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We critically examine two formally equivalent approaches to the many-body problem, one of
which is based on an effective energy-dependent interaction and the other on an effective energy-
independent interaction (an instantaneous, but nonlocal, potential). The interactions are mediated

by the same set of mesons, with common masses, coupling constants, and form factors, and they
give similar reproductions of the two-body data. We examine the higher-order contributions in the
many-body theory, and we are able to identify specific ingredients that could lead to different rates
of convergence for the different interactions. For the three-body system, we find an important con-
tribution to the three-body force that is large in the energy-dependent interaction and nearly cancels
out of the instantaneous potential. For the many-body system we find numerous density-dependent
terms that contribute to the energy-dependent interaction but not to the instantaneous one. We
show numerical results for the binding energy per particle of nuclear matter based on the solution of
the two-body Bethe-Goldstone equation. We find substantially less binding for the instantaneous
potential, thus observing that in actual calculations the many-body theory converges at a different
rate for the two types of interaction. We conclude that nuclear matter properties can be calculated
with more reliability and less computational effort for the case of the instantaneous potential.

I. INTRODUCTION

In recent years, numerous meson-theoretical nucleon-
nucleon interactions V have been proposed. As a rule,
these reproduce quite well the nucleon-nucleon phase
shifts below the meson-production threshold once the
meson-nucleon couplings are appropriately adjusted.
The interactions are sometimes taken to depend on the
asymptotic energy E of the two nucleons [so V= V(E)],
as in the case of some versions of the Bonn interaction, '

and sometimes taken to be instantaneous, in which case V
is energy independent but nonlocal, and can be derived
from the folded-diagram expansion. Below the meson-
production threshold, both forms are, in principle, equal-
ly valid representations of the interaction and can be sys-
tematically derived from an underlying meson theory in
versions of the Brillouin-Wigner and Rayleigh-
Schrodinger perturbation theories, respectively. Recent-
ly, we showed that equivalently good representations of
the on-shell nucleon-nucleon scattering data could be ob-
tained with both instantaneous and energy-dependent in-
teractions using the same set of mesons with the same
couplings to nucleons. It was thereby demonstrated that,
in the two-body sector, retardation, arising naturally as a
result of the meson exchange, could be described equally
well, in practice, through an explicit dependence on E, or
alternatively, in the instantaneous potential, as a folded
diagram.

In this paper, we want to extend our investigations to
the case of systems consisting of three (and more) nu-

cleons. We would like to know whether the practical
equivalence observed for two nucleons also holds in the
many-body system. Specifically, we will investigate
whether the binding energy per particle BE/A of infinite
nuclear matter can be calculated with comparable feasi-
bility in both schemes, or whether one scheme is
definitely superior and hence preferred as a technique for
testing meson-theoretical models.

Observables for such systems are calculated with the
help of the Goldstone linked-cluster expansion. In prin-
ciple, expansions in both schemes ultimately lead to the
same value for BE/A if they are derived from the same
meson theory as in our work. To obtain a reliable result
in practice, however, one scheme may require the evalua-
tion of many more terms in the corresponding perturba-
tion expansion. The main issue is then to decide which
expansion is likely to be more convergent, and, moreover,
in which scheme the terms of the expansion can be more
easily evaluated.

In general, there are two types of complications to be
expected when going from the two-body to the many-
body system. First, density-dependent modifications of
the two-body force have to be considered. Secondly,
genuine three- and higher-body forces appear in the per-
turbation expansion. It will turn out that the instantane-
ous potential approach is definitely simpler and hence
preferred. One reason is that density-dependent correc-
tions simply do not arise in this case, so that there are
fewer terms to be evaluated. With the extra effort that is
required to calculate the density-dependent terms, the
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energy-dependent scheme has no obvious justification, at
least at this time. Additionally, we find, in contrast to
the energy-dependent interaction, that there are strong
cancellations among the various pieces of the three-body
force considered for the instantaneous potential, which
would appear to reduce the effort needed to make the cal-
culation and enhance the apparent rhte of convergence in
this case.

In Sec. II we present and discuss the meson-theory
model on which our calculations are based. In Sec. III
we formally examine the structure of the effective interac-
tions in the energy-dependent and instantaneous schemes.
We show that the structure of the forces, the nature of
the density-dependent corrections, and the interplay be-
tween the various terms are quite difFerent in the two
cases.

In Sec. IV we illustrate the theory by studying an im-
portant set of three-body forces. We show that there are
strong cancellations between two types of folded dia-
grams occurring in this set, and that these cancellations
have no counterpart in the energy-dependent scheme.
These three-body forces help explain different numerical
results that have been found in previous calculations of
the triton binding energy using energy-dependent and
energy-independent interactions; in particular, we show
that the equivalence between the two schemes is satisfied
when these three-body forces are included.

In Sec. V we give numerical results for nuc1ear matter,
showing that BE/A is not the same when the Goldstone
expansion is truncated at the two-body level, even for
two-body forces that are constructed from the same
meson theory and give the same nucleon-nucleon phase
shifts. We argue that the differences are a consequence of
the omission of three-body clusters and the neglect of
various many-body terms and density-dependent addi-
tions to the two-body interaction identified in Sec. III.
Three-body clusters and three-body forces are estimated
for the instantaneous potential, but additional numerical
calculations for the energy-dependent scheme are re-
quired to fully establish the equivalence between the two
approaches for nuclear matter.

In Sec. VI we summarize our results and draw con-
clusions. Our main conclusion is that the instantaneous
potential approach is preferable based on the criterion of
simplicity.

II. MESON- THEORETICAL TWO-BODY MODEL

Our energy-dependent interaction, which we call
OBEPT', consists of single exchanges of m, g, p, co, o., and
5 mesons between nucleons. Antinucleons are omitted in
the discussion presented here, which seems to be a good
approximation, at least for pions with pseudovector cou-
pling to nucleons. We use exactly the same o. meson in
both isospin channels, in contrast to OBEPT in Ref. 1

(Table 8, Appendix B.2), where the parameters for the o
meson are slightly different in the two channels. The
masses, coupling constants, and cutoff masses A are
shown in Table I; they have been determined by a fit to
the two-body data. Results for the scattering phase shifts
can be found in Ref. 3. It should be noted that the fit is

TABLE I. Parameters for the energy-dependent interaction
OBEPT', together with the modified scalar coupling constants
(in parentheses) used for the corresponding instantaneous in-
teraction. The number in square brackets denotes the tensor-
to-vector coupling ratio. For the definition of the parameters,
see Ref. 1.

