
lower than theory. The discrepancy was about 10%
when only the IA pp scattering was included, and de-
creased to approximately 5% when all terms in Eq. (2)
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FIG. 4. The momentum-space density for the five wave func-
tions considered: Moscow, Paris, Amsterdam, RSC, and Bonn.
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FIG. 5. The inclusive 'H(d,p)X invariant cross section of
Ref. 3 at a deuteron energy of 1.25 GeV, plotted versus the pro-
ton momentum gq in the deuteron frame and compared with the
IA (pp +pn) for the five wave functions: Paris, Bonn, Amster-
dam, Moscow, and RSC. Note the enhancement in the data
near the kinematic limit. The NN amplitudes are taken from
the VPI phase shift.

are included. In the same work, which presented addi-
tional data in a number of angle pairs with neutron recoil
momenta smaller than 200 MeV/c, the full calculation
had variable success, usually, but not always, improving
the agreement with the data.

Additional data from the same experiment are in Ref.
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FIG. 6. Same as Fig. 5 but for the complete calculation (MS)
at 1.25 GeV, with the same five wave functions.
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FIG. 7. The inclusive '"H(d,p)X invariant cross section from
Ref. 3 at 2.1 GeV compared with the IA (pn +pp) for the five
wave functions: Paris, Bonn, Amsterdam, Moscow, and RSC.
The same enhancement near the kinematic limit is seen as in
Fig. 5.

6, including neutron recoil momenta between 200 and
650 MeV/c. These cross-section data are typically in ex-
cess of the IA by factors of 2—8, and as much as 15 at the
highest neutron momentum. As shown in Fig. 2 the ra-
tios of the experimental cross sections to the calculated
ones become close to 1 when the complete calculation re-
sults are used (MS). A ratio close to 1 for (data/theory)
would indicate that the calculation reproduces the data.
Two families of data with different kinematics are shown
here: the first in Fig. 2(a) with one proton detected at 14°
and the other proton at 53°, 62°, 73°, and 85°; the second
in Fig. 2(b) with one proton detected at 30° and the other
one at 68°, 75°, 83°, and 90°. The deuteron wave function
used in the calculation for Fig. 2 is the Paris one and the
NN amplitudes are from the VPI phase-shift analysis.

In Fig. 3 the same (data/theory) ratio, again with one
proton at 30° as in Fig. 2(b), are shown for the Paris,
Bonn, and Moscow wave functions; the agreement is
clearly best for the Paris wave function which gives fairly
consistently a value of about 0.8 for the ratio (data-MS).
The Amsterdam and RSC wave functions give results
very close to those for the Paris wave function; these re-
sults are not shown to avoid cluttering Fig. 3.

Figure 3 clearly demonstrates that the complete calcu-
lation results are strongly wave-function dependent. The
reason for this behavior is best understood by looking at
Fig. 4 which shows the deuteron single-nucleon momen-
tum densities for the five wave functions used. Up to 350
MeV/c, all five wave functions have densities within
+10% of each other. Moreover, the loop integral for the
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FIG. 8. The same inclusive cross-section data at 2.1 GeV
compared with the complete calculation results. The enhance-
ment in the data near ¢ >250 MeV/c is only partially explained
with the Paris, Amsterdam, or RSC wave functions. Moscow is
too high, Bonn too low.

double-scattering diagrams requires values of the density
from close to ¢ =0 MeV/c up to about 1 GeV/c and in
the upper region of g the five wave functions differ not-
ably. Of course, it is not obvious that a single-nucleon
wave function makes sense at 1 GeV/c because the NN
distances involved are of order 0.2 fm. The smaller
double-scattering contribution for the Bonn wave func-
tion is clearly related to its relatively small density be-
tween 500 MeV/c and 1 GeV/c seen in Fig. 4.

To conclude this part, we have illustrated that, for ex-
clusive (p,2p) data in kinematics far from the quasifree
region, the present calculation including the six terms of
the multiple-scattering expansion in Eq. (2) is remarkably
successful at reproducing the data when the Paris wave
function is used. No obvious evidence for virtual A exci-
tation is present in the data. Of course, real pions in the
final state are excluded by the kinematic constrains of ex-
clusive reactions.

