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The muonic atom 2p, ~, -ls, ~, and 2p3/p 1s, ~2 transition energies were measured with an experi-
mental accuracy of better than 20 ppm for the isotope chain "'" " """""' '" Sn. Precise
values for the Barrett equivalent nuclear radii Rt, and their differences as well as root-mean-square
radii were deduced. The hN =2 isotope shifts between the even Sn isotopes show a subshell effect
at the neutron number N =64. Otherwise, there is a nearly linear decrease with increasing N, in ac-
cordance with the general systematics of nuclear charge radii. Our muonic atom results are in a
good agreement with recent optical data, including odd-even staggering. Hartree-Fock calculations
reproduce the general trend but not the subshell effect. Regarding the nuclear polarization correc-
tions, the problem in the 2p splitting found earlier in p -Zr and p -Pb seems also to persist in p
Sn.

I. INTRODUCTION

The nuclear charge radius is a fundamental quantity of
each nucleus. It is not surprising that it has been one of
the first nuclear properties investigated. However, its de-
tailed behavior as a function of neutron or proton num-
ber is theoretically still not sufficiently understood. ' Ac-
curate experimental measurements, especially regarding
changes of nuclear charge radii between neighboring iso-
topes or isotones, are thus of considerable interest. The
present work is part of a collaboration between Los
Alarnos, Mainz, and Fribourg. Our aims are precision
measurements of nuclear charge radii and their
differences from light to medium-heavy nuclei, using the
muonic-atom x-ray technique. In particular, the effects
of shell and subshell structures can be tested when adding
neutrons or protons within a series of isotopes or iso-
tones. Here, we present results on absolute nuclear
charge radii as well as isotope shifts in tin (Z =50).
From the 2p-1s muonic transition energies, we have ob-
tained a precision of 2 am for the rms charge radii and of
1 am for the "model-independent" equivalent radii. The
quoted errors include nuclear polarization uncertainties.
Regarding the latter corrections, the tin data seem to cor-
roborate the nuclear polarization anomaly found in the
2p levels.

Tin is the element with the largest chain of stable iso-
topes (" Sn-' Sn). Since its proton number is magic, the
effect of adding neutrons between the two major neutron
shell closures at N =50 and 82, i.e., between N =62 and
74, can be studied without disturbing shell effects from
the proton core. For instance, Hartree-Fock calculations
can predict radial changes in such nuclei with rather high
precision. Recently, laser-spectroscopic measurements of
isotope shifts have been performed on tin atoms. ' In
particular, the isotope shifts between nuclei extending

from ' Sn up to ' Sn have been studied. Such optical
data over very long chains of isotopes, including unstable
ones, can nicely describe the general trend of deformation
within a major neutron shell. However, local variations,
and especially subshell effects, are a strong-point of
muonic atom measurements. In addition, in order to ex-
tract absolute nuclear charge radii, two optical constants
must be known. In the present work, our muonic data on' "Sn are compared with the op-
tical data by means of a King plot, allowing an absolute
calibration of the laser-spectroscopic results. Regarding
charge radii differences, we can confirm the subshell
effect after filling up the 1g7/2 neutron shell suggested by
the optical measurements.

Section II deals with theory, i.e., with the different
theoretical contributions that are necessary to evaluate
the muonic-atom binding energies. Section III describes
the experiment and presents a list of the experimental
muonic 2p-1s energies measured in the investigated tin
isotopes. Section IV treats the characteristics of nuclear
charge parameters amenable in the muonic atom case.
The results are presented in terms of "model-
independent" equivalent nuclear charge radii RI, and of
root-mean-square (rms) charge radii ( r ) ', respective-
ly. Their differences when adding pairs of neutrons as
well as the so-called "odd-even*' staggering effect between
odd-even isotopes and the nuclear polarization in the 2p
levels are discussed in Sec. V. Finally, Sec. VI compares
our muonic atom results with the optical data in tin.