Meson
Mass
(MeV)

138.0
548.8
550.0
983.0
769.0
782.6

g' /4m

14.40
5.00
8.88 t,

'8.7745)
1.05 (0.1207)
0.90 [6.1]

20.00

A

(MeV)

1750
1500
2000
2000
1500
1500

as good as that for OBEPT; only the triplet S-wave
scattering length a, is slightly inferior. (In fact, the iso-
spin splitting in o exchange has been introduced in
OBEPT just to obtain quantitative agreement with the
empirical a, value. )

The corresponding folded-diagram potential consists of
one-boson-exchange (OBE) terms for each of the mesons
with the same masses, coupling constants, and form fac-
tors that were used in OBEPT'. However, to account for
the retardation of the OBE potential, we must augment
the potential by the two-pion-exchange folded diagram,
as in Ref. 3. This diagram is also energy independent.
We showed in Ref. 3 that these energy-dependent and in-
stantaneous interactions give nearly the same on-shell re-
sults, which establishes that the theory is rapidly conver-
gent.

In order to meaningfully compare the nuclear matter
results of the energy-dependent and instantaneous poten-
tials, we must consider the following point. If we find
differences between the results, these could arise from
omissions in the many-body sector, or from omissions of
higher-order diagrams at the two-body level. In order to
avoid confusing these two possibilities, we will next make
small adjustments in the coupling constants of the scalar
mesons (for the case of the instantaneous interaction) to
give essentially exactly equivalent fits to the two-body
data for the energy-dependent and instantaneous interac-
tions. This adjustment compensates approximately for
the omission of higher-order folded diagrams in the two-
body force and may also reflect our omission of two-
meson-exchange folded diagrams involving mesons
heavier than pions. The results are also shown in Table I.
The changes are basically very small, and one can see
that the largest occurs in the short-range component (of
the scalar 5 meson). This is consistent with the results of
Ref. 2, where it was pointed out that the retardation
effects arising from energy dependence in a given order
are naturally of short-range character because they can
be represented as higher-order (folded) diagrams.

It is important to look a bit more carefully at the S,-

D, channel. In this channel one finds the tensor force,
which has a major influence on the saturation of nuclear
matter. The e, parameter for the energy-dependent
OBEPT' is shown in Fig. 1 along with the folded-diagram
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tions between two folded diagrams, so that the net effect
is small. Thus, the difference between the two values of
the quadrupole moment in Table II reflects the wave-
function normalization and the meson-in-flight correc-
tions corresponding to the energy-dependent interaction.

The percentage D state is a special case. As for Q, it is
different for the two interactions. However, in contrast
to Q, there is no reason for this quantity to be the same,
because the percentage D state is not an observable.
Desplanques has shown that an increase in the percen-
tage D state by about the amount shown in Table II is a
natural consequence of transforming from the energy-
dependent to the equivalent energy-independent interac-
tion.

III. MANY-BODY THEORY

FIG. 1. Comparing experimental and theoretical values of
the e& parameter. The dashed curve is OBEPT' and the dotted
curve the corresponding folded-diagram potential. The solid
curve is the calculation of the folded-diagram potential corre-
sponding to the modified scalar-meson coupling constants in
Table I.

potentials corresponding to the two sets of parameters in
Table I. We see that all of these look quite good com-
pared to the empirical data. The deuteron properties are
shown in Table II. For our purposes, it is important that
the deuteron binding energy is the same for both interac-
tions; the eigenvalues of bound states are, in any case,
supposed to be preserved in the transformation from the
underlying Hamiltonian to the instantaneous potential by
folded diagrams. '

The fact that the quadrupole moment is not the same
for the two cases in Table II reflects the need for specific
corrections in both schemes. For the energy-dependent
interaction, these have been discussed by Chemtob and
Rho, who point out two sources for them. One is associ-
ated with the wave-function normalization, and the other
is a piece of the exchange current, the so-called meson-
in-flight term. The former is known to give rise to a de-
crease in the value of Q by about 4%, but the latter have,
to our knowledge, never been evaluated. In the instan-
taneous potential approach there is no wave-function
normalization correction, but the analog of meson-in-
flight corrections does arise, and these can be calculated
as an effective operator along the lines indicated in Ref. 2.
As pointed out there, there are rather strong cancella-

The energy-dependent scheme applied by the Bonn
group is an application of the formalism of Bloch and
Horowitz. The many-body theory for the instantaneous
interaction is found in Ref. 2, which is an application of
the general folded-diagram approach of Ref. 10. In order
to understand the nature of the differences that we will
find in triton binding-energy results and our nuclear
matter calculations, the structure of these theories needs
to be made more explicit in higher order. We will at-
tempt to do this in the present section.

The study presented in this section will help us decide
later whether the numerical differences that we find are of
a trivial nature (e.g. , arising simply as quantitative
differences in the evaluation of the same algebraic expres-
sion), or whether they arise from deeper structural
differences in the theory. From this we will be able to
determine the answer to the question posed in the Intro-
duction; namely, whether one of the two interaction
schemes provides a decidely more economical basis for
testing the many-body meson theory.

A. Energy-dependent scheme

Bloch and Horowitz showed how to define an effective
interaction v(z) in a model space. They consider the
resolvent operator 1~(z) =(z H+i ri), wher—e H =Ho+ V
is the full Hamiltonian of the system. Bloch and
Horowitz use time-ordered perturbation theory, called
"old-fashioned perturbation theory" in Ref. 8. In this
case, any state ~i ) of the system is characterized globally
as a many-body state containing A nucleons and some
number (0, 1,2, . . . ) of mesons. They introduce projec-

TABLE II. Deuteron data (energy E~, quadrupole moment Q, and percentage D state PD ), nuclear-matter properties (binding en-
ergy per particle BE/A and saturation Fermi momentum kr ), and singlet and triplet scattering lengths (a„a, ) and effective ranges
(r„r, ) for the energy-dependent interaction and instantaneous potential.

Interaction

Energy-dependent
Instantaneous

Experiment

(MeV)

2.225
2.225

2.224 57
+0.00009

(fm )

0.278
0.298

0.2860
+0.0015

PD
(%)

4.19
5.97

BE/3
(MeV)

20.7
11.3

16
+0.5

kF
(fm ')

1.8
1.5

1.36
+0.05

a,
(fm)

—23.76
—23.83
—23.7483

+0.010

(fm)

2.75
2.75

2.75
+0.05

ar
(fm)

5.45
5.44

5.424
+0.004

(fm)

1.79
1.78

1.759
+0.005
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tion operators P and Q such that P projects onto a state
in the model space (in this case, any state with no
mesons) and Q projects onto any state outside the model
space (a state with at least one meson). v(z) is then an
operator that has matrix elements between those states
~i ) for which P~i) does not vanish. v(z) is given by the
sum of all terms in the perturbation expansion of ~(z)
having only those intermediate states ~I ) for which Q~I )
does not vanish. They show that for bound states the ei-
genvalues of the effective interaction of He+ v(z) are the
same as the eigenvalues of the exact Hamiltonian H. For
scattering states, one also obtains, in this fashion, the
scattering S matrix.

