
PHYSICAL REVIE%' C VOLUME 42, NUMBER 4 OCTOBER 1990

Tests of fundamental symmetries on isolated compound-nucleus resonances

V. E. Bunakov, * E. D. Davis, and H. A. Weidenmiiller
Max Pla-nck Ins-titut fu rK'ernphysik, Heidelberg, Federal Republic of Germany

(Received 11 May 1990)

Previous theoretical work has shown that parity and time-reversal symmetry can be tested with

particularly high sensitivity in the domain of isolated compound-nucleus resonances. In this

domain, experiments will naturally focus on individual resonances rather than on the background
cross section. The theoretical analysis of this situation leads to the concept of an ensemble of "on-
resonance" measurements. This concept naturally emerges by combining two previous theoretical
approaches to tests of fundamental symmetries. %'e investigate the properties of this new ensemble

and show how to convert "on-resonance" data into statistically significant information on symmetry
violation.

I. INTRODUCTION

During the last decade it has been established that
compound-nucleus (CN) reactions provide particularly
sensitive tests for parity and time-reversal symmetry. Ex-
periments' on the transmission of polarized neutrons
through a ' La target gave a signal for parity violation
on the 10%%uo level. This large effect has been qualitatively
understood as being due to the combined action of
several sizable nuclear enhancement factors. At present,
a concerted effort is under way to carry out systematic
measurements on parity violation in a number of nuclei.
The possibility of extending such measurements to tests
of tine-reversal symmetry is being investigated.

This experimental work has been accompanied by
theoretical investigations. Obvious questions are the fol-
lowing: At which domain of excitation energy and mass
number are tests of fundamental symmetries particularly
sensitive? ' What is the best choice of observables for
such tests? How is a measured symmetry violation (or a
bound for such violation) related to the strength of the
effective symmetry-breaking nucleon-nucleon interactions

In this paper, we address tests of fundamental sym-
metries with polarized neutrons in the domain of isolated
CN resonances. Previous work ' comparing the sensi-
tivity of tests of fundamental symmetries in the various
CN domains, has shown that this domain is a particularly
promising one. In it, there exist two theoretical ap-
proaches (briefly sketched in the next two paragraphs) to
the problem. It turns out that neither of them as it
stands provides the tools necessary to convert experimen-
tal information gained from the investigation of isolated
resonances into information on the symmetry-breaking
part of the Hamiltonian. This situation, briefly explained
below, furnishes the motivation for the present work.

One of the approaches considers two close-lying
CN resonances that are mixed by the symmetry-breaking
interaction. In this framework, it is shown that the
symmetry-violation effects are strongly enhanced in the
vicinity of each resonance by a factor inversely propor-
tional to the resonance width l ("resonance enhance-
ment"). Moreover, the "dynamical enhancement" due to
the small spacing D between resonances is also seen to be

important. The two types of enhancement combine and
can yield an enhancement factor 10 or so for parity
violation, and 10' or so for the fivefold correlation test of
time-reversal symmetry. (These values apply to neutron
transmission with medium-weight and heavy nuclei. )

The di%culty inherent in this approach results from the
highly complex nature of the wave function of the CN
resonances: The experimental determination of a mixing
matrix element immediately poses the question of how to
relate this piece of data to the underlying symmetry-
breaking Hamiltonian. It is well known that, in the CN
regime, such a relation can only be of a statistical nature.
This then calls for an extension of the approach of Refs.
7 —9 to include the stochastic character of CN reso-
nances.

The second approach ' circumvents this difficulty by
introducing from the outset a statistical model: The
Hamiltonian governing the CN is modeled as an ensem-
ble of random matrices of suitable symmetry, and to this
Hamiltonian is added a small piece that breaks the sym-
metry and is likewise modeled as an ensemble of random
matrices. ' ' It has been possible in this framework to
calculate ensemble averages over relevant observables.
Such ensemble averages are, via an ergodic theorem, re-
lated to energy averages of observables measured on a
single realization of the ensemble, i.e., on the atomic nu-
cleus under investigation. To date, only unbiased energy
averages have been computed. They must be viewed as a
stopgap. ' The experimental investigation will focus on
energies where the symmetry violation is expected to be
most strongly enhanced, i.e., on discernible isolated reso-
nances. In the energy regions between resonances, the
effect of symmetry violation is expected to be much weak-
er. Only in the event that the requisite isolated reso-
nances are not identified, will the use of unbiased aver-
ages be appropriate.

A proper interpretation of experimental "on-
resonance" data obtained in the regime of isolated CN
resonances requires the introduction of a biased ensem-
ble. The bias takes account of the fact that data are tak-
en at the location of the resonances. It is the purpose of
the present paper to construct this biased ensemble, and
to use it in connecting experimental "on-resonance" data
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with the symmetry-breaking part of the Hamiltonian.
In Sec. II, we specify precisely the neutron transmis-

sion observables we consider, and quote expressions iden-
tifying the S-matrix elements to which they are related.
In Sec. III, we summarize the first of the two approaches
mentioned above, the model of two isolated resonances,
for both parity and time-reversal symmetry violation.
We point out where statistical concepts must be intro-
duced. The formulas of the two-resonance model (their
derivation is contained in an Appendix) are basic to the
construction of biased ensembles. In Sec. IV, we present
a critique of the statistical approach, and describe an ap-
proximate evaluation of unbiased averages which permits
a generalization to the case of biased averages. We then
introduce the notion of "on-resonance" or biased ensem-
bles. For pedagogical reasons, we proceed in the follow-
ing steps. We consider first a parity violation involving a
two-level and a many-level situation with known reso-
nance parameters (Sec. V). In Sec. VI, we treat the five-

fold correlation test of time-reversal symmetry, assuming
an admixture of resonances with unknown resonance pa-
rameters, and we consider how a confidence limit can be
deduced from a set of null data with unknown resonance
parameters. Our analytical work in this case is not com-
plete since an exact calculation would require the integra-
tion over the full Gaussian orthogonal ensemble (GOE}
eigenvalue distribution. We therefore supplement it by a
numerical simulation. Section VII contains the con-
clusions.