II. THEORY

The negative muon can be captured in the Coulomb
field of a nucleus forming an "exotic atom". The capture
state is usually a state of high quantum numbers n and I.
In a heavier muonic atom, the following cascade process
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TABLE I. Corrections to muonic binding energies for p -" Sn. {For NP corrections see Table II).
A positive correction means an increase in binding energy. Correction a, finite size binding energy
correction b, vacuum polarization of the first order; correction c, vacuum polarization of second order;
correction d, vacuum polarization of order equal or greater than 3; correction e, muonic and hadronic
vacuum polarization; correction f, Lambshift, first, and second order vertex corrections; correction g,
relativistic recoil and electron screening corrections.

State
Correction {keV)

c d

1S1/2

2p i/~

2p 3/2

3d 3/2

3d 5/2

5250.061
1814.917
1768.936
792.142
786.168

36.213
10.510
9.773
2.691
2.615

0.296
0.078
0.072
0.019
0.018

—0.104
—0.051
—0.050
—0.022
—0.021

0.211
0.009
0.006
0.000
0.000

—1.826
—0.028
—0.108
+0.009
—0.006

0.230
0.026
0.023
0.012
0.012

down to the 1s ground state takes less than 10 ' s. The
transitions occur preferentially between circular orbits
I =n —1. While in low energy transitions between high n

states Auger electrons are emitted, high energy transi-
tions and particularly the 2p-1s transitions are dominated
by electric dipole radiation. '

In order to calculate the muonic-atom transition ener-
gies, the Dirac equation has to be numerically solved, us-

ing an explicit form for the Coulomb potential and hence
for the nuclear charge density p(r) The us. ual "Ansatz"
is a two-parameter Fermi distribution

Pop(r)= a=
1+ exp[(r —c)/aj '

41n3

Here, the parameters c and t are the half-density radius
and the skin thickness, respectively. Usually, the half-
density radius c is varied when fitting the theoretical to
the experimental transition energies. Due to the small ls
Bohr radii in muonic atoms, comparable to the nuclear
charge radii in heavier nuclei, the influence of the finite
nuclear charge extension on the muonic binding energies
is considerable. This is called the finite-size effect. In" Sn, e.g. , the point-nucleus binding energy of 7286 keV
is lowered by 2027 keV or about 28% by the finite nu-
clear size. In precision measurements, further correc-
tions to the Dirac point-nucleus energies must be applied
before a comparison of experimental with theoretical
transition energies can be made in order to determine the
nuclear charge extension. These corrections are the QED
corrections and the nuclear polarization corrections. " '

The largest QED contribution is the vacuum polariza-
tion. Its first order is smaller, roughly by the fine struc-
ture constant a, than the respective binding energy. Its
potential is included as an additional term in the
Coulomb potential before the Dirac equation is solved
numerically. Higher-order vacuum polarization correc-
tions, due to virtual p+p and hadronic pairs as well as
self-energy corrections are treated in a perturbative way.
In addition, relativistic recoil corrections" and electron
screening corrections have to be applied. ' The latter are
treated by employing an additional potential V, created
by a mean electron density p, (r, ). The screening of the
electrons increases slightly the muon binding energy.
Table I lists the different QED corrections for the low-
lying muonic-atom states of " Sn. If a precision of the

order of 10 eV is demanded, all these corrections must be
taken into account.

Regarding the so-called nuclear polarization (NP)
corrections, they are much more difficult to calculate
than QED corrections. By means of dynamic elec-
tromagnetic interactions, the muon can virtually excite
the nucleus to higher states. ' Such an effect reshufBes
somewhat the eigenfunctions and hence the energy eigen-
values. Since the excitation spectra of nuclei are only
insufficiently known, the NP corrections cannot be calcu-
lated to a high precision. ' Typical errors are 20—30%
for a given element and 10% when comparing different
isotopes. ' For the theoretical calculation of the NP
corrections, we have employed the program MZMUON2, a
modified version' of the computer code MUON2. This
program calculates the NP effect of the high-lying giant
resonance states (HLS) using energy-weighted sum rules,
while the energies and 8 (E2) strengths of the discrete
low-lying nuclear states (LLS) have to be taken from
literature' ' and are fed in as input parameters. Table
II shows the NP corrections for the 1s and the 2p states
in the lightest and the heaviest measured Sn isotope.