One can represent the matrix elements of v(z) diagram-
matically using usual many-body techniques, since ~(z) is
the Fourier transform of the time-evolution operator.
The diagrams are usually called Feynman-Goldstone dia-
grams.

For the bound-state problem, the unperturbed Hamil-
tonian is the single-particle operator Ho,

He= T+ U =gh;,

where

h, =t, +u;,
with T being the kinetic-energy operator for the nucleons
and U being some suitably chosen single-particle poten-
tial. In this case, the perturbation would be V —U. The
single-particle orbitals ~P„), which are eigenstates of h,

(3)

correspond to either particles or holes in the Feynman-
Goldstone diagrams. Holes may occupy only those states
that belong to the "core" of the nucleus, the core being
defined as all states whose energy lies below the Fermi en-

ergy e+~. Particles occupy states whose energy is greater
than eF&

In general, for the A-body system we will write the
effective interaction as v(ezz, z) to remind one that the
individual terms contain medium modifications depend-

ing on the energy of its Fermi surface. This interaction
contains terms of a zero-body, one-body, n-body charac-
ter, so one may write

WEB Pg &/i ~F8 SW~

(b) (c) (e)

FIG. 2. Generic representation of diagrams contributing to
Eq. (4).

appropriate to the two-body and perhaps other few-body
systems. We next give examples of the boxes in Figs.
3-6. It is important to realize that the diagrams actually
needed in a calculation are much greater in number than
those shown; we generally just show one of many time or-
derings that contribute.

Examples of the zero-body piece of the effective in-
teraction v' '(eF„,z) are shown in Fig. 3. This piece of
the interaction gives the ground-state energy of a system
containing no valence particles and holes. Recall that we
omit antinucleons in this discussion, so that the lines run-
ning backward in time are holes. Figures 3(a)—(d) are
two-hole-line clusters, and Fig. 3(e) is an example of a
three-hole-line cluster. Figures 3(f) and (g) are examples
of two-meson-exchange diagrams that have never, to our
knowledge, been evaluated in nuclear-matter calcula-
tions.

The higher-order terms (n ) I) v'"'(ezz, z) contribute
to the interaction among valence particles and holes.
Figure 4 shows some examples of the two-body contribu-
tions v' '(eF„,z). In the free-space two-body interaction
the diagrams with internal and external hole lines, e.g.,
Figs. 4(d) —(j), are absent, and there are, of course, no
Pauli restrictions on the particle lines on the remaining
diagrams.

Figures 4(d) —(g) are density-dependent contributions to
the two-meson-exchange interaction, which have never,
to our knowledge, been considered in nuclear-matter cal-
culations. Figure 4(h) —(j) are examples of two-body in-
teractions that act between particles and holes. Figure
4(j) is an off-diagonal piece that connects states with
different numbers of particles and holes.

v(~Fa z)= gv (~F~ z) .

We will illustrate the contributions to v below as
Feynman-Goldstone diagrams. Feynman-Goldstone dia-
grams are time ordered, with particles propagating for-
ward in time and holes backward in time. In our repre-
sentation of these diagrams, time runs up. The terms are
represented generically by a box; those with n different
from zero have n external lines (legs) entering (or leaving)
the box, as illustrated in Fig. 2. Each box connects A-

particle states, but external legs with no interactions are
not drawn. The external legs correspond to the case
where valence particles or holes are added to the nucleus.
When we omit ez„as an argument in v, we imply that all
nucleon states characterizing v(z) are particle states, as is

(c) (d)

FIG. 3. Examples of connected clusters contributing to the
zero-body piece of the effective energy-dependent interaction.
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FIG. 6. Examples of linked-cluster contributions to the four-

body piece of the effective energy-dependent interaction. (b) is

an example of a disconnected cluster.

FIG. 4. Examples of linked clusters contributing to the two-

body piece of the effective energy-dependent interaction.

Figure 5 gives examples of three-body interactions.
Figure 5(a) is an example of the intrinsic three-body in-
teraction. We use the term "intrinsic" to denote three-
body diagrams that cannot be separated into two pieces
by cutting a single internal nucleon line. Figures 5(b) and
(c) are examples of the extrinsic three-body interaction,
so called to distinguish it from the intrinsic terms. Ex-
trinsic three-body forces tend to be specifically dependent
on the particular representation used to account for re-
tardation at the two-body level. Figure 5(d) is an exam-
ple of a disconnected three-body interaction.

Examples of four-body interactions are shown in Fig.
6. Figure 6(a) is an intrinsic four-body interaction and
Fig. 6(b) is an example of an extrinsic four-body interac-
tion. Figure 6(b) is also an example of a disconnected
four-body diagram.

One-body pieces v" I(e~„,z) also exist, and those that
occur in free space are related to nucleon self-energies,
which are assumed to be adequately taken into account
by the use of physical nucleon masses. This is, of course,
only an expedient and not true as a general statement.

A fundamental problem with the pursuit of the Bloch-
Horowitz expansion for v'"'(ez„,z) is that it contains
disconnected diagrams. The existence of disconnected di-

I 1+I

(c)

FIG. 5. Examples of linked clusters contributing to the
three-body piece of the effective energy-dependent interaction.
(a) is an intrinsic three-body force, (b) —(d) are examples of an
extrinsic three-body interaction. (b) is an example of a discon-
nected cluster.

agrams has been considered a drawback, and attempts to
obtain a linked set of diagrams was one of the prime
motivations for the invention of folded diagrams, ' '" dis-
cussed below. In applications of the energy-dependent
interaction to nuclear matter, this problem has been ig-
nored. It is clear from the above discussion that the
number of two-meson diagrams contributing to
v'"'(e~„,z) is substantial; that is a practical drawback of
the energy-dependent scheme.

The theory of Ref. 8 deals with two cases. The first is
the interaction of two free particles, so A =2 and no
single-particle potential or Fermi energy is necessary to
characterize the system. In that work, a restriction on
the class of diagrams was imposed; namely, v(z) was con-
sidered to consist only of two-body pieces, and these con-
tained only the one-boson-exchange terms, which we
denote voss(z). Although just the lowest-order, one-
boson-exchange pieces [e.g., Fig. 4(a)] were considered in
Ref. 8, in subsequent applications consideration was
given to the higher-order pieces of v' '(z). For example,
in some of the Bonn interaction studies, including the lat-
est one, ' two-meson-exchange pieces to v' '(z), Figs. 4(b)
and (c), were included.