II. NEUTRON TRANSMISSION OBSERVABLES
FOR SYMMETRY VIOLATIONS

e =—nz Acr, (2)

where n is the atomic number density of the target and z
its thickness. In turn, via the optical theorem, Ao. is
linear in elastic S-matrix elements.

We restrict ourselves to neutrons of kinetic energy
E ~ 100 eV. We also consider measurements performed
at a particular p-wave resonance of angular momentum J
(the significance of such measurements is discussed in
Sec. III). Then, for parity-violation studies (with polar-
ized neutrons and an unpolarized target),

The natural observables are the transmission asym-
metries

N+ —N

N+ +N

Here N is the number of transmitted neutrons. In
parity-violation studies with polarized neutrons and un-
polarized targets (the configuration employed to date),
the indices + designate the incident neutron helicity. For
the fivefold correlation, the indices + denote the incident
neutron polarization parallel-antiparallel to kXc, k be-
ing the beam wave vector and c a unit vector along the
direction of the "crystal" axis of the spin-aligned target.
Under conditions of good energy resolution, e is simply
related to the difference her=(o+ —o )/2 in the total
cross sections 0.+..

SJ"(Ij;l'j ') = ,'[SJ(lj;—tj''} SJ(1j'—', jt)] . (4)

There are two kinematically equivalent contributions to
ho: a pp term b, cr and an sd term Ao,d. (The labeling
refers to the elastic neutron partial waves involved. ) As
we treat, by way of illustration, measurements performed
at a particular p-wave resonance (of angular momentum

2m, 3 &J+ I/2
v'5 (2I+ 1)

where f= &2I —1 (—+&2I+3) for J=I+—,'(I —
—,'),

and, in terms of statistical tensors t~&(s) referring to the
beam and target symmetry axes, the polarization parame-
ter p =t~0( )t20(I). —

In subsequent sections, we use the abbreviated notation
Sp and ST to denote the S-matrix elements in Eqs. (3) and
(5), respectively.

III. OPTIMAL CONDITIONS:
THE MODEL OF TWO ISOLATED RESONANCES

We summarize the findings on the optimal conditions
(in the isolated resonance regime) for neutron transmis-
sion studies of parity and time-reversal violation

A. Parity violation

In the simplified case of a single s-wave and single p-
wave resonance, the main contribution to Re(SP} in Eq.
(3) is given by

Re(SP }-=—
(E E, }I +(E E~ )

—I, —

[(E E) +—' I ][(E —E) + —' I ]—
(6)

Here, I, are the total widths and E, the energies of
the resonances, E is the energy of the neutron, and Uz is
the weak-interaction matrix element connecting the two
resonant states; y~, zz is one of the (real-valued} partial
neutron width amplitudes y~ of the p-wave resonance,

b, o = p Re[SJ(0—,'; 1 —,
' )],2~ (2J+1)

2I+ 1)

where I is the target spin and the elastic S-matrix ele-
ments SJ(lj;Ij'') are with respect to a j-coupled basis
[the full coupling scheme is ((1,—,

' )j,I )J]. In terms of sta-
tistical tensors tK&(s) (Madison convention), the beam-

polarization parameters p = t
& &2 o( —,

' ). ' The parity-
violating character of her in Eq. (3) is apparent from the
di6'erence in relative orbital angular-momentum quantum
numbers b, I = I' —I = 1. Measurements with polarized
targets and unpolarized neutrons are complicated by the
fact that b,o depends on both SJ(0—,'; 1 —,

'
) and SJ(0—,';1—,').

The corresponding expression in the case of the fivefold
correlation involves the antisymmetrized elastic S matrix
S'", with elements
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and y,' is the partial neutron width amplitude of the s-

wave resonance. For simplicity, we shall take

I,—= I —= I . (We recall that the total width stems mainly

from the decay into gamma channels. }

The presence of the two Breit-Wigner denominators
leads, for E=E,—, to an enhancement of Re(SP) in the
vicinity of either resonance by a factor (D/1 ), with
D =F., —F . This is the "resonance enhancement" fac-
tor. It reflects the fact that parity mixing increases with
the time A'/I spent by the neutron within the region of
the weak interaction. When the practical consideration
of the choice of target thickness necessary to minimize
statistical counting errors for a given incident neutron
fiux is taken into account (the relevant quantity is the ra-
tio Acr lo„,), it is seen that the resonance enhancement
survives only for measurements in the vicinity of the p-
wave resonance.

Resonance enhancement increases with decreasing
width to spacing ratio of the resonances. This last fact
suggests that the enhancement is particularly pronounced
near neutron threshold and for nuclei where the resonant
states are highly complex configurations. In this situa-
tion, there is no way of calculating the matrix element vz
from a nuclear model, and to deduce the strength o.p of
the parity-violating interaction from a comparison of the
calculated value with the data. The only way to obtain
information on 0;~ is via a statistical approach. This ap-
proach has shown its validity in the analysis of spectral
fluctuation properties of CN resonances.

From the statistical point of view, the ensemble of ma-
trix elements vp connecting the p-wave resonances in a
given nucleus with their neighboring s-wave resonances
of the same angular momentum J is a sample drawn from
a Gaussian distribution with mean value zero. The vari-
ance ( vp ) (where ( ) denotes a running average over ma-
trix elements in a given nucleus) is the only meaningful
piece of information relating to the strength ap. [From
the theoretical point of view (discussed more extensively
in Sec. IV), it is preferable to introduce a fictitious ensem-
ble of nuclear Hamiltonians. Then, each matrix element
between an s-wave and a p-wave resonance is a Gaussian
random variable in its own right. Matrix elements be-
tween different s-wave and pwav~eairs are uncorrelated,
but all have the same variance vp, which coincides with
the running average ( up ).]