IV. COMPARISON
WITH INCLUSIVE (d,p) DATA

Comparison of calculation results and data for the in-
clusive reaction 'H(d,p)X of Ref. 3 leads to conclusions
which complement the discussion of the exclusive (p,2p)
data in Sec. III. The kinematics chosen for the inclusive
reaction, with the proton detected at 0°, gives the pn in-
teraction the dominant role for the single-scattering am-
plitudes, rather than pp as in (p,2p).

In analogy with the notation in Sec. II, the reaction
participants in inclusive 'H(d,p)X are now labeled with
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FIG. 9. The T,y data of Ref. 3 at 1.25 GeV compared with
the IA (pn +pp) for the same five functions as above and using
the VPI phase-shift NN amplitudes. Only small differences are
seen for the various wave functions, with the exception of Mos-
cow.

the numerals 2(1,4)35 for the purpose of the calculation.
The data in Ref. 3 are in the form of invariant cross sec-
tion E,d?0/pidp,dQ, vs the proton momentum
transformed to the projectile deuteron rest frame.

q9=v4p —B4E,) , (12)

where p (E,) is the proton momentum (energy) in the lab-
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FIG. 10. The T,, data of Ref. 3 at 1.25 GeV compared with
the complete calculation for the same five wave functions as
above. The Paris, Amsterdam, and RSC wave functions give
predictions in fair agreement with the data.
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FIG. 11. Same as Fig. 10 but without the contribution of the
fourth double-scattering diagram, which includes two consecu-
tive pn interactions. The agreement with the data is worth
much, illustrating the importance of this contribution.

oratory frame, and B, (y,) refer to the projectile deute-
ron. The range of g values extends from g =0 when
P4s=p,/2, to the kinematic limit corresponding to the
missing invariant mass M3;=m,+m,. In the IA with a
single pn interaction, g is the momentum of the spectator
proton in the deuteron reference frame.

The calculation of inclusive cross sections requires an
additional integration compared to the exclusive ones
over the phase space of one of the two unobserved final-
state nucleons as shown in Sec. II, Egs. (10) and (11). As
a result of the additional integration, both the cross sec-
tion and the analyzing power T,, for a tensor polarized
deuteron beam test a much larger region of phase space,
and not surprisingly, these observables depend critically
upon both the deuteron wave function and the NN ampli-
tudes. At present, the VPI phase-shift amplitudes extend
up to 1300 MeV, and the Saclay-Geneva ones are limited
to 800 MeV. Because of the energy limitation of the
Saclay-Geneva amplitudes, it is possible to compare these
two amplitude sets only at the lower deuteron energy
(T;=1.25 GeV). Also, it has been pointed out by
Arndt!8 that the pn amplitudes are poorly defined by the
database above 500 MeV, particularly for polarization
observables. The data at 2.1 GeV indicate an extreme
sensitivity to the wave function.

A. Inclusive cross sections

The cross-section calculation results for the IA alone,
including both pn and pp interactions, are compared to
the data at 1.25-GeV deuteron kinetic energy in Fig. 5. It
is apparent that the calculation is everywhere within a
factor of 2 of the data. There is an indication of an
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enhancement in the data near ¢ > 250 MeV/c. The sensi-
tivity to the various deuteron wave functions is small. At
this deuteron energy pion production is possible only for
q <180 MeV/c; above this value of g the missing mass

sz[(El +m2—E4)2—(pl_p4)2]1/2<mp+mn +mn’ :
The largest missing mass, at g =0, is
M,=m,+tm,+(m_ +150 MeV)=my+m, .

The data show no obvious increase of the cross section
near the pion threshold. The raise of the total pn cross
section is quite gentle compared to the situation in pp
scattering, and so it is not surprising that no abrupt effect
related to the opening of the inelastic channel is seen in
these data.

When the four double-scattering terms are added, we
get the curves in Fig. 6, still for 1.25 GeV. The overall
agreement with the data is better, even in the region of
the enhancement at g >250 MeV/c. The Amsterdam
and Paris wave functions give results below the data
there. The RSC wave function results are closer, and
those with the Moscow wave function, slightly above the
data. The Bonn wave function gives the lowest results, as
expected from its relatively small D-state probability.