III. EXPERIMENT

TABLE II. Nuclear polarization corrections {in eV) calculat-
ed from the low-lying states (LLS) and from the high-lying
states (HLS). Only the values for " Sn and ' Sn are reported
because of their smooth A dependence, especially for the HLS.

Isotope

112S

124S

HLS
LLS
HLS
LLS

1$1/2

1500
255

1483
246

2P, /2

165
90

176
79

2J 3/2

140
86

151
76

The experiment has been performed at the supercon-
ducting pE1 channel of the 590 MeV proton ring ac-
celerator at the Paul Scherrer Institute (PSI) at Villigen.
A proton beam of 100—200 pA produced m. from a Be
target. In three different running periods, either 220 or
150 MeV/c pion momenta were magnetically selected to
produce backward decaying muons of 125 or 85 MeV/c,
respectively. The muon beam intensity varied between
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TABLE III. Isotopic composition of the tin isotopes (in %).

Target

112S

114S

116S

117S

119S

120S

124S

112S

68.25
2. 17

114S

2.03
64.53

116S

6.83
6.17

95.60
2.54
0.40

117S

2.86
1.85
1.63

84.23
0.85

118Sn

7.13
8.12
1.48
9.40
3.63
0.61
0.43

119S

2.38
2.01
0.27
1.24

84.48
0.66
0.31

120S

8.15
7.14
0.63
2.03
9.98

98.05
1.07

122Sn

1.01

0.44
0.34
1.00

124S

1.04
0.96

96.71

S, 10 cm
S2

S,

6X10 and 12X10 p, /s. After degrading, the muons
were stopped in the different tin isotopes with thicknesses
between 100 and 300 mg/cm . Table III lists the isotopic
compositions of the employed isotopes.

With the exception of " Sn (metal), all other isotopes
were in the form of Sn02. The oxide powders were 611ed
in thin plastic sacks and equally distributed over an area
of 1.5X5 cm . Three different Sn isotopes could be mea-
sured simultaneously by a three-target setup, using
separate scintillators of the appropriate target size in
front of each of the three isotopes. The experimental ar-
rangement is shown in Fig. 1.

The muonic x rays were measured using a 66 cm, in-
trinsic n-type Ge semiconductor detector. The energy
spectra extended from about 0.1 to 4.2 MeV, with our
main interest centered on the muonic (2p-ls) transitions.
The resolution of the Ge diode (FWHM) was 2.0 keV at
1.33 MeV and 4.5 keV at 3.55 MeV at a counting rate of
5000/s. For some of the isotopes, a Co source has been
installed in a similar geometry and simultaneously mea-
sured for calibration purposes including nonlinearity
measurements of the detection system. The main y-ray
energies and uncertainties of Co have been taken from
Ref. 18 (see Table IV). The data were stored in a PDP
11-34 computer employing the computer code DAVID. '

The different 8 k spectra were divided into three cate-
gories, labeled "total, ""prompt, "and "delayed".

(a) In the total spectra, all events within a time span of
200 ns after a stopped muon are stored.

(b) In the prompt spectra, prompt (p, y) coincidences
up to 20 ns after a stopped muon are measured. Such a
narrow time window yields a spectrum of practically pure

muonic x-rays. As an example, Fig. 2 shows on a loga-
rithmic plot the 2p, &2-1s»2 and the 2p3/2 1s&&2 transi-
tions of the Sn targets. Tails are due to isotopic
impurities (see Table III).

(c) In the delayed spectra, delayed y-rays from nuclear
muon capture in a time interval of 30-200 ns after a
stopped muon are recorded.

