PHYSICAL REVIEW C

VOLUME 42, NUMBER 5

NOVEMBER 1990

rms radius of the deuteron

R. K. Bhaduri
Department of Physics, McMaster University, Hamilton, Ontario, Canada

W. Leidemann and G. Orlandini
Dipartimento di Fisica, Universita di Trento, Italy

E. L. Tomusiak
Department of Physics and Saskatchewan Accelerator Laboratory, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada
(Received 15 February 1990)

An explanation is given for the nearly linear relationship between the deuteron radius and the
triplet scattering length as predicted by potential models of the NN interaction. This is accom-
plished by showing that the quantity {r?)/a’? can be expanded to high accuracy in terms of the

small parameter x =r,/a,. We show that shape dependence only enters at order x

3 and higher.

Possible reasons for the disagreement with the experimental result are discussed.

I. INTRODUCTION

The most loosely bound stable nucleus, the deuteron, is
traditionally viewed as a neutron-proton bound state with
its properties largely governed' by the one-pion exchange
potential (OPEP) tail of the NN potential. For realistic
NN potentials the 38 scattering length, a,, and the calcu-
lated deuteron rms radius, {r?)!/2, fall within a narrow
range of values, typically varying in the third significant
figure. Klarsfeld et al.? have made the interesting obser-
vations that a plot of {r2)!/? vs g, yields, in this narrow
range, points that tend to fall on a straight line and that
the experimental point is clearly above this line. Recent-
ly, van Dijk® has examined this problem with various po-
tential models and found that potentials with strong non-
locality may correct this deficiency. In view of these
findings we address ourselves here to the following ques-
tion: To what extent is the mean square radius of the
deuteron a shape-independent quantity in potential
theory?

It is natural to look for an expansion of the ratio
(r?)/a} in terms of low-energy properties of the poten-
tial. However, the choice of expansion parameter is not
so trivial since for some choices of this parameter the ex-
pansions appear not to converge. For example, if K is the
deuteron binding energy and b is a potential width pa-
rameter, then we have found that expansions of {r2) /a}
in powers of K /b do not converge. However, we show in
Sec. II that this ratio can be expressed as an apparently
convergent power series in terms of the small parameter
x =r,/a,, where r, is the triplet effective range. The first
two terms of this series, of order x° and x?, are universal,
and give the rms radius of the deuteron (for a central po-
tential) to 99% accuracy. This is the shape-independent
part, irrespective of the nonlocality or the shape of the
potential. However, coefficients of order x3 and higher
do depend sensitively on the nature of the potential. In
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fact, by considering various models, to be discussed
below, we demonstrate that local potentials and nonlocal
separable potentials give opposite signs for these
coefficients, confirming van Dijk’s observation.?

In Sec. III we derive an approximate modification of
the expansion in the presence of a tensor potential. This
modification is given in terms of 7, the asymptotic D /S
ratio. The resulting series is compared to actual numeri-
cal results for some realistic potentials.

Section IV considers the effect of isobar channels on
the (r2)!/2/a, plot. Our results indicate that inclusion
of explicit isobar channels does not help in getting agree-
ment with the experimental value of (r*)!/%/a,.

II. CENTRAL POTENTIALS

Consider first only a central potential acting in the S
state. Denote the normalized bound-state wave function
by u (r) where

[ Zukrdr=1.
0
Asymptotically u (r)~ Ae ", where k is related to the
deuteron binding energy B by
B=#42/2u

and p is the reduced neutron-proton mass. The asymp-
totic constant 4 may be determined from the definition
of the effective range

® | e 1
%r,=fo 2 —7u2(r) dr , (1
from which follows the relation
A=[2k/(1—kr)]'"?. (2)