The cross-section data at 2.1-GeV deuteron kinetic en-
ergy are compared with the IA (pn +pp) prediction in
Fig. 7. Here we have better agreement for most g values,
but a significant enhancement in the data for ¢ <50
MeV/c and again near the kinematical limit, for ¢ > 250
MeV/c. We point out the sharp rise of the theoretical
prediction near the kinematic limit. As discussed in Sec.
II, the origin of this peak is in the denominator of Eq. (1),
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FIG. 12. Same as Fig. 10 but for VPI and Saclay-Geneva
phase-shift NN amplitudes, including all four double-scattering
diagrams. Significant differences are observed for the Paris
wave function.

C. F. PERDRISAT AND V. PUNJABI 42

which is exactly zero at the kinematic limit; the data
show no indication of it.

Now adding the four double-scattering terms results in
the curves shown in Fig. 8. Here the Amsterdam, Paris,
and RSC wave functions give approximately the same re-
sult for all values of g, including the enhancement region
near g > 250 MeV/c. The Moscow wave-function predic-
tion is above the data and the results for the Bonn wave
functions are below the data, as was the case at the lower
deuteron energy. The threshold of 7 production at 2.1
GeV is near ¢ =300 MeV/c; at ¢ =0 the missing mass

M,=m,+m,+(m,+330 MeV)=2my+3m_,

the large experimental cross sections in the region g <50
MeV/c is thus possibly associated with pion production,
which is not included in the calculation.

To conclude this part, we find a fair agreement with
the data at both deuteron kinematic energies 1.25 and 2.1
GeV for the Amsterdam, Paris, and RSC wave functions.
The Moscow wave function tends to overestimate, and
the Bonn wave function strongly underestimates the cross
section in the region of the enhancement seen in the data
at g >250 MeV/c. With the exception of the Moscow
wave function with a very large D-state probability, all
other wave functions used here underestimate the cross
section in the enhancement region. In all cases the
differentiation between the five deuteron wave functions
investigated comes entirely from the double-scattering
terms. As was the case for the exclusive cross section,
the strength of the rescattering terms is directly connect-
ed to the different momentum densities of these wave
functions in the region ¢ > 300 MeV/c.

0.5 T T T T TY T T T I T T T T I T T T T ]
i +—+— MU
L —e—— RSC e
L e A /]
0.0 — P /|

TZO
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-1.0 \ —

L Ty = 2.1 GeV Pt

= 1 1 1 1 l 1 1 1 1 I 1 1 1 1 1‘ T I/J; _——

0 0.1 0.2 0.3 0.4
q (GeV/c)

FIG. 13. The T,, data of Ref. 3 at a deuteron energy of 2.1
GeV compared with the IA (pn +pp) for the same five wave
functions; large differences are seen for these wave functions,
but none come close to the data.
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B. Inclusive tensor asymmetry T,

For polarized spin-1 particles with the quantization
axis perpendicular to the beam the (d,p) cross section at
o° isl9

d0'=d0’0(1_%p20T20) (13)

with the do the cross section for unpolarized particles,
P20 the polarization of the incident particle beam and T,
the analyzing power of the reaction. Equation (11) in
Sec. II gives the cross section for pure M states. To these
correspond initial polarizations prp=+V2 for M=+1
and pyy=—1/V2 for M =0. It follows then from (13)
that

_y3ld’e (=1 —2d%(0)+d%(+1)]

T =
0 [d20(—1)+d%(0)+d %o (+1)]

The T, data of Ref. 3 are shown together with the IA
(pn +pp) calculation results with VPI NN amplitudes
and for 1.25-GeV deuteron kinetic energy in Fig. 9. The
agreement between prediction and data up to g =200
MeV/c is excellent, and the results for the five wave func-
tions differ very little; the VPI NN amplitudes are used
here. At larger g values the Moscow wave function gives
a distinctly different result, closer to the data than the
other four wave functions. Although not displayed, the
IA results with Saclay-Geneva NN amplitudes differ little
from the ones shown in Fig. 9.

Adding the contribution from the four double-
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FIG. 14. The same data as in Fig. 13 compared to the results
of the complete calculations. Only the Bonn wave function
leads to results close to the data.
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scattering terms and again with VPI NN amplitudes gives
the predictions in Fig. 10. A strong correction to T, is
generated by the double-scattering diagrams for each one
of the five wave functions. Also, each one of the five
wave functions gives distinctly different results, starting
already at ¢ =150 MeV/c. The sensitivity to the wave
function is much greater than was the case for the in-
clusive cross section described in the previous section.
Best agreement with the data at g > 100 MeV/c is ob-
tained with the Paris, Amsterdam, and RSC wave func-
tions. But for ¢ <100 MeV/c, and for all wave functions,
the calculation gives T',, values which are systematically
less negative than the IA in Fig. 9; the agreement with
the data is not as good. The results for the Bonn wave
functions directly reflect the small D-state probability for
this wave function.