The second case considered in Ref. 8 was infinite nu-
clear matter. The only property of nuclear matter stud-
ied was the binding energy; excited states were not con-
sidered. In this case there are no valence particles or
holes and therefore the ground-state energy of the system
is given by the sum of linked clusters, as in Fig. 2(a),
which we have noted to constitute the zero-body piece of
the effective interaction v' '(E~„,z). In Ref. 8, the ladder
of one-boson-exchange graphs was assumed to be the
dominant element in the calculation of this two-hole-line
cluster contribution to the ground-state energy. The in-
dividual "rungs" of this ladder are voss(e~„, z), which
are closely related to the free-space one-boson-exchange
interaction voB&(z). They differ in the choice of the ener-

gy z, the choice of energies for the nucleon states [the ex-
istence of the potential u in Eq. (2) arising from the pres-
ence of the other nucleons modifies the energies], and the
Pauli restrictions on the intermediate states of v' '(z)
(particles and holes are defined differently depending
upon the density). The summation of these ladders was
accomplished by solving the Bethe-Goldstone equation.
Some calculations of the two-meson-exchange pieces of
v' '(ez„,z), Fig. 4(b) or (c), have also been obtained. '2

If we are interested only in the ground-state binding
energy of infinite nuclear matter, which is the many-body
case studied in Ref. 8, it is only the zero-body piece of the
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effective interaction v (eF„,z) that enters, as we have
stated. We also noted the observation of Ref. 8 that an
important piece of this can be obtained by iterating
v' '(e'~„,z). We point out here that this observation is ac-
tually quite general and that the entire operator
v' '(eF„,z) can be calculated by iterating the full effective
interaction v(z) as shown in Fig. 7. One only has to en-
sure that the individual terms v'"'(eF„,z) that are iterated
lead to a connected set. In the two-body case of Ref. 8,
this condition was automatically satisfied, but in higher
order the classification becomes more intricate, because,
as we have seen in Figs. 5 and 6, the individual terms
v'"'(ez„,z) for n )2 may contain disconnected pieces.
One may find the considerations of Ref. 13 to be of some
value.

There is one final comment that we wish to make. One
could try to define the effective interaction for the many-
body system by constructing the diagrammatic expansion
of v'"'(z) in the following sense: use the single-particle
basis of Eq. (3), but treat all states as particle states. The
advantage would be that the many medium modifications
would disappear, affording some simplification to the
bookkeeping. However, it becomes problematic to derive
an appropriate linked-cluster expansion. The basic prob-
lem is to know how to fix z. We have found a way to cir-
cumvent this problem, but our result, although rather
straightforward, is awkward to explain. In the end, we
found the expansion just as complicated as v'"'(eF„,z).

Although ladders of terms v'"'(eF„,z) with n different
from 2 were not considered in Ref. 8, we wi11 find it
necessary to consider these higher-order terms in our
work in order to identify the source of difference between
the binding-energy results for the energy-dependent and
energy-independent interactions. Therefore, we have
generalized the results of Ref. 8 by carrying the Bloch-
Horowitz scheme to higher order. This revealed certain
undesirable features that dpi not show up in the lowest
order considered in Ref. 8, as we have discussed. It is our
feeling that these difficulties are inherent in the concept
of an energy-dependent interaction and are not an ar-
tifact of the manner in which we have generalized from
the results of Ref. 8.

B. Energy-independent interactions

The difhculty in finding a disconnected expansion for
v'"'(eF„,z) is an old concern, and the consequences are
discussed in the literature' in the context of the nonrela-
tivistic many-body problem. Historically, searching for
an alternative that would be connected led to the obser-
vation that elimination of the energy dependence au-
tomatically results in a linked-cluster expansion. Bran-
dow, in Ref. 11, has shown this explicitly. In Ref. 10 it
was shown how to simplify the procedure and arrive at
the folded diagrams using time-dependent methods. The
theory was later applied to the nucleon-nucleon interac-
tion in Ref. 2. Next, we want to consider the extension of
these results to the many-body system.

Results come out rather simple if the problem is set up
in the following manner. We define the states of the
model space in terms of a suitable single-particle Hamil-
tonian [Eq. (3)]. The model space is taken to be spanned
by the complete set of single-particle states for A nu-
cleons. Thus, all nucleon states are taken to be active par-
ticle states in the notation of Refs. 10 and 2. The passive
states are then the meson states (we omit the antinu-
cleons). The diagrams of the A-body problem are those
for the time-evolution operator U(+ ~, —~ ), each hav-

ing A incoming and A outgoing lines. The results of Ref.
2 are suSciently general so that they can be applied im-
mediately to the many-body problem, even though the
emphasis there was on the two-body problem.

Without further ado, we list the few lowest-order con-
tributions to the two- and three-body force in the folded-
diagram expansion. These are shown in Figs. 8 and 9, re-
spectively. The folded diagram of the effective interac-
tion 8 in Fig. 8(a) is the one-meson-exchange potential,
and Figs. 8(b) and (c) constitute the two-meson-exchange
potential. The horizontal solid line drawn in the dia-
grams is the time base and represents the time at which
the diagram acts as an instantaneous potential. In all
cases, the value of the diagram is found by integrating
over all times subject to the constraint that the time base
is fixed. The diagram in Fig. 8(b) is a model-correcting
diagram and arises because the iteration of the one-
meson-exchange potential, Fig. 8(a), includes some rela-
tive time orderings of the vertices that are not allowed in
the two-meson-exchange ladder Feynman diagram. The
model-correcting diagram is subtracted from the poten-
tial. The horizontal dashed lines in Fig. 8(b) are the time

&k 1F

(a) (b) (c)

FIG. 7. Illustrating that zero-body connected clusters can be
represented by iterations of interactions of the type shown in
Figs. 3-5.

FIG. 8. Instantaneous two-body forces expressed in terms of
folded diagrams. (a) is a single-box folded diagram and consti-
tutes the one-meson-exchange potential, (b) a model-correcting
double-box folded diagram. One additional term exists for
which the role of the two nucleons is interchanged, (c) a true-

correcting double-box folded diagram.
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FIG. 9. Instantaneous three-body forces expressed in terms of folded diagrams. (a) and (c) are model-correcting, double-box fold-
ed diagrams, (b) and (d) are true-correcting double-box diagrams.

bases of these one-meson potentials, and the evaluation of
this diagram requires that the time ordering of the
dashed lines be as shown, which is the same as that of the
corresponding one-meson potentials. Figure 8(c) is a
true-correcting diagram, and it is needed because this
time ordering is not generated by the iteration of Fig.
8(a). The true-correcting diagram is added to the poten-
tial. Details of the enumeration and evaluation of the di-
agrams can be found in Refs. 2, 3, and 10. We will give
more details about the three-body folded-diagram force
in Sec. IV B and in the Appendix.