In the case of on-line calibrations (with ' Co), the cali-
bration lines appear by accidental coincidences (weakly)
in the prompt and (strongly) in the delayed spectra. The
precision of the line position is linearly dependent on the
line width. Hence, energy resolution and line shape were
controlled and, if necessary, readjusted after each mea-
surement. In order to avoid line broadening by electronic
or temperature-dependent shifts, the different spectra
were written on tape every 4-6 h. For sufficient statis-
tics, a large number of such spectra had to be recorded.
About 10% of all spectra showed a line broadening of
more than S%%uo. Those were therefore discarded. In each
of the remaining "good" spectra, the positions of two
strong lines were compared and, if necessary, shifted.
Afterwards, the different spectra were added to yield a to-
tal histogram.

For the analysis of the line shapes and the deterrnina-
tion of the center of gravity line positions, the computer
code MYFIT (Ref. 20) was employed. This program uti-
lizes basically a Gaussian function. If necessary, ex-
ponential tails may be added and the Lorentzian natural
line shape may be folded in.

Regarding the nonlinearity of our measuring system,
off- and on-line calibrations with Co have been per-
forrned. All these spectra show a similar nonlinearity
structure. The small deviations from linearity were fitted
by a smooth curve in the energy region of interest and the
corresponding corrections were applied to the center-of-
gravity positions of all our prompt and delayed spectra.
The overall uncertainty of the nonlinearity curve was es-

TABLE IV. Co y-ray energies used for calibration.

borated &~&~pb /.
paraffin

targets

/ +Pb+~. ',

Ge detector

FIG. 1. Experimental setup used at PSI for our tin measure-
ments. S, , S2, S3, and S4 are thin plastic scintillators.

Source

56Co 846.764(6)
1238.287(6)
1963.714(12)
2598.460(10)
3253.417(14)

Energies (keV)

1037.844(4)
1360.206(6)
2015.179(11)
3009.596(17)
3272.998(14)

1175.099(8)
1771.350(15)
2034.759(11)
3201.954(14)
3451.154(13)
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timated to be 15 eV. As for the absolute energy calibra-
tion of our measured muonic x-ray transitions, the Co
lines in the delayed spectra were used. Such an on-line
procedure assures practically the same experimental con-
ditions as for the prompt spectra. Still, a small shift be-
tween prompt and delayed spectra is possible due to
nonidentical timing conditions. By applying the above-
mentioned line fitting and energy calibration procedures
and by adding the respective nuclear recoil corrections
(e.g. , 54 eV for the 2p-ls transitions in p -" Sn), the
transition energies for the Sn isotopes' ~Sn listed in Table P have been ob-
tained.

GQUflf

n

f000

IV. NUCLEAR CHARGE RADII AND ISOTOPE SHIFTS

D, VI(r)= A +Br"e (2)

The parameters A and B are normalization parameters.
The parameter k depends on the chosen transition, but
shows only a weak Z dependence, while the parameter a
is practically the same for different transitions but de-
pends nearly linearly on Z. In our analysis, we have
varied B, k, and a to obtain a best fit for each transition.
Each muonic transition energy determines a model-
independent radial moment, the so-called Barrett mo-
ment. For a spherically symmetric nucleus, this moment
becomes

If we select a nuclear charge density p(r) like the one
given in Sec. II, the experimental transition energies can
be fitted to the calculated ones and nuclear rms charge
radii can be extracted. In general, both the 2p-1s and the
3d-2p transitions have been included in the fit. In order
to obtain high accuracies, one should employ the
differences 6 Vf(r) of the muon potentials in the initial
(i) and final (f) state, which, as Barrett has shown, ' are
practically independent of the charge density:

(r"e ")=4m. j p(r)r e "r dr'.
0

(3)

100

I I & I I I l t

3400 345p Energy [keY]

Instead of the Barrett moment, we can define a more
transparent quantity, namely the so-called equivalent ra-
dius RA. , which means the radius of a homogeneously
charged sphere yielding the same Barrett moment
( p, ke —ar).

ka
3Rk f r "e arp2dr —

( r.ke —ar) (4)

f000

100

iooo—

124

34pp 345p Energy [keY]

The sensitivity of RI,, with respect to a change in the
transition energy is given by the quantity

dR A.

dE
= —Rk [3Ze 8((r"e ') —Rk e ")]

The error of RI, is calculated from the error of the
transition energies. After adapting the Fermi charge dis-
tribution parameter c in order to obtain the measured
transition energies (using a constant skin thickness pa-
rameter t =2.30 fm), we can calculate the values for k
and a from the muon potentials. Finally, in order to
compare our RI, and rms radii for the different isotopes,

100—

TABLE V. Experimental muonic transition energies in keV
(recoil corrected). The errors include statistical and calibration
uncertainties.