Adopting the statistical point of view, we observe that,
in the CN regime, the admixture parameter vz/D is
much bigger than it would be for standard parity experi-
ments which involve pairs of simple configurations of nu-
clear states of opposite parity and with typical spacings
of 100 keV or so. Therefore, the small spacing of CN res-
onances leads to further enhancement. To quantify this
statement, we introduce the spreading width (with d
denoting the mean-level spacing of states of a given parity
and angular momentum P

1'—:2'(v'&/d

of the parity-violating interaction and use the fact that
r,', as any spreading width, is expected to depend very
little on excitation energy and/or mass number. This im-

plies that ( up ) ' '/d [ —
( I t), /d )' ] increases like d

with decreasing spacing between the nuclear states.
Comparing a typical parity-violation experiment in a
light nucleus (d =—100 keV) with the CN experiment
(d = 10 eV), we obtain an enhancement ("dynamical
enhancement") which is at least of the order of
[(100 keV/(10eV)]' =10 . Other approaches to this
problem lead to even bigger estimates of the enhance-
ment.

The expression (6) is a gross simplification of the actual
situation and hides a problem of the present approach: A
given p-wave resonance will mix not only with the
closest, but with all nearby s-wave resonances. As a
consequence, the expression (6) for Re(Sp) should con-
tain a sum over several or many s-wave resonances and,
therefore, a number of matrix elements of the parity-
violating Hamiltonian (rather than a single matrix ele-
ment). From the measurement of parity violation on a
given p-wave resonance, it is impossible to deduce the
values of all these matrix elements. This observation ac-
centuates the need for an alternative (statistical) treat-
ment.

B. Time-reversal violation

The simplest model involves the mixing (under a time-
reversal-odd —parity-even interaction Vr) of two p-wave
resonances, labeled 0 and 1, respectively. Paralleling Eq.
(6),

~0 ~i i'I ~OIm(Sr ) —= ——(}' i n'Y 3n 'V
&
n'Y

(E—Eo)I, +(E E, }I0—
[(E E) + —,

'I' —][(E E, )~+ —,'I, ]—

where ur =Im[( Vr)0, ] ( Vy')0, being the matrix element
of V~ between the two resonant states 0 and 1. As in
Sec. III A, Im(Sr) shows resonance enhancement in the
vicinity of either p-wave resonance. Violation of time-
reversal symmetry is also dynamically enhanced in the
CN regime. We note that, for targets of optimal thick-
ness (= two mean free paths), it is advantageous to look
for strong p-wave resonances (o =—cr„,); by contrast, in

the case of parity violation, the optimal situation occurs
when cr, —o )o „. [Here, o, (o ) denotes the contri-
bution (ignoring interference terms) to the total cross sec-
tion o.„,from the s- (p-) wave resonance under considera-
tion. ]

The arguments presented under Sec. III A show that a
statistical extension of the above treatment is again neces-
sary. We must characterize Vz by its spreading width

I' =2'(v' &/d .

The interaction V~ will mix a given p-wave resonance
with all p-wave resonances (of the same angular inomen-
tum) in its vicinity; this fact calls for an extension of Eq.
(8) to a many-level formula. There is a further difficulty:
whereas, for s-wave resonances, energies, total and partial
neutron amplitudes are usually known, this is not so for
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IV. SYMMETRY BREAKING
IN THE STATISTICAL MODEL: NO BIASING

The difticulties which arise in the two-level model of
Sec. III are completely avoided in the statistical ap-
proach.

A. Critique

The essential ingredient concerns the treatment of the
Hamiltonian

H =H("+H'", (10)

where H' ' preserves and H'" breaks the symmetry un-
der consideration. The symmetry-conserving H' ' is
modeled as an ensemble of random matrices (of the GOE
type for time-reversal symmetry breaking; as a reducible
matrix with two diagonal sub-blocks of the GOE type for
parity violation to simulate the two classes of opposite
parity). The symmetry-breaking perturbation is likewise
modeled as an ensemble of matrices with uncorrelated
Gaussian distributed random variables as matrix ele-
ments. Through an ergodic theorem, the average of an
observable (expressed as a functional of H) over the H en-
semble is equated with the running average (i.e., the ener-

gy average) over a single member of the ensemble, i.e.,
the CN under consideration.

As regards neutron transmission studies, these random
matrix models have, to date, been applied to the rigorous
calculation, for both parity violation and fivefold correla-
tion, of the unbiased variance of b, cr, (b,cr) . The treat-
ment is rigorous in the sense that the variances are exact
to leading nonvanishing order in the small perturbation
H" ' and they apply in the entire CN regime, from the re-
gime of isolated resonances to the regime of Ericson fluc-
tuations. By unbiased, we mean that the variances are to

I

p-wave resonances. We address this problem in Sec. VI.
A case has also been made' for measurements at very

weak s-wave resonances (cr, «cr, „,=o „).These can, in

principle, display similar enhancements, because of the
admixture under V~ of the d-wave components of adja-
cent s-wave resonances. We shall not pursue measure-
ments of this type: their treatment parallels that of Sec.
VI.

Finally, experiments on time-reversal violation are ex-
pected to yield upper bounds rather than actual values.
Further statistical arguments are needed to convert such
upper bounds into bounds on the spreading width I ~.

be equated with energy averages inferred from measure-
ments of Au at several arbitrary energies in the regime of
interest. It is averages of this type which are most acces-
sible to rigorous theoretical treatment.

Results for the unbiased variances (b,o ) serve one im-

portant function: they allow one to investigate the utility
of poor energy-resolution measurements in the isolated
resonance regime (at present, unavoidable for polarized
neutrons in the keV range), or of neutron transmission
studies at higher energies (beyond the isolated resonance
regime), where b,o is no longer kinematically suppressed.
However, our focus in this paper is in that portion of the
domain of isolated resonances (neutron energies E &100
eV) where good-resolution high-statistics experiments are
currently being attempted. Here, unbiased variances
must be viewed as a stopgap, appropriate only if the con-
ditions for measurement discussed in Sec. III cannot be
realized. Recall that the main contribution to Ao comes
from energies close to resonance, while, in the remaining
vast energy interval between resonances, the contribu-
tions are (d/I ) times smaller. Thus, to determine the
unbiased (60 ), experimental groups would be confront-
ed with a painstaking and not very promising search for
symmetry violation in resonance-free regions. (There is
also the problem that transmission experiments at or near
s-wave resonances are bound to suffer from poor statis-
tics. ) Therefore, experimental investigations should natu-
rally focus on isolated p-wave resonances (where possi-
ble).