Similar considerations lead to the three-body potentials
in Fig. 9. The model-correcting diagram of Fig. 9(a) is
subtracted as a separate term in the Hamiltonian because
the iteration of the one-meson-exchange potential [Fig.
10(a)] generates (in addition to many allowed time order-
ings) these, which do not occur as part of the correspond-
ing Feynman diagram, shown in Fig. 10(b). Each hor-
izontal dashed line in Fig. 9(a), is, again, the time base of
the corresponding one-meson-exchange potential [Fig.
8(a)] and is the time at which this potential occurs in all
diagrams, including Fig. 10(a). Figure 9(b) is a true-
correcting diagram, and it is added as a separate term in
the potential because it is a time ordering of the original
Feynman diagram, Fig. 10(b), that is not generated by the
iterated one-meson-exchange potential in Fig. 10(a). The

FIG. 10. Three-body processes contributing to the time-
evolution operator U(+ ~, —~ ). (a) diagrams expressed in
terms of instantaneous potentials, (b) Feynman diagrams.

diagrams in Figs. 9(c) and (d) are model- and true-
correcting diagrams, respectively, and these arise from
processes similar to those in Figs. 10(a) and (b) but with
the opposite sequence of interactions between the nu-
cleons.

There are no zero-body contributions to the instan-
taneous interaction in the meson theory that we have
been considering. We note that the number of diagrams
is considerably smaller than that found in Figs. 4 and 5
because there are no hole lines to enlarge the set. In con-
trast to the case of the energy-dependent interaction, one
may apply the familiar many-body (potential) theory to
diagonalize the effective interaction H=HO+H, , since
H& is an instantaneous and Hermitian potential. The
only complicating feature is that H& has many-body
terms, but the extension of familiar many-body theory in
this regard is quite straightforward. For the energy of
nuclear matter, we may apply Goldstone's linked-cluster
expansion in its familiar form.

We emphasize a very interesting feature of this solu-
tion. For one thing, there are no medium modifications
to the potential, so, for example, the same two-body in-
teraction that is derived for free space is applicable to the
many-body system, regardless of the number of particles.
But again, as the number of particles increases, one must
include forces acting simultaneously among an increas-
ingly large number of nucleons. If this solution is to be
practical, it is necessary that the many-body forces are
not important. We show that in the case of the extrinsic
three-body force, there are cancellations that make these
contributions small.

We state a result, which is intuitively expected and
which can be verified perturbatively; namely, that if we
keep a complete set of single-particle states in the model
space, the single-particle potential u formally cancels out
of the folded diagrams. The result is not surprising since
u was added and subtracted originally. Although we con-
sider it to be a virtue that H, does not depend on u, it
may turn out in the future that one will want to use the
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freedom of choosing u to enhance the rate of convergence
of the folded-diagram expansion.

Alternatively, we could use the results of Sec. 8 of Ref.
10 and define a potential in the situation that there are
active holes. The Fermi surface e„~ may be placed at
some reference value, which may, for example, corre-
spond to the value in normal nuclear matter, but the ac-
tive orbitals would include the entire space, i.e., all parti-
cle and hole states of the nucleons. The folded-diagram
rules then give the effective interaction among the parti-
cle and hole states. In this case also, the folded-diagram
potential is completely connected, in contrast to the case
for the energy-dependent interaction derived from Bloch
and Horowitz, above. We have not pursued this option
because it appears unnecessary for the purpose of this pa-
per, but, after working through a few examples, we
suspect that when due care is taken, this will be able to be
cast back in the form derived from our original choice of
model space.

C. DISCUSSION

Note that we have arrived at quite different descrip-
tions in the case of the instantaneous potential and
energy-dependent interaction. In particular, for the in-
stantaneous potential we make no medium modifications
at all to the two- and three-body potentials. The two and
three-body potentials in nuclear matter are just what they
are in free space; in particular, there are no additional di-
agrams. The complete interaction through two-meson
exchange is that shown in Figs. 8 and 9. One practical
advantage of this procedure is that the two-body poten-
tial is fixed once and for all by the nucleon-nucleon phase
shifts: one does not have to reevaluate it in nuclear
matter for each density and energy. Other advantages
are that there are fewer diagrams to evaluate and that the
extrinsic three-body force is relative small (Sec. IV B).

One may wonder how things can be so simple in the
approach through instantaneous potentials. How can
one ignore the background potential u; and the Pauli
principle?

Let us consider first the question of the background po-
tential. A one-body potential is often added (and sub-
tracted) to enhance the rate of convergence of perturba-
tion theory. Since u; is added and subtracted, the final
answer cannot depend on the choice of u, in principle.
Whether or not it does in practice depends on how well
the expansion has converged, which can only be
answered by sufficient experience in numerical calcula-
tions. Actually, in the approach through instantaneous
potentials, one does not give up the device of u;, but rath-
er one just employs it at a later stage of the calculation;
namely, in applying the many-body theory to sum the po-
tential interactions in the linked-cluster expansion. As
we previously stated, it is possible to show perturbatively
that even if u,- is applied at the meson-theory level before
the potential is defined, it tends to cancel out of the po-
tential. This confirms our belief that we have not
sacrificed an important degree of freedom by evaluating
the nucleon-nucleon potential for nuclear matter in terms
of the free-space nucleon energies.

Next consider the issue of the Pauli principle: can one
really avoid excluding intermediate nucleon states with
momentum e; &eF~ in Figs. 8 and 9? We remind the
reader that the Pauli restriction does not, in general, have
to be imposed explicitly in intermediate states provided
antisymmetrized initial or final wave functions are used,
and provided all Pauli-violating diagrams are kept: the
Pauli-violating terms always appear in mutually cancel-
ing pairs. For the case at hand, the Pauli-violating pieces
of the three-body forces in Fig. 9 cancel the Pauli-
violating pieces in Fig. 8. We see, in particular, that
some of the pieces of Figs. 9(a) and (c) (for example, those
for which nucleons l and 3 are in the same state) cancel
the unwanted pieces (those for which the state of an
internal nucleon line lies within the Fermi sea) of the
model-correcting diagrams of Fig. 8(b). Likewise, pieces
of Figs. 9(b) and (d) cancel against the Pauli-violating
pieces of the true-correcting diagram of Fig. 8(c). In this
way we avoid having to apply the Pauli principle explicit-
ly in intermediate states in the instantaneous potential.

One sees from the preceding discussion that there is a
delicate interplay between the pieces of the two- and the
three-body force. In particular, the three-body force is so
closely associated with the uncrossed and crossed boxes
from the two-body potential that one is not justified in us-

ing the full three-body force unless the complete two-
meson-exchange two-body force is also evaluated. This
somewhat subtle point is perhaps more evident in a di-
agrammatic than an algebraic approach.

IV. THREE-BODY SYSTEM

There are two main reasons for bringing the three-body
system into this discussion at this point. The first is that
we want to evaluate some of the three-body forces shown
in Sec. III to illustrate the methods discussed there in a
somewhat abstract context. There have been many dis-
cussions of the intrinsic three-body force, but the extrin-
sic three-body force, which is the one relevant, for exam-
ple, to the difference between the triton binding energy
for energy-dependent and instantaneous potentials, has
not been well studied. We therefore examine these in
some detail.