I I t I I t I s I s I I I

3400 345p Energy [ke Y]

FIG. 2. Prompt muonic x-ray spectra showing the 2pi/2-1s
and the 2p3/2-1s transitions in '"Sn (a), ' Sn (b), and ' Sn (c).

Isotope

112S

114S

1 1eS

117S

119S

120S

'24sn

2P 1 /2-1s 1 /2

3432.564+0.060
3426.613+0.071
3420.091+0.062
3418.140+0.063
3412.848+0.061
3408.975+0.052
3400.182+0.061

2p„,-ls

3478.531+0.056
3471.921+0.068
3465.757+0.058
3463.810+0.060
3458.780+0.060
3454.453+0.050
3445.482+0.057
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TABLE VI. Nuclear charge parameters deduced from the muonic 2p-1s transitions in the Sn iso-
topes. The quoted errors correspond to the experimental uncertainties.

Isotope

112S

114S

116S

11sSn

120Sn

122Sn

124Sn

'"Sn

119S

R,. (fm)

5.8803+0.0002

5.8992+0.0002

5.9198+0.0002

5.9375+0.0002

5.954020.0002

5.9685+0.0002

5.982020.0002

5.9242+0.0003

5.9411+0.0003

ERI, (am)

18.9

20.6

17.7

16.5

14.5

13.5

16.9

rms (fm)

4.5958+0.0005

4.6103+0.0005

4.626120.0005

4.6395+0.0005

4.6522+0.0006

4.6633+0.0006

4.6736+0.0006

4.6320%0.0006

4.6448+0.0006

Arms (am)

14.5

15.8

13.4

12.7

10.3

12.8

we have to use the same values of k and a for the same
transitions. Table VI shows the nuclear charge parame-
ters Rk and ( r ) 'i (in fm) together with their
differences hR k and 5 ( r ) ' i (in am) for all measured
tin isotopes. The upper part shows these differences for
the even isotopes, the lower part for the odd ones. The
average values for k and a are k =2. 1762 and
a=0. 1076/fm. The data for " Sn and ' Sn are taken
from a former run at Los Alamos, where the isotope
shifts ' " Sn and ' ' Sn were measured. The abso-
lute radii are normalized to our ' Sn measurements.

V. DISCUSSION OF THE NUCLEAR
CHARGE PARAMETERS

In Fig. 3, we represent graphically the equivalent nu-
clear charge radii differences

22

bRI„"'"+ =Rk, (A +2)—Rk (A) (6)

between all even, stable Sn isotopes, drawn in at the mass
number A + 1. The uncertainties contain, besides the ex-
perimental error, a 10% theoretical uncertainty due to
nuclear polarization.

With the exception of the results at A =115 (N =65),
the radii differences drop almost linearly with increasing
neutron numbers. Such an effect is expected from the
systematics of nuclear charge radii within major neutron
shells. In the case of tin, the N =50 shell is complet-
ed, and the N =82 shell is about halfway filled. The fact
that the Los Alamos radii differences (ERk," ' and
bRI„' ' ) fall smoothly between the PSI results corro-
borates the experimental consistency at the two different
laboratories. Looking at the subshells, at N =64 both the
2d5iq and the 1g7/p subshells are filled. Hence, the addi-
tional two neutrons in " Sn«must occupy a new sub-
shell, probably the Ih „zz shell. Since the proton charge
distribution is then moved more outwards than within a

20-

18-
+

16-

14-

12
112 114 116 118 120 122 124

6

A

V
CI

0.08

0.07-

0.05—

Mass Number A
I I I ~ I ' $ i $ & I

62 64 66 68 70 72 74

Neutron Number N

FIG. 3. Charge radii differences ERE "'"+ of the even Sn
isotopes (in units of am) as a function of mass number A, or
neutron number X, respectively. The values are plotted at
A +1 (%+1).