B. Approximate evaluation of (h,o )

(isolated resonance regime)

The discussion above shows that it is necessary to for-
mulate and work out a statistical approach which takes
account from the outset of the natural bias introduced ex-
perimentally. As preparation, it is helpful to review the
derivation of the unbiased variances (b,o) within an
approximate scheme tailored to the isolated resonance re-
gime (in the limit of many open channels). We consider
the case of the fivefold correlation, for which the un-

biased estimate, because of experimental constraints, may
be of interest in its own right: ' Ho is, at present, the
only feasible target, and there are no known p-wave reso-
nances in ' Ho for neutron energies below 100 eV. (This
is not the case for parity-violation studies: there are
several targets to choose from with known p-wave reso-
nances. )

We start from the many-level generalization of Eq. (8):

According to the statistical model, the partial-width am-

plitudes y„' are uncorrelated Gaussian random variables
with zero mean values and (k- independent) second mo-
ments equal to the average partial width I ~ . Likewise,
the matrix elements (Ur), q are uncorrelated Gaussian
random variables of zero mean and common variance
(d/2m)I r. The total widths I; obey a y distribution

I

with v degress of freedom, where v is the number of open
channels. ' We take v)) 1 (justified by the large number
of gamma channels), so that the distribution is almost a
delta function and I, -=I for all i. The resonance ener-
gies E,- (identified with GOE eigenenergies) are further
random variables, not correlated with the partial ampli-
tudes, total widths, and matrix elements of Vz. There-
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fore, the variance of Im(Sr ) is given by

1 2 I 2 I / 2 I
[Im(ST)] =— g

2
(12)

where the average over the GOE eigenvalue distribution
is confined to

6

=2 dg=t 2'

V. "ON-RESONANCE" ENSEMBLES: PARITY

In Secs. III and IV we have demonstrated the necessity
to approach the analysis of data obtained in the investiga-
tion of symmetry violations in a novel way. In the
present section, we construct ensembles which suit this
purpose for parity violation. For pedagogical reasons, we
proceed in steps, starting with the two-level model of Sec.
III.

(2E E, —EI,. )—

[(E—E )'+-'r']'[(E —E )'+-'r']' ' (13)

4O(t /2r—r),1

t' (14)

a notation first used by Moldauer. ' Further
simplification is possible after substituting for the two-
level cluster function Y2 in terms of its Fourier trans-
form: &bo(z/n ) can be compactly expressed as

Z

4o(z /vr) = 1 ——+ sinhz
Z Z2

1 1+ —coshz ——sinhz [ —Ei( —z )] .
Z Z

(15)

with t—:2n. I /d. Note that, in keeping with the ensemble
concept discussed earlier, the average is performed at
fixed energy E.

The reduction of g is standard. Rescaling the reso-
nance energies by their mean separation d, g can be ex-
pressed in terms of a two-dimensional integral (over
x, =E, /d and xi, =E&/d) with the two-level correlation
function R~(x„xi,. ) (Ref. 16) as weight. In the limit of
physical interest, namely N~ ~ (N is the number of
GOE eigenstates),

R ~(x„xi,. ) ~1—Y~( ~x,
—xk ~

)

(Ref. 16) so that, transforming to integration variables

q =x, +x& and r =x, —x&, and performing the integral
over q, we find

j 1
g = dr[1 —Y~(r )]

7Tt 0 r +(t/2m. )

A. Parity violation in the t~o-level model

—:Ap Vp (17)

is the product of a known constant A and the parity-
violating matrix element v . The behavior of v p for
dift'erent choices of resonance pairs can be modeled
(within an ensemble formulation) by supposing that it is a
Gaussian random variable with variance (vp) =I pd/2m. .
This suggests that we could introduce an "on-resonance"
ensemble by considering Re(Sp) as a Gaussian random
variable with zero mean value, and a variance
[Re(Sp) ) = A Up. Doing so, however, would not be
correct, for the following reason. The introduction of an
ensemble, in the context of nuclear physics, makes sense
only if there is reason to believe that ergodicity applies,
i.e., the ensemble average of an observable is equal to the
running average of the same observable taken over a set
of nuclear states, because obviously only the latter aver-
age can be realized experimentally. For Re(Sp )p to be er-
godic, it is necessary that Re(Sp) be independent of the
resonances actually investigated. But this is not the case
because the factor A will change with the actual pair of
resonances considered. A meaningful ensemble is ob-
tained by considering

hp(p)=Re(Sp) /A (18)

We consider the model of Sec. IIIA, use Eq. (6) at
E=E, and assume that positions, partial-width ampli-
tudes, and total widths of the two resonances are known.
Then,

\

Vn ] /2 Vtl
Re(Sp)p —p:—Re(Sp)p = Up

P S P

(Ei is the exponential integral. ) We note that, for t « 1,

1
g =—(a0 —lnt ),

6t
(16)

where ao=2+ln2 —/=2. 12 (g is Euler's constant) and
terms of order t and higher have been dropped.

A treatment of this kind can be extended to the case of
on-resonance measurements by identifying the energy E
above with the energy of the resonance E0 at which the
measurement is performed. Averages like that in Eq. (13)
then become averages over "on-resonance" ensembles,
which can be evaluated using the statistical distributions
introduced above. The procedure will be acceptable pro-
vided it is ergodic (in the sense of Ref. 18): the ensemble
average of an observable is equal to the running average
of the same observable taken over a set of nuclear states.

This variable is ergodic. In the present trivial example,
Ap(p ) coincides with vp, but this is not so in general (cf.
Sec. VB). The example serves to illustrate the general
point that attention must be given to the definition of ap-
propriate ergodic variables.

We also use this simple case to indicate how I p~ (or an

upper bound on this quantity) can be deduced from a set
of m measurements, taken on p-wave resonances labeled
i =1,. . . , m with resonance parameters 2, . To this end,
we consider a variant of the additive noise model of Ref.
19.

