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Determination of the S-wave scattering shape parameter
I from the zero-energy wave-function
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We show that for S-wave scattering at an energy k by a local potential which supports no
more than one bound state, the shape parameter I and coefficients of higher powers of k in
the effective range expansion function k cotb = —1/a+ zrpk —Prpk + Qrpk +, where
6' is the phase shift, may be obtained from the zero-energy wave function, up(r). Thus 6 itself

may be determined from up. We show that Prp ——J [P(r)up(r) —P(r)up(r)]dr, where rp is the
effective range, P(r) is determined from an integral involving the wave function, aud P(r) is a
simple function of r which involves the scattering length and efFective range.

I. INTRODUCTION

Recently, Klarsfeld et al. have discussed in detail the
importance of the shape dependence in low-energy NN
scattering. The shape-dependent parameter P occurs in

the (energy)z term in the effective range expansion of the
S-state function y = k cot b, where k = (2mE/h )i~z and
6 is the S-wave phase shift,

recent, unpublished, work suggests that it may actually
be negative, in contradiction to the results obtained by
Kermode and Allen. 7

Thus, we were led to consider whether P for potential
models could be determined more directly. In the next
section we show that our attempt was successful by de-
riving an expression for P which involves integrals of the
zero energy wave function.

[uo(r) —uo(r)j«,
0

(2)

y(k ) = k cot 6 = ——+ ~grok —Prok + k ( ).
a

In this expansion, a is the scattering length and rp is

the effective range which may be obtained from the well-

known expression, ~

II. THE SHAPE PARAMETER P

Consider a local potential V(r) which supports no
more than one bound state and the corresponding
Schrodinger equations for the energies kz and 0 and for
the S state (E = 0):

—u" + V(r)u = kzu, (3)

where up is the zero-energy solution of the Schrodinger
equation in the absence of a potential, normalized to
up(0) = 1 and equal to up(r), the zero-energy wave func-
tion, for r & R, where R is a distance beyond which the
potential may be neglected. In more recent work in-

volving the deuteron radius, the importance of the shape
dependence has been further emphasized.

For a given potential V(r) one can calculate the phase
shift for a number of small energies using standard pro-
cedures, calculate values of the function y(k ) and use
a least-squares-fit method to determine P. This is not
always straightforward. For example, if we consider the
triplet state S1- D1 of the neutron-proton system for
the particular case of the Reid potential and perform
an expansion similar to Eq. (1) using the bar phase shift

6( Si), we find that the calculation of P is not simple. 7

This is because P is small for the Reid potential and more

—uo + V(r)up —0. (4)

The wave functions in Eqs. (3) and (4) satisfy the bound-
ary conditions u(0) = 0 and up(0) = 0. Multiplying Eq.
(3) by up, Eq. (4) by u, subtracting and integrating from
the origin to some distance R beyond which the poten-
tials are negligible, we have

(—upu + uuo)p = k zlupdr.
0

If we consider the solutions u(r) and uo(r) of Eqs. (3)
and (4) respectively in the absence of a potential [i.e.,
V(r)—:0 ) with the boundary conditions u(R) = u(R)
and Gp(R): up(R), then

R

(—upu + uup)p: k uupdr
0

and
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R
"( ) —"0( ) = p( ) —p(0) = k (uuo —uuo)dr,

0

Ch
P(r) = —

~ uo(s)ds+ const.
~ .'(~) ~

since up(0) = 1 = u(0).
From Eqs. (1), (2), and (7), we have

R
Prok —k ( ) = (uo —uup —up+ uup)dr.

0

(7) Since p(R) = p(R), the constant of integration is deter-
mined and we have

R d] t

P(r) =P(R)+ z uo(s)ds for r & R,, .l(~) ~
'

=P(r) for r ) R. (20)
Hence,

R
Pr p = lim — (up —uuo —uo+ uuo)dr (9)t~~p k p

For low energies, by considering a Taylor expansion in
k2 for the wave functions, neglecting terms of order k4

and asssuming u(r), up(r) have no zeros for 0 & r & R
(i.e. , no more than one bound state), we may write

()=[+p() '] o() (1o).( ) = [I + P( )k'l .( ), (11)
from which it follows that Eq. (9) may be written

Eqs. (15), (20), and (12) enable P to be determined
once the effective range ro and the scattering length a
are known.

Before applying our formula to particular models, we

note that Eqs. (10) and (16) may be extended to higher
order terms in energy. Equation (10) may be generalized
to

N

u(r) = 1+ ) p2„(r)kz" up(r), (21)
=i /

where Pz(r ) is our original P(r). Equation (17) becomes

Pro = [P(r)uo(r) —P(r)uo(r)]«
0

(12)

the required result. We need now to determine the func-
tions P(r) and P(r ). The determination of P(r) is simple,
since

Pz' +z + 2A' +~(uo/up) + Pz = o, A=1 2

) . .Pz".+z + 2P ~z+ (sou/ u)o+ P z
k'"+' =

.o
+=1

from which it follows that

(22)

u(r) = sin(kr) cot b + cos(kr)

, (I
+ ~ ppp +

a (2 Ga 2) ' (13)

u(r) z r(3arp + r 2 —3ar)= 1+&
up(r) 6(a —r)

giving, from Eq. (11),

r[3a(rp —r) + r']
r

6(a —r)

(14)

We note immediately that P(0) = 0, as required.
To determine P(r), we substitute u(r) from Eq. (10)

into the Schrodinger Eq. (3),

P"up+ 2P'uo+ (1 ~ Pk )up ——0.