The asymptotic form of the wave function u (r) is there-
fore given by
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(r)~[26/(1—kr,)]2e %", (3
If we compute the mean-square radius of the deuteron
(rz)_—_%fo r2u’(r)dr 4)

by using for u (7) its asymptotic form given by Eq. (3), we
then obtain

1
(rP)=—>(1—xkr,)"". (5)
8k
Since our objective is to obtain an approximate expres-
sion for (r2) from effective-range theory, it is consistent
to use the approximate relation

11
K"“a_r+3r,K2 , (6)

whose solution is
KZrL[l—(l-—2r,/a,)”2] . 7
r

Substituting this expression for « into Eq. (5) one obtains
the expansion

(r¥)/al=~1+ix2+1x3+ -, ®)
where
x=r,/a, ©)

is a small (=0.3) shape-independent parameter. We
should point out that the expression, Eq. (1), for 7, is real-
ly r,(—B,—B) in the notation of Wilson* whereas nor-
mally one means by 7,

7,(0,0) ——-—[kcotﬁ k=0 - (10)

The difference between these two quantities is of order x>
and does not affect the first two terms in Eq. (8). We
proceed now to show, by considering various exactly
solvable central potentials, that the first two terms in the
expansion, Eq. (8), to order x2, are exact. Terms of order
x* and higher are shape dependent but small. The fol-
lowing exactly solvable potentials are considered.
(a) The separable nonlocal effective-range interaction

Vip,p')=—Aulplip’), (11)
where
vip)=y

S
(p 2 + ,}/2 ) 1/2
and A,y are constants. Our notation here follows that of
van Dijk.’

(b) The Yamaguchi separable nonlocal potential, of the
same form as Eq. (11), but with v(p) given by

pB’

—L7 (12)
(p*+B)

vip)=

Note that whereas the expansion for k cot8(k) terminates
exactly with the k? term in the case of potential (a), po-
tential (b) gives an additional k* term.

(c) The local Bargmann potential® with Jost function®

zk—‘iK
k+ib’

b>0.

There is actually an infinite family of such Bargmann
potentials® characterized by a parameter ¢, 0<c¢ < .
However, only the case ¢ =2 is physically acceptable
since all other values of ¢ include a long-range repulsion
in the potential. For ¢ =2 the potential is

5 e—2br
V(r)=—28b Sm R (13)
where
_b+tk
b—«k

This potential, with the appropriate choice of parame-
ters, is phase equivalent to the separable form (a). In par-
ticular, phase equivalence is established by setting b=y
and adjusting A, so that potential (a) gives the binding en-
ergy %k’ /2.

(d) The square well without a hard core;

Vir)=—V,, 0=r=b;

V(r)=0, r>b .
(e) The square well with a hard core of radius r,;

V(ir)y=o, r=r

Vir=—V,, r.<r<(b+r,);

V(r)=0, r>(b+r,).

(f) The delta-shell potential
V(r)=—A8(r —a) .

For all these potentials, the series expansion

(r)/ai='3 ax", (14)
n=0

with x as defined by Eq. (9) and r, as defined by Eq. (10),
can be obtained exactly. We find in all cases that o=+

a;=0, and a,=+ as in Eq. (8). Table I displays the
coefficients a3 and a,. We note that for the square well

=0.021 66 which is slightly less than the &-shell value
of 0.025. The addition of a repulsive core to the square
well increases the value of a;; i.e., for g ranging from 0 to
1, a; varies from 0.021 66 to 0.033 85. Perhaps more in-
teresting is the fact that a; and a, are both positive for
the local potential models (c)—-(f) while they are negative
for the two nonlocal potentials (a) and (b) considered
here. Recall again that potentials (a) and (c) are exactly
phase equivalent. The nontrivial algebraic manipulations
required to obtain these expansions were carried out us-
ing MAPLE. The convergence of the series expansions will
be discussed shortly.
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TABLE 1. The expansion coefficients a; and a, of the series in Eq. (14) for the potentials (a)-(f),

where N, =(30—27%)+g(48+3n?)+18g*r*+12g°7* and N,

=7(1372—48)+g(—4224+20167>

—707*) + g% — 6144+ 52807 — 487*) +g3(3072 + 65672 )7 + 1040g *r* + 416g °r*
Potential as a,
(a) Separable —5/128 —3/64
(b) Separable —5/432 —233/10368
1297 27061
(c) Bargmann
1510 5921 12:3;84 7361
(d) S 11 — = _———
quare we 57 24 384 8
N| NZ