Secondly, there have been extensive Faddeev calcula-
tions in the triton' with energy-dependent and energy-
independent interactions, and we can use these results to
support our assertion that the energy-dependent and
energy-independent interactions give the same results
when the many-body theory is carried to sufficiently high
order.

A. Three-body forces in the energy-dependent scheme

Consider first the extrinsic three-body force in the
energy-dependent interaction. In this case, the three-
body force is illustrated in Fig. 5(b). For an actual calcu-
lation, one needs to compute all eight of the time order-
ings, subject to the condition that each intermediate state
contain at least one meson. (There are another eight dia-
grams in which the mesons interact with nucleons in the
opposite time sequence. ) One can easily convince oneself
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that these eight diagrams are all coherent and generally
nonvanishing. As it turns out, these were calculated on
shell and in the nonrelativistic limit by Pask' and were
reexamined more recently in Refs. 18 and 19. It was
shown in the latter two works that this three-body force
should be retained only in those calculations for which a
complete relativistic treatment of the two-body potential
has been made. It was furthermore shown that Pask in-
correctly combined the various pieces of his calculation.

Although the discussion in Refs. 17—19 was motivated
by different considerations, the results of these calcula-
tions are just what we need to estimate the extrinsic
three-body force for the energy-dependent interaction in
the present context. If nonrelativistic approximations are
avoided in using the OBEPT interaction, which was the
case in Ref. 15, then it is proper to add the three-body
force of Fig. 5(b) (and the remaining legitimate time or-
ders of it) to the results calculated with this two-body in-
teraction.

B. Three-body forces in the energy-independent scheme

Next, consider the three-body force in the instantane-
ous potential. The corresponding diagrams are given in
Fig. 9, and we record some of the details of their evalua-
tion in the Appendix. In this section we call attention to
some of their salient features.

First, we recall the rule for evaluating the nucleon in
these diagrams. All folded-nucleon lines propagate back-
ward in time, and, of course, an ordinary nucleon line
must propagate forward in time. A folded-nucleon line
has the same propagator as a nucleon line that is not fold-
ed; namely,

e " 8(bt)= f dto
2K —oo CO Ek +l'g

(5)

where At is the time difference between the beginning and
the end of the line (as defined by the direction of the ar-
row). The complete value of a folded diagram is deter-
mined by integrating over all times subject to these time
constraints and subject to the constraints that define the
time base. We have found previously that placing the
time base at the average time of the diagram simplifies
the structure of the higher-order terms, and so that is the
way we fix the time base in this paper. Thus, for the
one-meson-exchange terms, Fig. 8(a}, the time base is
fixed at to =(t, + t2 )/2, where t, and tz are the times of
absorption and emission of the meson. It is natural to
place the time base in Fig. 9 at the average time as well,
so we adopt the definition

tp
(t, +t, +t,'+t, )

4
(6)

It is apparent from inspection of Fig. 9 that there is a
large degree of cancellation between Figs. 9(a) and (d) and
between Figs. 9(b) and (c) because of the similarity of
their structure and because of the existence of the relative
minus sign for the model- and true-correcting diagrams.
Note that all lines in Fig. 9(a} are the same as the corre-
sponding ones in Fig. 9(d), except those for nucleon 2.
All time orderings of the vertices occuring at times t, ,

The only difference between this in Figs. 9(a) and (d) is
that E has a different value in the two sets of diagrams
[let these be E," and E'2" in Figs. 9(a) and (d), respective-
ly]. From this observation, it is easy to show that the dia-
grams are equal in magnitude but opposite in sign when

E2+E2 =E2 +E2 (8)

When all external momenta can be neglected relative to
the nucleon masses, this condition is satisfied and the
three-body forces cancel identically. Moreover, if we use
momentum eigenstates for our basis, the cancellation is
exact when either E', =E, or E3 =E3.

A similar cancellation can be seen to occur between
Figs. 9(b) and (c). Those cancellations are also apparent
from the explicit expressions for the three-body force
given in the Appendix. One also sees there that the sum
of diagrams in Figs. 9(a) and (b) is a relativistic correction
of order (U/c)~. Likewise, the sum of Figs. 9(c) and (d) is
of order (U/c) . Thus, the cancellation occurs between
terms that are already quite small.

C. Three-body results

There have been three-body calculations for the triton
using the energy-dependent OBEPT (Ref. 15) and some
variants (A,B,C) of the energy-independent, momentum-
space potential OBEPQ. ' These variants differ in the
amount of D-state probability, ranging from 4.4% for
model A to 5.6%%uo for model C. Consequently, the triton
binding-energy result is largest for model A (8.36 MeV)
and reduces to 7.94 MeV for model C. Since our folded-
diagram potential has a PD of 5.97%%uo, a corresponding
triton calculation is expected to yield about 7.8 MeV.
This number has to compared with the result for
OBEPT, which is 6.73 MeV according to Ref. 15. Thus,
there is a sizable discrepancy of about 1 MeV, which
shows that the many-body theories for energy-dependent
and energy-independent potentials are inequivalent and
that they are converging at different rates.

From the foregoing considerations we see that the
main source of differences should be the extrinsic three-
body force. Indeed, Pask' has estimated the extrinsic
three-body force to be attractive and to contribute an ad-
ditional binding of about —1.03 MeV to the triton. Al-
though it has been pointed out' ' that Pask (incorrectly)
adds this contribution to the energy calculated from an
instantaneous potential, we have no reason to believe that
he has incorrectly evaluated the three-body force. Ac-
cording to our analysis, this value corresponds to the size
of the extrinsic three-body force in the energy-dependent
interaction. Because of the cancellations between the
model- and true-correcting folded diagrams discussed in
Sec. IVB, we would conclude that the size of the extrin-

t2, t2, and t3 are the same; in addition to the restrictions
just mentioned, recall (from Sec. III B) that the time or-
dering of the time bases of the individual mesons must be
maintained with respect to each other. The lines for nu-
cleon 2 in Figs. 9(a) and (d) have the value

2 2 2 2 0 2 2 2 0
—iE (t —t ) —iE (r —t ) —iE (f —t )
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sic three-body force for the instantaneous potential would
be small on this scale for the triton.

The excellent agreement that occurs between the two
methods of calculation is consistent with our diagram-
matic analysis, which shows that a sizable extrinsic
three-body force occurs in the energy-dependent interac-
tion but not in the energy-independent interaction. It
also confirms our point that the same answer using
energy-dependent and energy-independent interactions
must be obtained when the calculation is carried out con-
sistently. It would appear to be sufficient to carry out the
calculation consistently through the two-meson-exchange
level in order to find agreement between the two ap-
proaches.