Let Ap(i ) denote the ergodic random variable of Eq.
(18) at the ith resonance. We recall that in the frame-
work of our theoretical model, A~ has a Gaussian proba-
bility distribution; the value A~(i ) at the ith resonance is
drawn from this distribution. A measurement of h~ at
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the ith resonance will introduce an additional probabilis-
tic element: at each resonance, the experiment yields a
probability distribution rather than a precise value for
the observable; details of this distribution will depend on
the actual experiment. Assuming that there are no sys-
tematic errors, and that the quantities X, in Eq. (1) are
sufficiently large compared to unity, it is possible to argue
that the experimental distribution is approximately
Gaussian at each resonance, with a mean val ie given by
Ap(i ) and a width related to the experimental error
6b, p(i ). Assuming the Gaussians at all resonances to
have the same width, we conclude that the probability
distribution of the measured observable hp" ' is obtained
by folding the theoretical distribution [in the present case
a Gaussian, but, in, for example, the case considered in
Sec. VI, the function P, of Eq. (43)] with the Gaussian
describing the experimental distribution. In the present
case, this yields a Gaussian with zero mean value and a
second moment given by Ap+0. , where cr is the width
of the experimental Gaussian distribution. This form
then lends itself to a maximum-likelihood analysis, in
which the m measured values b, p(i) and the m experi-
mental errors 55p(i ) are substituted for the argument of
the Gaussian and the quantity 0., respectively. With obvi-
ous modifications, this procedure also serves to establish
upper bounds in the case of time-reversal symmetry
breaking.

This is an additive noise model because an equivalent
formulation says that Ap" ' is the sum of the theoretical
random variable 6p and an uncorrelated noise term 5A p;
the latter has a Gaussian probability distribution cen-
tered at zero with variance ~ .

ergodic. We therefore define

Re(Sp )

2

/

(20)

The variance of b p(p) (any p) is given by Up [all (Up)&

have the same variance as required by ergodicity] show-
ing that b p(p) is ergodic. Given a set of values Ap(i ) or
of upper bounds 8, on Ap(i ) from measurements on a set
of p-wave resonances I = 1, . . . , m, the analysis now
proceeds as in Sec. V A.

2. Unknown p-maUe partial-width amplitudes

In the case of the two-resonance model, we would now
write Re(Sp) as [cf. Eq. (17)]

Re( Sp )p Bl p ] /&Up (21)

Ap(p ) =Re(Sp ) /8 (22)

which [like b, p(p )] is ergodic and has probability density

the product of a known constant B, the p-wave partial-
width amplitude y„]&z and the parity-violating matrix
element Up. Like Up, the behavior of the unknown y~ ] &2

for different choices of resonance pairs can be modeled
(within an ensemble formulation) by supposing that it is a
Gaussian random variable of zero mean; the variance is
I „,&„which is simply related to a neutron strength
function. The p-wave partial-width amplitude y„]&2 and
the parity-violating matrix element Up are independent
random variables. Thus, we introduce an on-resonance
ensemble by considering

B. Parity violation in a more realistic model
1

Ko[b,p(P )/co] . (23)

We consider first the extension to accommodate the
admixture of a number of s-wave resonances, and then
the modifications when the p-wave partial-width ampli-
tude is unknown (relevant to the use of spin-nonzero tar-
gets).

Here, K[] is MacDonald's function of zero order and
co =I P„,&2(vp) is the variance of Ap(P). [We have aP-
pealed to the fact that, if z is the product of two indepen-
dent Gaussian random variables of zero mean and unit
variance, then it has probability density Ko(z )/rr. ]

In the many-level generalization, we write [cf. (19)]
1. Many leUels

The model of Sec. VA is unrealistic because it stipu-
lates that the parity-violating interaction admixes only
the closest s-wave resonance into the given p-wave reso-
nance. A more realistic model consists in allowing for
the admixture of a number of s-wave resonances. In this
case, Re(Sp ) takes the form (we put E =F. )

R«Sp) p
=)" i i —X 81(Up)~

and define

Re(Sp )

I

(24)

(25)

3n ]/2 Tn
Re(Sp)p =—2 g (Up)1

(19)

The index k labels the s-wave resonances. Under the as-
sumption that the parameters of all s resonances are
known, Re(Sp) is a sum of Gaussian distributed random
variables (up)I, with constant coefficients and therefore it-
self a Gaussian. However, as in Sec. V A, Re(Sp ) is not

VI. "ON-RESONANCE" ENSEMBLES:
FIVEFOLD CORRELATION

A much more complex situation than that considered
in Sec. V arises when the resonance parameters of the
resonances which are admixed into a given resonance, are
unknown. This case is likely to arise with the fivefold
correlation test of time-reversal symmetry. Indeed, the
time-reversal violating interaction mixes p-wave reso-
nances with each other, and p-wave resonance parameters
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are poorly known in general. In this case, we have to
resort to a purely statistical description, taking for the
resonance parameters the distribution predicted by the
GOE.

A. Time-reversal violation in a many-level model

E —E

(E —E11) + —,'I
(26)

We consider a measurement performed at a p-wave res-
onance 0. In the many-level case, the dominant contribu-
tion to Im(ST ) at E =Ep is given by [cf. Eqs. (8) and (11)]

=2 Po PI, Po
T )p g ( Yn 1/23 n 3/2 Yn 3/2Yn 1/2)

o k-&0

on average by a resonance enhancement factor -d /I .
This clearly shows the advantage of using the "on-
resonance" ensemble.

B. Upper bound on time-reversal violation

The result derived in Sec. VI A is useful only if nonvan-
ishing values for AT have been measured. Actually we
expect that only upper bounds on

~
b, T ~

are available. In
such a case, one would wish to proceed as in Sec. VA:
To use the distribution function of the ergodic observable
corresponding to AT to obtain a bound on I"T. In the
present case, the distribution function is not Gaussian,
and we proceed to derive an approximation P, to its form
from the defining equations.