(e) Square well with core

48(1+2g)7? 384(1+2g)°#*

(Here g=r./b) ( & ( &
1 33
() Delta shell 40 1280

III. APPROXIMATE INCLUSION
OF THE TENSOR POTENTIAL

Our next task is to incorporate the effect of the tensor
force into the expansion, Eq. (14). In this case, the S- and
D-wave radial wave functions of the deuteron are denoted
by u (r) and w (7), respectively, with the normalization

fow (u2+wddr=

For large r these wave functions have the asymptotic
form!

(15)
3,3
I+ =+

w(r)~ Ane ™

The most recent experimental value of 7, the asymptotic
D /S ratio, gives 1=0.0256(4) (Ref. 7). Now Eq. (2) be-
comes modified to read

2k
1+pH)=—""— 16
A«(1+n%) (—xr,) ’ (16)
and the mean-square radius is computed from
(r2)y= f (u2+w?)ridr . (17)

The asymptotic form for w(r) cannot be used directly in
the above integral because of the divergence at r =0.
How accurate is it to simply drop the last term propor-
tional to (kr)”2 in Eq. (15) for w(r)? Consider for exam-
ple, the quadrupole moment

Q~—f°°

Neglecting the part proportional to w?, and using the
truncated asymptotic form for w(r), one obtains the re-
sult

(r -——-——w( )

2
Vs rédr . (18)

1 A’ _ 21
— . (19)
Q= V50 & V50(1—«kr, K2

The approximation, Eq. (19), underestimates the quadru-
pole moment by less than 20%. Since the effect of intro-

ducing the D state in the deuteron is to alter the rms ra-
dius typically by only about 2%, it is sufficient to use the
truncated form

ol

~A
w(r) ne p.

to evaluate (r2). We then obtain, instead of Eq. (5), the
modified form

(r2)— S(1—kr,) "' (1+2477) . (20)

This simple form is expected® to underestimate (r?).
Following the earlier procedure, we obtain (see notes add-
ed in proof)

(r2)/a}=(1+24n")( 1+ Lx2+ ), 21

1
8

where x =r, /a, as before and the dots denote the shape-
dependent terms of order x* and higher.

In Table II we list some commonly used realistic po-
tentials along with their corresponding x, 1, and numeri-
cally calculated (r2) according to Eq. (17). Also listed
are the potential models (a)-(f) described earlier. One
notes from this table that the ratio {r2)!/2/a, is almost
constant for realistic potentials, although individual vari-
ations in {#2)!/? and @, are much greater.? Further, the
approximate universal form given by Eq. (21), ignoring
the shape-dependent terms of order x* and higher, repro-
duces the exact numerical values to better than 99%. Fi-
nally, the convergence of the series, Eq. (14), can be ex-
amined for the various solvable models (a)-(f). Numeri-
cally the convergence appears to be excellent, although
we do not know if the series, Eq. (14), is truly convergent
for x =0.3 or only an asymptotic expansion. For exam-
ple, the square well with x =0.32 gives a series which
goes as

(r?)/a2=0.125+0.0032+0.00071+0.00029+ - - - .

Finally, we note that only for the nonlocal separable po-
tential models (a) and (b) are the higher-order coefficients
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TABLE II. Comparison of {r2)!/2/a, for various potential models, computed exactly and approximately using Eq. (21). (a) Some
entries use 7, =r,( — B, —B). This should not affect the seventh column to the accuracy given. (b) Only terms up to and including x?
are retained. The model calculations (a)—(f) use k=0.2316, M =940 MeV, and #ic =197.3 MeV fm.