V. NUCLEAR-MATTER RESULTS

We can now compare the nuclear-matter results. We
evaluate the two-body cluster of the Goldstone linked-
cluster expansion using the standard Bethe-Goldstone
equation with no potential acting on particle states. Just
as in the case of the deuteron, the binding energy of nu-

clear matter is one of the observables that should be
preserved by the effective interaction. ' We see the bind-
ing energy per particle and the saturation Fermi momen-
tum in Table II. The results of the calculation show that
BE/A =20.7 MeV for the energy-dependent, but only
11.3 MeV for the energy-independent interaction. These
interactions correspond to the same meson-nucleon La-
grangian (apart from minor differences in the scalar cou-
pling constants, see Table I), so they would correspond to
the same BE/A if the complete many-body theory were
used for each, as in our previous study of the triton. Be-
cause BE/A is not the same in the two cases, we con-
clude once more, for the case of infinite nuclear matter,
that the energy-dependent and energy-independent in-
teractions provide different descriptions in practice, with
the corresponding expansions converging at different
rates.

The differences in the numerical results can arise from
(l) omission of three- (and higher-) body clusters, (2)
omission of extrinsic three-body forces, and (3) omission
of density-dependent pieces of the energy-dependent in-
teraction. We are able to infer what the contribution of
the extrinsic three-body forces and three-body clusters
give for the instantaneous potential. The three- (and
many-) body linked-cluster contributions to BE/A have
been calculated by Day in Ref. 20 for a series of instan-
taneous potentials. We see from his results that the
many-body cluster corrections give an additional attrac-
tion of about 5 MeV. Our own results show that, to first
approximation, the extrinsic three-body force in the in-
stantaneous potential does not contribute to nuclear
matter. Putting this together, we would conclude that
the nuclear-matter BE/3 in the instantaneous potential
scheme, including two-body plus three-body clusters,
would be about 16.3 MeV/nucleon.

There have been no calculations (to our knowledge) of
the three-body cluster contribution in infinite nuclear
matter corresponding to the energy-dependent force. We
infer from our numerical values of BE/A for the two
cases that the sum of all corrections for this interaction

would have to be repulsioe by about 20.7—16.3=4.4
MeV/nucleon in order to bring the instantaneous and
energy-dependent interaction results into agreement.

On the one hand, the results of Ref. 20 suggest that the
many-body clusters give an attractive contribution, be-
cause that is what is found for all interactions considered
there. However, the three-body calculations of Ref. 15
give support for the idea that the two- plus three-body
effects are repulsive for the energy-dependent interaction.
These calculations give BE/A =6.73 MeV for the
energy-dependent interaction in the triton and
BE/A -7.8 MeV for the corresponding instantaneous
potential. Unfortunately, it is not easy to break this cal-
culation down into a two-body and a three-body cluster
contribution, so we cannot tell whether the repulsion in
the energy-dependent calculation comes from the three-
or from the two-body terms. We conclude that it is
necessary to do the three- and many-body cluster calcula-
tions explicitly for the energy-dependent potential.

The extrinsic three-body forces are attractive, at least
for the triton. In nuclear matter, the situation is a bit
more complicated than in the case of the triton, because
we now have three-body diagrams with intermediate hole
states, for example Fig. 5(c). Thus, there will be some
terms with positive signs and some with negative signs,
leading to density-dependent cancellations in the many-
body problem. We must also recall that there are addi-
tional density-dependent corrections to the two-body
force itself [e.g. , Figs. 4(d) —(g)] that have not ever been
considered and that may modify the solution of the
Bethe-Goldstone equation.

Of course, one cannot forget the two-meson-exchange
diagrams of Figs. 3(A and (g), which have never been cal-
culated. A lot more work is required in the case of the
energy-dependent interaction to complete a consistent
nuclear-matter calculation through the level of two-
meson exchange.

VI. DISCUSSION AND CONCLUSIONS

In an earlier paper, we showed that the nucleon-
nucleon phase shifts are essentially identical for the
energy-dependent interaction and its corresponding in-
stantaneous potential, implying a rapid convergence of
the corresponding expansion for the potential in the two-
body problem. In contrast, we found here that when the
same potentials are used in a nuclear-matter calculation,
the particular equivalence found for two free nucleons no
longer holds. Specifically, BE/A for nuclear matter, ob-
tained by truncating the Goldstone expansion at the
two-body linked-cluster level, is quite different for the
two forms of interaction.

If the many-body theory is carried to all orders, one
should obtain the same BE/A because these interactions
correspond to the same meson-nucleon Lagrangian. The
validity of this assertion was confirmed here by combin-
ing Faddeev calculations in the triton' for energy-
dependent and corresponding energy-independent in-
teractions and a three-body force calculation by Pask. '

In this case, the practical equivalence in the three-body
problem is thus restored by the extrinsic three-body force
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(an extrinsic three-body force has been defined here as
one arising from the specific treatment of retardation at
the two-body level).

Some of the discrepancies in our nuclear matter results
are presumably explained by three- (and higher-) body
linked clusters. Our formal examination of the many-

body theory shows that nontrivial difFerences between the
two cases exist. We have argued that the extrinsic three-
body forces and density-dependent corrections are espe-
cially important for the energy-dependent interaction.

We were able to estimate the size of the higher-order
linked clusters [5 MeV/nucleon (Ref. 20)] and the extrin-
sic three-body forces (0 MeV/nucleon) corresponding to
the case of the instantaneous potential, giving a net bind-
ing of 16.3 MeV/nucleon. The three-body force is small
because of the results found in Sec. IVC that there is a
high degree of cancellation among the pieces of the ex-
trinsic three-body force in the instantaneous potential.

We were unable to make the necessary estimates for
the energy-dependent potential, hence it is not possible to
completely reconcile the difFerences in the nuclear-matter
results at the present time. At the two-body level, our
solution of the Bethe-Goldstone equation according to
the recipe of Ref. 8 gives 20.7 MeV for the energy-
dependent interaction. Based on our expectation that
BE/A must be the same for the energy-dependent and
energy-independent calculations, we conclude that all
remaining corrections will be repulsive by at least 4 MeV.

The three-body linked clusters have not been calculat-
ed for the energy-dependent interaction. We have given,
in diagrammatic form in Sec. IV of this paper, the addi-
tional ingredients that one should consider in order to
make a complete calculation for the energy-dependent in-
teraction. A numerical calculation of the three-body
cluster and the various many-body corrections based on
the energy-dependent interaction is needed to confirm the
conclusions that we come to here.

One cannot forget that agreement between the empiri-

cal value of BE/A and theory requires more physics than
we have discussed in this paper. For example, there are
the intrinsic three-body forces and the possibility of rela-
tivistic effects involving the negative-energy sector ' that
we have omitted. Considering the ultimate complexity of
a complete theory, it is of some importance to find the
simplest approach to the conventional part of the many-
body problem, which has been the aim of this paper.