We use Eq. (26), put I k
= I for all k, introduce the di-

mensionless random variables

The index k labels the admixed p-wave resonances. We

assume the neutron partial widths I „',/2 and I n 3/2 to be
known. As regards the remaining resonance parameters,
we adopt the statistical description outlined in Sec. IV B.
In particular, this means that we set all I 's including

r0 equal to I . Then, an ergodic equilvalent of equivalent
of lm(ST)p is [cf. Eq. (20)]

Po=Im(S ) /(I „',/
1~ / + I „' I ~, )' . (27)

[P ]1/2

Po Pk Po
~n 1/2~n+3/2 ~n 3/2~n 1/2

~o p ~0 p 1/2
( ~ n 1/2~n 3/2+ ~ n 3/2~n 1/2)

(E11 E(, )d-
Ck

(E E) + —,
'—I

(33)

2 2

2 2 VT
T I g biased

d
(28)

where

Proceeding as in the derivation of Eq. (12), we find for the
variance of AT

and observe that the xk and yk are uncorrelated Gaussian
variables with zero mean and unit variance, and that the
distribution of the ck is determined by the GOE eigenval-
ue distribution P(Ep, E, , E2, . . . ), with Ep kePt fixed.

Instead of ET, we consider the dimensionless ergodic
random variable

g biased

d (Ep E)—
[(Ep E) + —,'I ]—

(29)

The calculation of gb;„,„resembles that of g in Eq.
(12). We find

gb;„,d=2 dr 1 —
Y2 r

2 2 2, 30
I r 2+ [t /(41r)]2] 2

or, in terms of 40,

5r g x(y( c(
k~0

The normalized probability density P(5T ) is given by

P(5T) —f dE(dE2 ' ' ' P(Ep, E(,E2, . . . )

X g —f dx exp( —
—,'x )3/2n.

X g dykexp( —
—,'y( )

1 2

„~p 3 277

(34)

277 t
b ed 0 4 4 0 4

(31)
X 5 5T —g x(y(c(

I

(35)

where 40 denotes the derivative of 40 with respect to its
argument. Combining these results, we obtain, for t (&1,

We write the delta function as a Fourier integral over co

and carry out the integrations over the yk and over co.

After the substitution x ~c x, this yields

1 2~I „'

b, T —= (2.31 —lnt )
3I

(32) P(5T)= f dE, dE, P(E(1,E, , E, , . . . )

It is of interest to compare the result (32), or rather
1 /2I 3/2 67 with the unbiased energy average of Sec.

IV B. When t « 1, the two factors (in brackets) contain-
ing lnt are approximately equal. So, we find that
r„1/2I 3/26T is bigger than the unbiased average by a
factor =4/t. By selecting only "on-resonance" points for
our statistical ensemble, we enhance the effect expected

Xg, fdx exp
1

(2~c,')'"
X.

2 c2

1
exp(2' g x„')'/' 2

k~0 k&0

(36)
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It is instructive to discuss the form (36). The last factor,
taken by itself with all the x, fixed, would yield a Gauss-
ian for P(5r ). However, the x themselves are Gaussian
random variables. If all the c- were fixed and roughly
equal, g],. Ox]', would be proportional to a y — distributed
quantity with a large number of degrees of freedom, and
hence would —to a very good degree of
approximation —be given by g c, resulting again in a
Gaussian distribution for P(5r) with variance g c, .
However, the c are neither fixed nor equal. Indeed, Eq.
(33) shows that with E],E&, . . . arranged in such a way
that

—p exp[ —35r/2ir ] .
rr&2rr

(37)

specified below) such that for !E] —Eo~ & ed many terms
in the sum Eq. {34) have approxiinately equal weight (so
that 5z. is Gaussian), while for !E] E—

o~ & cd the j= 1

term in Eq. (34) dominates the rest.
For !E] E—„&ed, we accordingly replace the right-

hand side of Eq. (36) by a Gaussian. The variance is ap-
proximately given by using a picket-fence model for the
eigenvalues, yielding g c =n /3. This contribution to
P(5r ) accordingly has the form

the c decrease rapidly with increasing j. Moreover, c,
has fluctuations which are large compared to those of cz
and so on. For these reasons, we circumvent the exact in-

tegration over P(EO, E„E~,. . . ) in Eq. (36) (which we
cannot perform) by the following approximation. With
E, denoting the eigenvalue closest to Eo, we divide the
domain of integration over E, into two parts, given by

~E] E„&——sd and by ~E] Eo! & sd—, respectively.
Here, s » I /d has a value (s= —,

' or so, s will be fully
I

The weight factor p with 0 &p & 1 is determined below.
For the remaining integration over E, with

~EO E, &ed—, we use a picket-fence model for all E],. 's

except the eigenvalues closest to Eo, yielding

g c =rr /3 —1=a,
g

c ]

and carry out the remaining integration over
~E] Eo~ =sd—, using the (normalized) Wigner surmise.
As a result, we find, with

c] =c(s)=s/(s +I /4d ),

7T 22 — ds s exp ——s
2 0 4

r

f' oc X

(2irc )'
dx exp

2c

1
exp

[2ir(x '+ a ) ]' i'
5~

2(x +a)
(38)

2p=2exp ——c —1 .
4

(39)

The calculation of the second moment gives, for
I"/d «1,

2 77
2

7T6~= +~ ln2+~1nc. —2 1 —exp ——c.
-

3 4

7T (1I/4]E [ I —exp( —w )]——-1+ dN
2 0 LU

r.—mln —.

(40)

In comparing this with the result implied by Eq. (32),

2 r
6z- = 2.31 —ln2~ —ln—

3 ~
(41)

we first note that the dependence on I /d is nearly the

The factor 2 arises because E, —Eo can have either sign.
The approximate probability density function P, (5r ) is

given by the sum of the contributions in Eqs. (37) and
(38). The normalization condition yields

same: the difference, i.e., the factor ir/3 is due to the
different behavior of I —Y~(r ) and of the Wigner surmise
for small values of the argument. The constants in Eqs.
(40) and (41) cannot be quite matched for s= —,', the value
in Eq. (40) being smaller than that in Eq. (41) by =0.5.
We do not aim at a better agreement, as this would in-
volve fixing a, which seems irrelevant in view of the
rough approximations used above.