As demonstrated in Ref. 18, the pn spin-flip amplitudes
are poorly defined by the present data base. These pn
amplitudes are more important than the pp amplitudes
for (d,p) at 0°. Therefore, one must expect some uncer-
tainty in the calculation. In particular, the last double-
scattering diagram shown in Fig. 1 includes two prn in-
teractions, and it also contributes the largest correction
to the IA terms in the region g >200 MeV/c. Given the
uncertainty on pn amplitudes, we show in Fig. 11 the T,
values obtained when this diagram is left out. The agree-
ment with the data becomes worse for all of the five wave
functions when the contribution of this diagram is re-
moved. We conclude that this is indeed an important
double-scattering term for T,,, but at the same time its
calculation is uncertain. Removing this diagram has a
negligible effect on the inclusive cross section in Fig. 6.

A comparison of the results for VPI and Saclay-
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FIG. 15. The same as in Fig. 14 but with the fourth double-
scattering diagram removed. Here the Paris, Amsterdam, and
RSC wave functions come closer to the data all the way to
g =350 MeV/c.
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Geneva NN amplitudes is shown in Fig. 12 for the Paris
and Bonn wave functions including all four double-
scattering diagrams. A similar sensitivity to the NN am-
plitudes is observed for the three other wave functions.
The calculation using the Paris wave function is more
sensitive to the NN amplitudes than the one based on the
Bonn wave function; this is directly related to the larger
contribution of the double-scattering diagram for the
Paris wave function. In general, changing the NN ampli-
tudes produces a smaller change in T,, than changing the
wave function. Yet we do not feel we can conclude that
the calculation is more sensitive to the wave function
than to the NN input because the two effects just cannot
be isolated.

The T,, data of Ref. 3 and the IA (pn + pp) calculation
results for 2.1-GeV deuteron energy and VPI NN ampli-
tudes are shown in Fig. 13. The five wave functions start
to give definitely distinct predictions at g > 200 MeV/c.
The results with the Amsterdam, Paris, and RSC wave
functions are very close together, but none of the wave
functions gives a satisfactory account of the data.

As can be seen in Fig. 14, adding the four double-
scattering terms has drastic consequences at this higher
deuteron energy, but again it tends to worsen the agree-
ment with the data at small g values. The results with
Amsterdam, Paris, RSC, and Moscow wave functions
show a drastic turn toward less negative T',, values near-
er ¢ =150-200 MeV/c. The data show a similar turn
around but at much larger g (350 MeV/c). Here, only the
Bonn wave function gives results in fair agreement with
the data over a large region of q. At 2.1-GeV deuteron
energy, only the VPI solution is available presently for
the NN amplitudes. Again, because the last double-
scattering diagram in Fig. 1 contains two pn interactions
for which the amplitudes are uncertain, and also because
this diagram affects the calculated 7,, values most
strongly, we show in Fig. 15 the calculation results
without the contribution of this diagram. Both the Am-
sterdam and the RSC wave functions give rather good
agreement with the data, but the Paris wave function re-
sult is not as good. The Moscow and Bonn wave func-
tions are far off. Again, removing this diagram has only a
negligible effect on the cross section in Fig. 8. This point
illustrates the fact demonstrated by our calculation that
the T,, data at 2.1 GeV are indeed very sensitive to the
NN amplitudes. A full and consistent understanding of
the (d,p) reaction will have to await better amplitudes,
particularly for pn; the Saclay-Geneva?® Collaboration is
preparing a new set of amplitudes to higher energies than
presently available, which will help resolve the apparent
inconsistencies revealed in the present analysis.