We conclude that the most reliable estimate of BE/A
for the three-body system and infinite nuclear matter has
been obtained for instantaneous potentials. The energy-
dependent interactions suffer from the drawback that as-
sociated with them are non-negligible extrinsic three-
body forces and numerous density-dependent corrections.
These have never been evaluated. It would be interesting
to see a consistent calculation of BE/A through the two-
meson-exchange level for density-dependent potentials.
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APPENDIX A:
TIME INTEGRATIONS FOR FIG. 9

As in Ref. 2, we write the value of a folded diagram as
a vertex contribution that is the same for all four dia-
grams in Fig. 9 and a propagator contribution J'. The
propagator contribution consists of an internal part
W (t, t'2t2t3) and a part for the external nucleon lines,
where a=(a, b, c,d) corresponds to Figs. 9(a)—(d), respec-
tively. The rules for evaluating the diagrams are given in
Sec. III of Ref. 2. The function W may be written in the
form

4
I I

1 I lfl Vl IfgVP lfPVP lf3V3dvAv2dv2dv3««(2~)5(v&+v2+v2+v3)w (vlv2v2v3)
2K

where the delta function expresses invariance with respect to time translations. The external legs in each case contrib-
ute

tEEl(fp f
I ) 1Ep(fp f

p ) tEp(fp fp ) lkE3(fp f3 )

(A2)

where b,E, =E,„, E;„,with E,„, (E—;„)being the single-particle energy of the line leaving (entering) the vertex at time
t and to is the time base of the three-body force. The time base is fixed according to Eq. (6). The value J is found by
integrating over all times subject to this constraint. We then have, following the straightforward calculation similar to
that in Appendix B of Ref. 2,

J =in (b,E, t3.E/4, E2 t3.E/4, E2 —b,E—/4, b,E3 b,E/4—), — —

where

(A3)

hE =hE] +Ep —Ep+hE (A4)

It now remains to calculate m (v, , v2, v2, v3). The ingredients are the internal nucleon, the meson propagators, and
the time constraints that maintain the proper time orderings of the time bases represented by the horizontal dashed
lines in Fig. 9. The meson propagators are
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l COAt

dN (A5)
N e +i'g

where e =(q +m )' is the energy of a meson, and the nucleon propagator is given by Eq. (5), where Ek =E2' for
Figs. 9(a) and (b) and Ek =Ez" for Figs. 9(b) and (d). Time orderings are maintained for the time bases by using the in-

tegral representations for the theta functions; for example, the restriction that r 0 ) to in Fig. 9(a) is

1 +~ e
8(to to—)= I dCO2'

—iG(tp tp)

N+ l'g
(A6)

Putting together the various propagators and time restrictions, we find

W'(t, t,'t, t3) =
(23) l(cu/2)(tl +t2 t2 t3)

N + l 'g

'4 —ice (t —t )

] 12 l 2

d CO]2d CO23dco d CO

27r N12
—e12+l'g N23

—e73+ig N —E2 —ig
(A7a)

W'(t, t', t, t, )
=—

4
l e
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l' co

& 2 ( t
&

t 2 ) t23(t2 t3 ) t~(t2 t3 ) I(~2)(tl +t2 t2 t3 )

N l 'g
(A7b)

A similar calculation for Figs. 9(c) and (d) reveals that

W( r ] tt, r 3)
= —W'(t t],t, t 3) ~

„2- 2

W (r]r,t,r3)= —W'(r]r, t,r3)~ „2- 2

so we need only calculate the integrals in Eqs. (A7a) and (A7b).
If we now change variables in Eq. (A7a) as follows,

V] CO]2+CO/2,

V2= CO]3+CO+CO/2,

V2 =
CO23 CO CO/2,

V3 =
CO23 CO/2,

then we find Eq. (Al) to hold with

dco 1 1 1 1

2m
4 v1

—v2+N —e12+ig N —E2' —ig 4 v2
—v3+N —e23+ig v1+v2 N+ig

We now easily see

dco 1 1 1 1

2~ —' v1 —v2+N —e12+ig N —E2'+ig —,
'

v2 —v3+N —e23+ig v1+v2 —N —ig

and from Eq. (A8)

C b I
W (V]V2V3V3} W ( ] VV2V3)2~Vl Ei2- 2

d a I
W (V]V2V2V3) W (V]VQVQV3)~E]i Eiii2- 2

(A8a)

(A8b)

(A9)

(A 10)

(Al 1)

(A12)

We now evaluate Eqs. (A10) and (All} by closing the contour in the lower —,
' plane. The poles in Eq. (A10) come

from the meson propagators only, but in Eq. (Al 1) they come from all four propagators. However, since the integrands
are the same except for the infinitesirnals in the nucleon propagators, and these integrals have a relative minus sign, the
two poles from the meson propagators cancel out. The final result picks up all of its contribution from the second and
fourth energy denominator in Eq. (Al 1). Thus, we find

1 1 1
w ( v]v2vpv3 ) +w ( v]vzvzv3 ) —[—

(
—2' ) ]

—,'(v] —vz+E2' )
—e, 2 —,'(v2 —v3+E2' ) e33 v]+—v2 E2'

1 1 1

2 2 II
V1 12 1+V2 2 V3 23

(A13)
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The structure is a bit more transparent if we define

D —E2 —
V&

—
V2 —E2 +V2+V3 .

Then,

b 27Tl 1
N +N (D"/2+ v, )

—e, 2

1

—,'(D" /2 —v3) —
e~3

(A14)

and, using Eq. (A12), we find for tv'+ tv"

D"'/4+ v,
N +N = 27Tl

(D"'/2+v&) —
e&2 2&

—ef2 v3 —ei3

1

(D'" /2+ v, ) —e, ~

D"'/4 v3—
(D"'/2 —

v& )
—e z3 v3

—e f3

1 1

2 2 2 2
1 12 V3 23

(A15)
where

(A17)

From Eq. (A15) it is clear that tv'+tv is finite in the lim-
it that D"~0, so we do not have any worry about singu-
larities in the three-body force (one can show that w' and
tv are separately finite in the same sense). Namely, if we
rearrange, we find

(A18)

It is clear from the definitions of D" and D'" that the ex-
pressions in Eqs. (A16) and (A17) become equal and op-
posite when

N +N =277l
D"/4+v,

(D"/2+v, )
—e, z vf —efi v3 —

e23

1

(D"/2+v, )
—ef~

D" /4 v3—
(D "/2 —v3) —e

& v3
—e, &

(A16)

(A19)

which is the same as the condition in Eq. (8). Note that
the set of folded diagrams in Figs. 9(a) and (b) and 9(c)
and (d) are individually of order (v/c), but that, even
then, these corrections vanish in the limit of Eq. (A19).
The complete propagator contribution for the three-body
force gP is now obtained by adding Eqs. (A16) and
(A17), and using Eq. (A3).
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