<r2)l/2 <r2>l/2/al
a, (fm) x=r,/a, (r)!?/a, Eq. (21)

Potential (fm) Eq. (17) n (a) Exact (b) Ref.
RSC 5.390 1.9569 0.0262 0.3195 0.3631 0.3610 12
TRS 5.435 1.9754 0.0262 0.3286 0.3635 0.3612 12
PARIS 5.427 1.9716 0.0261 0.3249 0.3633 0.3611 12
Vis 5.450 1.9814 0.0266 0.3302 0.3636 0.3614 9
R-Bonn 5.423 1.9691 0.0260 0.3244 0.3631 0.3611 10
Q-Bonn 5.424 1.9684 0.0262 0.3245 0.3629 0.3611 10
Separable (a) 5.426 1.9257 0 0.3250 0.3549 0.3582
Separable (b) 5.426 1.9370 0 0.3278 0.3570 0.3583
Bargmann (c) 5.426 1.9529 0 0.3250 0.3599 0.3582
Square well (e) 5.426 1.9562 0 0.3305 0.3605 0.3583
(g=0.4210)

a,, n =3, negative. Negative shape-dependent terms V. CONCLUSIONS

would push the (r?)!/?

mental” value.

vs a, slope towards the “‘experi-

IV. EFFECT OF ISOBAR CONFIGURATIONS

In the presence of isobar configurations'' one has addi-
tional parts to the deuteron wave function. Considering
only the lowest isobar resonance, the A(1232), one ob-
tains the following AA components in the deuteron wave
function: 3S,, *D,, 'D,, and 'G,. The normalization
condition is now given by

4
[7 Jut+w?+ 3 @) |dr=1,
0

1=1

where the u** denote the various radial parts of the AA
components in the wave function. In order to study the
effect of these isobar channels on (r?)'”? and g, a
coupled-channel calculation is necessary. An impulse ap-
proximation calculation is not sufficient since this would
neglect the dynamical influence of the AA on the NN part
of the wave function, which is important for a precise
determination of (7%)!/? and @,. Unfortunately there are
only a few potential models constructed for coupled-
channel calculations with N and A degrees of freedom.
We consider here the Argonne potential V, (Ref. 9)
which gives a AA percentage in the deuteron of 0.52%.
The calculation of the low-energy parameters leads to the
following results:

(r*)'/2=1.9863 fm ,

a,=5.460 fm ,

(r?)'2/a,=0.3638 .

Thus the value of (r?)!/?/a, is very similar to that given
by the other realistic potentials listed in Table II. It ap-
pears unlikely, therefore, that the inclusion of isobars can
lead to a better agreement with experiment.

We have shown that (%) /a? is given to a high degree
of accuracy by

(r2)/a}=(1+24n") 1+ Lx)+0(x?)

where x =r,/a,~0.3. Terms of order x> and higher de-
pend on the details of the potential model. In view of this
result the task of obtaining agreement with experiment
appears challenging,'® especially since our results in Sec.
IV indicate that the inclusion of isobar components ap-
pears not to help. Since only the two separable nonlocal
potentials yielded negative shape-dependent terms one
could speculate, as does van Dijk,’ that some such expli-
cit form of nonlocality is required.

Note added in proof. The authors have recently re-
ceived a preprint by D.W.L. Sprung, Hua Wu, and J.
Martorell which gives a more detailed derivation of our
result. In their work the D-wave correction is only about
one-half of ours, i.e., 1+1179? instead of our 142479
Thus there is a larger degree of uncertainty about this
particular correction. We observe, however, that if in
Table II one writes (Exact)*=(1 +}\.'T]2)(%+ %xz), then A
turns out to be about 40. Using the value of Sprung
et al. of 11m* would change our values in column (b) of
Table II from 0.361 to 0.359-0.360.
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