To conclude, a comparison of the complete T,, calcu-
lation results at 1.25 and 2.1 GeV in Figs. 10 and 14, re-
spectively, shows that, in both cases, the sharp turn of
the experimental T, values toward less negative values
near the kinematical limit cannot be explained with any
of the wave functions used here. The origin of this effect
may be the same than for the inclusive cross-section
enhancement in the same region of g at both energies. In
both cases the anomalies occur in a region of missing
mass just below the 7-production threshold.
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V. CONCLUSION

To conclude this study, a comparison of the calculation
results with the exclusive (p,2p) cross sections at large
recoil momenta indicates that, within the limitations of
the model underlying the present calculation, these data
are well reproduced when the Paris deuteron wave func-
tion is used; similar agreement is obtained with the Am-
sterdam and RSC wave functions. No sensitivity to the
NN amplitudes is found within the accuracy of the data.

The inclusive T,, data are partially reproduced with
the Paris, Amsterdam, and RSC wave functions, but only
when all six diagrams, up to double scattering, are includ-
ed. The present analysis of the T,, data clearly favors a
wave function with a D-state probability in the range
5.5-6.5%. The Moscow wave function fails mostly be-
cause it contains too many momentum components above
300 MeV/c. We also have pointed out that the last
double-scattering diagram, which involves two consecu-
tive pn interactions, has a very large influence on T',, at
both energies. Removing it, which might be justified
given the uncertainty on the pn amplitudes, results in
much worse agreement with the data for all wave func-
tions at 1.25 GeV. However, removing it tends to favor
the Bonn wave function at 2.1 GeV. Furthermore, the
inclusive (d,p) cross sections are well reproduced by the
Paris, Amsterdam, and RSC wave functions, and not
significantly affected by the double-pn-scattering term,
with the exception of the enhancement at ¢ > 250 MeV/c
or by the NN amplitude choice.

In addition, as pointed out in Secs. III and IV, neither
the anomaly observed in the inclusive cross section above
g > 250 MeV/c, nor the exclusive cross section at large g
are well explained with the Bonn wave function when all
six diagrams are kept. The Bonn wave function appears
to lack the necessary high-momentum components.
There is thus a consistent pattern which suggests that
both the cross-section enhancement and the abrupt turn
of T,, towards less negative values, all occurring near
q > 250 MeV/c, have a single origin which the deuteron
wave functions used here are unable of reproducing. A
possible explanation of this observation might be that we
are seeing the effect of virtual A excitation; it is also pos-
sible that the effect is due to either the AA or the six-
quark content of the deuteron. But conclusions about
these interesting effects must await estimation of the rela-
tivistic effects. Nevertheless, it appears unlikely that the
universal cross-section enhancement observed in Refs.
1-3 for breakup at several energies and on several tar-
gets, all in the vicinity of g >250 MeV/c, can be ex-
plained in terms of rescattering effects only, any more
than found in the present work for hydrogen.

The present discussion of the 2H(p,2p)n and 'H(d,p)X
reaction inevitably leads to the conclusion that the most
important change necessary is better NN phase-shift am-
plitudes above 500 MeV. In addition, some of the ap-
proximations made in the present calculation, and the
neglect of relativistic effects, require further investiga-
tion. Evidently new and independent deuteron breakup
data could help. A measurement of the spin transfer
coefficient in 'H(d,p), that is of the proton polarization
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for incident vector polarized deuterons, would provide
such independent data. Measurements of the polariza-
tion transfer both in the exclusive and in the inclusive
deuteron breakup channel on hydrogen, are currently un-
derway at the Saturne National Laboratory in Saclay.
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APPENDIX A

The relation between the on-energy-shell NN matrices
and the nonrelativistic center-of-mass scattering ampli-
tude F, ., is

<pfl,pf2’m,|TNNlpil’piz’m )
=8mVs (m'|FNN (6,4)|m ) ,

where s :(pi1 +p,»2 )2=(pf1 +pfz )2 is the invariant-energy
squared, 6 is the c.m. scattering angle, and ¢ the angle
between initial and final reaction planes.

In the equation above |m ) is the spin-wave function
for a system of two spin-1 particles. Taking a and S8 to
denote the spin-up and spin-down states, the triplet spin
states are

|+1)=asa, ,

10) +(1/V2)(asBs+Bsas)
and

|=1)=B8, .

Using m =s to denote the state, |s)

=(1/V2)a3By—Bsary).

The {(m’'|F|m) are the singlet-triplet representation
matrix elements M, M,,, M,_ |, My, My_,, My, M,
M_,, M_,,,and M_,_, of Stapp et al. (Ref. 21). Be-
cause of the symmetry properties of the M’s,

singlet

M11(9,¢):M_1_l(9, _¢), M01(9,¢): _M0_1(9, —'¢),
M_,(6,0)=M,_(6,—¢), Mj(6,6)=—M_,,(6,—¢),
there are only six independent M’s.