Higher moments of 5z- are, for I «d, dominated en-

tirely by negative powers of I /d; these originate from the
small s behavior of the integrals in Eq. (38). We find, for
n)1andI «d,

ir [(2n —1)!!] I
2 (n —1) 2d

We observe that the result in Eq. (42) is independent of a
which again shows that for n ) 1, the moments 5z' are
essentially determined by the resonances closest to Fo.
We note that the calculation leading to Eq. (42) is the
better, the larger n is, since the high moments of 6z are
most strongly dominated by the large-6~ behavior of
P, (5 )os, equivalently, by the small-s behavior of c(s).
Comparison with the numerical results will show that the
low moments are not terribly well given by Eq. (42).

Returning to the approximate probability density
P (5z-), we are led to write it in the form
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P, (5 T) =p —exp[ —35T/(2m. )]+f ds(s'+I /4d )exp ——s

oc 1 5T
X dX

2 1/2 p
[x +a]' 2(x +a)

X

2c (s )
(43)

In Appendix B, we indicate the essential differences of an
alternative treatment, appropriate when the restriction
that both neutron partial widths I „' be known, is

dropped. We note that, under the assumption that

the above analysis can be employed when only the sum

+n ~n i/2+ ~n 3/2

is known.

C. Comparison with numerical simulations

Our numerical simulations start from the relations
defining 5T, Eqs. (33) and (34). To generate the nontrivial
component ( c ), we adopt the following conceptually
simple procedure: we draw Hamiltonian matrices of a
fixed dimension N from the corresponding GOE, diago-
nalize numerically, and form the required eigenvalue
difFerences (Eo is identified with the eigenvalue nearest
the center of the spectrum to minimize effects associated
with the finiteness of N), scaled by the theoretically
known average level spacing at the center of the spec-
trum. If these differences are denoted by zj (j
=1,. . . , N 1), then we—set

I

will only serve to reduce the error bars, it is possible to
discern that the N=60 frequency distribution is slightly
smaller than the N=30 distribution for 5T (1. Presum-
ably the tail of the N=60 data (not displayed) is corre-
spondingly enhanced over that of the N=30 data. How-
ever, it is precisely the tail region which is least accessible
with the present simulation: here, we have to rely on an-
alytic estimates. In the small-5T regime, it will be
suScient if the approximate probability distributions we
introduce overestimate the magnitude of P(5T ). We con-
clude that, for our purposes, we can take N as small as
~30

Known moments of the 5T distribution provide obvi-
ous checks of the numerical simulation. In all cases, we
have confirmed that the distributions inferred from our
finite samples have odd moments consistent with zero,
and variances consistent with the prediction of Eq. (32).
We note that estimators for higher moments are poorly
determined whenever t (0.1. To cite an example: for
t =0.01, the statistical error in the estimate for the fourth
moment with a sample of 1000000, is of the order of
15%. (By contrast, for the same simulation data, the sta-
tistical error in the estimate for the variance is of the or-

2.5-

Zc=
zj+(t/4m)

(44)

where the constant t /2~ is the value of I /d assumed. In
what follows, simulation data will be represented in the
form of binned frequency distributions: if N; (i is an in-
teger) denotes the number of occurrences in a sample of
values of 5T such that

(i —,' b ) ~ 5T & (i —+—,
'

)b

(b is the bin size), then we plot P, =N; /N„, vs

(5T), =bi, N„, being the total number of events in the
sample. Error bars are assigned under the assumption
that the distribution of N, (i fixed) for different samples is
Poissonian.

As regards the choice of N, we are, in principle, in-
terested in the character of the 6T distribution in the lim-
it N~ao. Figure 1 is a representative example of our
findings concerning the approach to this limit: in it, we
compare simulation data for N=30 and 60 (t =0.01).
Note that in this and other diagrams in this subsection,
the vertical axis is magnified by a factor of 10. Already
the changes with increasing N are sufficiently small for
one to be able to argue that, with the present sample
sizes, there is no statistically significant difference be-
tween the two frequency distributions. If we make the
reasonable assumption that increasing the sample sizes

2.0

1.5

lOP

1.0

0.5

0-i
0

FIG. 1. N dependence of binned frequency distributions in-

ferred from simulation data {t = 10 ', bin size b =0.2). Unbro-
ken line: N =30 {sample size X= 10 ). Dashed line:
N=60 {X=3X10').{Error bars included. )
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der of a percent. ) The problem is exacerbated for smaller
values of t. A related observation is that the estimates
are not robust. Clearly, these deficiencies of the simula-
tion data arise because of the significance for higher mo-
ments of the tail of the distribution, which is poorly
determined. We see that the extent of the tail must in-
crease with decreasing t [direct analytic evidence for this
is furnished in Eq. (51) below], which we can interpret as
a consequence of resonance enhancement. It is also ap-
parent that a frequency distribution inferred from our
simulation data has, by itself, limited information con-
tent. It should, in principle, be possible to reproduce any
such frequency distribution with dissimilar analytical
forms that predict essentially the same low-order mo-
ments, but wildly different higher-order moments.
Hence, the approach (favored by some statisticians) of
trying to fit the observed distribution to one of Pearson's
family of distributions or another popular class of distri-
butions, is inappropriate.

A comparison of the physically motivated approximate
distribution P, of Eq. (43) with simulation data is
presented in Fig. 2. Like the simulation data, P„has
been subjected to a binning procedure. The smooth curve
joins discrete points [(5T)„(P,), ], where

2.5—

2.0—

10 P

1.0

0.5

0-)
0 10

(i + ] /2)b
(P. ), = —f dx P, (x) .