Letting k2 ~ 0, we have a first-order differential equation
for P', which may be written

to order kz, from the expansions for sin(kr ), cos(kr) and
k cot 6 [Eq. (1)]. Hence,

III. APPLICATION TO THE SQUARE WELL
POTENTIAL

We apply our new formula to the simple case of the
square well potential of depth IC'z and range R. The ap-
propriate information is given in Table I. The evaluation
of the integrals in Eq. (20) is straightforward and gives

P(r) = C + cot(I& r), (24)

where

(23)

Thus pza+2, and consequently higher-order terms in the
expansion of k cot b may be determined. When the po-
tential has a hard core within which the wave functions
are zero, the P's need to be defined only for values of r
greater than the core radius and the formulae still hold.
By expanding Eq. (13) to higher order in k2, the corre-
sponding Pz„can be explicitly determined.

~o = ~o ~

Integrating from 0 to r,

(17) TABLE I. Relevant quantities for the square well poten-
tial.

r
upP: — uo(8)ds,

0
(18)

the constant of integration being zero. Dividing by up(r)
(which is nonzero for 0 & r & R in the cases of no or one
bound state) and integrating once again, we have

uo ——A sin(Kr), 0 & r & R
uo ——a —r a
tan(KR) = —K(a —R)
A2 = (K2(a —R) +1)/(K a )
a = [IiR —tan(KR)]/K
ro = R —R'/(3a') —1/(K'a)
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R +3
C = P(R) — cot(I&R) =

2K 6a' (25)
R 2

p&odr = [ 15a ro+ 10aR —10a R
p 60a2

after substitution for r 0.
The second integral in Eq. (12) involves only a poly- The erst integral is

nomial,

—10aruR —2R ].

f pu~~dr=A~ J c
CR'. 2

g3R
12a

cot(I&r) sin (Itr)dr

C . R 1
sin(2I&R) —

z cos(2' R) + s sin(2I~ R)16R3

+ z z + .& 2
ICaR'A —2RI&a —(a —R)

(a- R)

(27)

(28)

(29)

From Eqs. (28) and (29), with a little help from the computer algebra software MAPLE we obtain

Pro ——(—45a +30' a R —30' a R + 15' aR —18I& aR +45' a R+ 10I& R )/(360' a ), (30)

in exact agreement with the expression obtained by
the expansion of k cot 6 for a square well potential (see
Preston and Bhaduris), again using computer algebra.

IV. NUMERICAL APPLICATION

We have performed numerical integrations of Eqs. (12)
and (20) for the cases of (i) the square well potential
mentioned above and (ii) the Eckart potential which has
a shape parameter with a value of zero.

First, with the square well potential (for which R is
taken to be the range of the potential) an application
of Simpson's rule for each of the three required integra-
tions (over s, t, and r) gave a result in agreement with
that from the formula (30). We used R = 2.02 fm and
K = 0.9343 fm for which P = —0.040. In Fig. 1, we
show the behavior of the functions P(r) and P(r). The
numerical values agree with those obtained using Eqs.
(24) and (15).

For the Eckart potential (see, for example, van Dijk
and Kiangs),

1.0
2Ay2e ~"

Vr (1+ Ae-&")~'

the zero energy wave function is

(31)

0.5
p 1 e-yr

uo(r) = 1 ————[p(1 —A)r + 2+ 2&]
a 2 1+ Ae-~"

(32)

0.0

-0.5

-1.0

y(l —A) 1+ A„, (33)

For this potential the shape parameter is zero. Thus
it provides a good test of our method. Considering,
approximately, the singlet np state2 with a = —23.71
fm and ro —— 2.4 fm, we determined A and p from
A = (1—2ro/a) t~2 and p = 2(1+A)/(ruA), respectively.
In Table II, we give the values of P for various choices of

-1.5 TABLE II. Values for the shape parameter I' for the
Eckart potential.

-2.0
0.0

I

0.5
I

1.0 1.5
r (fm)

2.0 2.5 3.0

FIG. 1. The function P(r) and P(r) for the square well

potential.

R (fm)
5.0
6.0
7.0
8.0
9.0

I'
—0.00097
—0.00026
—0.00006
—0.00002
—0.00000
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R. In this table R has a slightly different meaning from
that earlier in the text: for r & R, the wave function is
that given by Eq. (32) and for r ) R the wave function
has its asymptotic form. Thus there is a small discon-
tinuity in the wave function if R is too small. In other
words we have not amended the value of the scattering
length in Eq. (33) to ensure continuity at R. This is not
important here. %e see that, for this case, our formula
works very well.

In summary, we have shown that the coeKcients of the
effective range expansion can all be expressed in terms
of the zero energy wave function. This feature is espe-
cially useful in the determination of the shape parameter,
which is calculated in a straightforward manner by inte-
grating simple functions made up of the square of the
zero energy wave function. The presence of a hard core
in the interaction is easily incorporated in the formalism.
The numerical examples show that the method can be

implemented for realistic local interactions whose wave
functions tend to be known only numerically.

The extensions of our formula to the case of coupled
channels and for the case when uo(r ) has a zero for r & R
are under active consideration.
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