I ' I ' t ~ I ' I

112 114 116 118 120 122 124

Mass Number A

FIG. 4. Brix-Kopferrnann diagram. Plotted are the
differences id(r')" "+' as a function of the mass number A,
drawn in at A +1. Our results are presented with experimental
errors. Also shown are optical data (black diamond) as well as
theoretical predictions (see text).
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subshell, the radius difference AR&
" '" becomes larger

than the preceding difference hR&' '", which lies within
the 1g7/p subshell. The result at X =65 therefore
confirms the subshell effect suggested by the optical data
and already seen in the even Cd isotopes for the same
number of neutrons.

Instead of plotting the equivalent charge radii
differences, our data can be presented in a form more
amenable to theory and to a comparison with optical re-
sults. For this purpose, we show in Fig. 4 a so-called
Brix-Kopfermann diagram, where half the difference of
our rms radii ( r ) between adjacent even Sn isotopes

lg(„2)A, A+2 i(( 2)3+2 ( 2)A)
2 2 (7)

is plotted against the mass number A.
The errors in Fig. 4 are experimental. The diagram

also shows the optical data of Eberz et al. in the form of
black diamonds, without errors. The optical uncertain-
ties are about 2 —3 times larger than ours. Since the re-
sults of Ref. 7 have been calibrated by the old muonic
atom data of Ref. 23, we have corrected them by 3.2%
using our value b, (r )" ' =0.4417(23) fm . Regard-
ing theory, Myers droplet model and refinements thereof
yield only a horizontal line in the differential Brix-
Kopfermann plot, with values between 0.055 fm (Ref.
24) and 0.068 fm (Ref. 25). The two limits are indicated
by dashed lines in Fig. 4. On the other hand, Hartree-
Fock calculations including ground state correlations and
the density-dependent Skyrme force G also show
differential structure but fail to reproduce the subshell
effect (see Fig. 4, dashed-dotted line). In addition, such
radii differences based on microscopic calculations are
generally smaller than the experiment, at least in the re-
gion of the stable Sn isotopes. According to Ref. 6 there
are nuclear structure calculations based on the Hartree-
Fock-Bogoliubov (HFB) theory, which seem to predict a
dip in the region of interest, but shifted by one unit on
the mass scale.

As of now, we have dealt with the effects of adding
pairs of neutrons. However, we have also measured the
nuclear charge radii of the odd tin isotopes " Sn and" Sn (see Table VI). If we look at the radii differences be-
tween these odd-N isotopes and the neighboring even
ones, the influence of the unpaired neutron can be seen.
This effect is usually expressed by the odd-even stagger-
ing parameter

Ri, (A +I)—Ri, (A)
y(A +I)=

—,'[Ri,. (A +2) Ri,. ( A)]—

neighbors. In other words, the proton core polarization
effect from the unpaired neutron is smaller than half the
proton core polarization due to paired neutrons. Table
VII shows that the staggering parameter both for the"" ' " Sn and the ' ""Sn cases is below 0.5.

On the theoretical side, the primary cause for odd-even
staggering seems to be the pairing force. If, in a HFB
calculation, the pairing strength of the neutrons is cou-
pled to the single particle potential of the protons and
thus to the charge radii, the odd-even "fine-structure" of
the tin charge radii can be roughly reproduced. Still, the
calculated odd-even staggering turns out to be more uni-
form than in the experiment. '

To conclude this section, we briefly return to the nu-
clear polarization corrections. As already stated in Sec.
II, these calculations limit the accuracy with which nu-
clear charge radii can be extracted from the measure-
ments. In two recent publications, ' an inversion in
magnitude of the nuclear polarization (NP) corrections
for the two 2p states must be assumed to bring experi-
ment and theory into accordance. If we now compare ex-
perimental and fitted energies for both the 2p»z-1s and
the 2p3/Q 1s transitions, the calculated 2p fine structure
splittings 6(2p) in all measured Sn isotopes are con-
sistently too high (of the order of 150 eV). If the reason
for these deviations are the nuclear polarization calcula-
tions in the two 2p levels, where the difference

b NP(2p) =NP(2p
& &z )

—NP(2p3/Q )

is positive, then a sign reversal would again yield better
agreement with experiment. Hence, a fundamental prob-
lem in present approaches to the calculation of the nu-
clear polarization effects seems to persist also for the tin
nuclei.