The representation used for the three-particle spin-
wave function |L ) is as follows:

1) =a;a4as ,

12) =B:B4Bs ,

13) =(Byaqas+aByastaaBs) /V73,
14) = (38,85 + BsaBs+B:Bsas) /V'3
I5) =(Byasas+asBias—2a;a,85) /Y6 ,
16) =(a3B,85+BsaaBs—2B:Bycxs) /6,
17)=[(asBs—Biay)as1/V2 ,

18) =[(Bsas—a3B,)Bs]/V2 .

The six initial states of the system are

8 1
0,M;p;,S)=3 Ip,L) 3 (L|®L(q)ms)
L=1 m=—1
with M =—1,0, and +1,

which takes the following forms: first for S =a,

10,M;p;,S)=1Ip;, 1)@, (qQ)+[(2)"2]p;,3) —(£)Ipy,5) +(1)py, 7) 19%(q)
+[(D2p,4) +(D)2p,6) —(1)12|p,,8) 1Py (q) ,

and for § =,

10,M;p,,8) =1p;,2) Py (@) +[(2)2]p,,4) —(5)?|p;,6) +(1)[p,,8) 19%(q)

+I($)'2p,3) +()'2py,5) = (1)2p,, 7) 1@ ' @(q)
Using all the information above the A4’s in Eq. (3) for the IA are then calculated using the formula given below. For

S =aq,
A, =(LIF"M@6,®)|1) ,

Apoa=(2)VEHLIFPM6,4)[3) —(

L
12

)1/2(L|FPN|6,4)|5) +(

)(L|FP"8,4)|7) ,

1
2

A 1o=(HVHLIFPN0,8)14) +(1)2(L|FPNO,¢)16) —(L)1/2(L|FPN(6,4)(8) ,

and for S =0,
A _1g=(LIFP0,¢)|2) ,

Apop=(2)'2(L|FPN(6,8)14) —(5)2(LIFP™6,$)6) +(1)(LIF"¥(6,4)(8) ,

2

App=(DVHLIFPN6,8)13) +( 1) 2(LIFPN(6,4)|5) — (1) LIFPM6,4)(7) ,

where N =p or n.
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APPENDIX B

The B’s in Eq. (8) for the first double-scattering terms in Eq. (2) are calculated using the formula given below. For

S =aq,

B 1,60,6,0',¢") =S (LIFF?P(0,6)|L'Y{L'|FP""(8'¢")|1)
<

BLOa(9’¢96,’¢I):2[(%)
L

+(1)(L|FPP(8,8)|L")(L'|FF""(O,
DVHLIFPP(6,8)|L")(L'|FF™"(6',¢')]4),+(

B, 146,9,0,¢")=3[(
=

—(L)V2(L|FP?(8,4)|L" )(L'|FF'"™¢',

and for S =p;

BL - IB( 6’ ¢’ 9'>¢, )=
T

B1os(6,6,0',6

V2(LIFPP(6,8)IL" ) (L'|FP"(6",¢

S(LIFP?(6,4)|L")(L'|FP™(6',¢")

2[ 2)2(L|FPP(0,)|L"Y(L'|F""(0',¢

12

3> (5)2(LIFPP(6,¢)|L"Y(L'|FP™(6',4")|5),

")) g],

DVHLIFP?(6,6)|L")Y(L'|FP"(6',¢")]6),

¢)I8) 1,

sp ?

4),— (L) 2(LIFP?(0,4) L") (L'|FP™(6',4)]6),

+(L(LIFPP(6,8)|L ) (L'|FP™(6',4)[8),] ,

B 140,4,6',¢" )"2[

2

)'2(LIFPP(6,¢)|L")(L'|FP"(6',¢")|3),+ (L)' 2(LIFP?(6,4)|L')(L'|FF"(6',¢

(L)V2(L|FPP(0,¢)|L'Y{L'|FP""(¢',¢

#15),,

6

#1171 -

The index (sp) refers to the spectator particles; for this first double-scattering term sp=4 for the first B in Eq. (8) and
sp=3 for the second B, as required by antisymmetrization. Similar expressions for the B’s hold for the three other

double-scattering terms in Eq. (2).
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