VI. COMPARISON WITH OPTICAL DATA

In the differential Brix-Kopfermann plot of the preced-
ing section, we have already presented the laser spectros-
copy measurements of Eberz et al. corrected by our
b, (r )" ' value. As can be seen from Fig. 4, there is
good agreement between the optical data and our muonic
atom results. In the following, we compare our muonic
tin data with the optical data of Refs. 6 and 7 by means
of two King plots. ' Such a plot allows in particular a
precise determination of the electron density at the nu-
cleus, a quantity which can only be determined with large
errors from optical data alone. The experimental optical
frequency shifts Av " are in a good approximation a
linear function of the radii differences b, ( r ) "". In fact,

A y & 1 means that the odd neutron isotopes have smaller
charge radii than the average of their even-neutron b v" " =FA'" +M ( A ' —A ) / . A ' A (10)

TABLE VII. Staggering parameters for '"Sn and '"Sn.

Isotopes

117S 116S

118S 117S

119S 118S

120S 119S

b Rl, (am)

4.4
13.3
3.6

12.9

Isotopes

118S 117S 116S

120S 119S 118S

7( 117)=0.497( 23 )

y( 119) =0.436( 33 )
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f(A A')Q(r2&A, A' [f~2]
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FIG. 5. King plot between the k=286. 3 nm optical data of
Ref. 6 and our rnuonic data. The reference isotope ( 3 ') is "Sn.

FIG. 6. King plot between the X=452.5 nm optical data of
Ref. 7 and our muonic data. The reference isotope ( A') is "Sn.

where

g~AA' —g( 2) AA'+ / g( 4) AA'+. . .

M=N+S,
N =vm, /m =(e/A. )m, /m

(12)

(13)

for A. =452. 5 nm. Regarding odd-even staggering, Ansel-
ment et a/. ,

" following a suggestion by Talmi, define as
an absolute measure of this effect the quantity [note that
the second expression of Eq. (5) in Ref. 6 contains the
wrong sign]

In these relations, F is the difference in electron density at
the nucleus for the two levels of the transition, X is the
normal mass shift, S is the specific mass shift, v=c/A, is
the frequency of the chosen transition, m, is the electron
mass, m is the proton mass and the c, 's are the
coefficients of Seltzer. The second term in the expres-
sion for A,

'"" contributes less than 4% in the tin isotopes
and is accounted for when calibrating the optical data
with a muonic b, (r ) value. Hence, it can be neglected.
If muonic atom data are included, the King plot com-
pares the muonic rms radii differences b, (r ) "" plotted
on the x axis with the optical isotope shifts Av"" for a
given transition plotted on the y axis. Both data are nor-
malized by the factor

( 2)A (i( 2)A —1+1(„2)A+i)
2 2

1 (g( 2) A —1, A+g( 2) A+1, A)
2

(15)

Inserting our values for the neighboring isotopes'" Sn, we obtain

b, ( 3 = 117)= —0.012(2) fm

b, ( A = 118)= +0.010(2) fm

Is( A = 119)= —0.010(2) fm
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f ( A, A')= AA'/(A' —A) . (14)

With consistent data sets, a straight line should result.
As can be seen from Figs. 5 and 6, this is indeed the case
for both the A, =286.3 nm transition from Ref. 6 and the
A, =452. 5 nm data from Ref. 7.

The parameters F are determined as F =3.35(20)
GHz/fm for A, =286. 3 nm and F=3.29(20) GHz/fm
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