6 (I —] /2)b
(45)

In Fig. 2(a), the values of a and E recommended in Sec.
VIA (a=rr /3 —1 and E= —,

'
) have been adopted. In ad-

dition, the magnitudes (after binning) of the Gaussian
contribution P to P„and the remainder P„=P,—P, are
depicted. Figure 2(b) displays the sensitivity to different
choices of c. and a. The various features of Fig. 2 illus-
trate the validity of the assertions of Sec. VI B. We note
that, consistent with the discussion following Eq. (42),
there is (a) the remarkably good description of the simu-
lation data by P, in the "wings" of the distribution (inter-
mediate values of 5T), (b) the deteriorating agreement for
small 5r, and (c) the insensitivity to ct (a —1) in the
wings. In line with the approach take in Sec. VIB, we
have not attempted to fine tune the values of o, and c. In
fact, it can be seen from Fig. 2(b) that choosing values
different from those specified in Sec. VI B will not lead to
any significant improvement in the region where P, is ex-
pected to do well.

An interesting perspective on these results is given by
an alternative attempt at describing the 6T frequency dis-
tribution. It employs the 6T distribution when only one
resonance contributes to the sum in Eq. (34). Replacing
P(Eo, E, , . . . ) in Eq. (35) by the Winger surmise, the cor-
responding probability density is

2.5—

2.0 — 'g

1.5

lOP

1.0

0.5

0-i
0 10

p, (5 )= ,' f dss —(s +I /4d )E (5 /c(s))

X exp ——s 2

4
(46)

&r =(&T)N~+(&T), {47)

As a crude alternative to the approximation scheme of
Sec. VI B, we can choose to write 5z as the sum

FIG. 2. Comparison of P, [Eq. (431] after binning with fre-

quency distribution from simulation data (N =30, X = 10 )—
t =10, b=0.2. The dots denote the simulation data points.
(a) Comparison for a=~'/3 —1 and c= —'. Unbroken line: P, .
Dashed line: P~. Dot-dashed line: P„. (b) Sensitivity of P. to
di6'erent n and c.. Unbroken line: a and c as in Fig. 2(a).
Dashed line: a = m.-'/3 —2 and c.= —'. Dot-dashed line:
a=~ /3 —2 and E= —'.
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conservative estimates can be obtained using J', of Eq.
(48). A case of even greater complexity would be encoun-
tered if the partial width amplitudes of the resonance un-

der observation were unknown themselves. This case can
be treated by a slight extension of the procedure of Sec.
VI.

In summary, we have established the theoretical frame-
work that is needed to deduce values of or bounds on the
symmetry-breaking part of the Hamiltonian from data on
isolated CN resonances.

Note added in proof. In a significant recent develop-
ment, the TRIPLE collaboration has reported on parity-
violation data at a number of p-wave resonances in U.
Independent of the considerations of this paper, the re-
sult outlined in Sec. V B 1 was derived and applied to the
analysis of the data [J. D. Bowman et a/. , Phys. Rev.
Lett. 65, 1192 (1990)].

E.D.D. acknowledges support by National Science
Foundation (NSF) Grant PHY-87-23182 and discussion
with C.R. Gould on experimental details.

APPENDIX A

consistent with taking the W,„independent of E ).Equa-
tions (Al) and (A2) summarize the form of S,b(E) ob-
tained in any of the standard theories of nuclear reso-
nance reactions. To interpret Eqs. (Al) and (A2), it is
useful to consider the case N = 1 for which S,b(E )

reduces to the one-level Breit-Wigner form. The form in
Eqs. (Al) and (A2) of S,&(E) may be looked upon as the
N-level unitary generalization of the Breit-Wigner formu-
la. The most general such form would contain a nondiag-
onal background term instead of the expression
5,b exp(2i5, ). We have not considered this case in order
to keep the presentation simple.

To describe symmetry-breaking CN reactions, we write
the Hamiltonian matrix H„,, in the form of Eq. (10), ob-
serving the specifications given below that equation. Di-
agonalization of the GOE matrix (or matrices) contained
in H' ' yields the eigenvalues F& with a spacing distribu-
tion typical for the GOE, while the multiplication of the
amplitudes W, „, with the diagonalizing orthogonal matrix
yields the Gaussian distributed amplitudes y„- appearing
in the text. Expanding S,b to first order in 0 ' and
specializing to the one-level or multilevel situation leads
to Eqs. (6), (8), (11), (17), (19), and (26).

For the benefit of readers who are not familiar with the
formalism of nuclear resonance reactions, we summarize
here the formulas for the scattering matrix needed to ob-
tain Eqs. (6), (8), (11), (17), (19), and (26).

Adopting a notation which is slightly more general
than in the main body of the paper, we use Latin labels
a, b, c, . . . to denote the channels. (The labels a, b, . . .
include an index to denote the type of two-body fragmen-
tation, the state of excitation of either fragment, as we11

as the orbital angular momentum of relative motion and
the spin couplings. We confine ourselves, however, to a
single value J of the total spin of the system. ) The quasi-
bound states giving rise to CN resonances are labeled

p, v, . . . , each such index running from 1 to N && 1. With
6, denoting the elastic scattering phase shift in channel a,
the element S,b(E) of the scattering matrix, taken at en-

ergy F, can be written as

S,q(E)=e ' 5,b 2rri g W,„[—G '(E))„,, W, .~ e

(A1j

The real amplitudes 8',„denote coupling matrix ele-
ments between channel a and level p. These amplitudes
depend on E; on a scale given by the mean spacing of the
CN resonances, this dependence is so weak as to be negli-
gible. The matrix G„,, has the form

G„(E)=E5„,, 0„,+i' g W„, W—„, , ,

c open

(A2)

where H„,, are the elements of the Hamiltonian matrix in

the space of CN levels, and where a principal value in-
tegral involving the W,„'s has been suppressed. (This is

APPENDIX B

In the absence of any information on neutron partial
widths I „,, an appropriate dimensionless ergodic variable
replacing 5z- of Eq. (34) is

5r = g x»y» c»
/' -'0

where x» and c» are as defined in Eq. (33) but

~o i'i, i'o
Vt~ 1/27tt &y'2 ~)1+1/3~ii 1/2

(r;, „,r;„„,)'"

(B1)

(B2)

which has a Laplacean probability density: —,'exp( —
~y» ).

Equation (36) is replaced by

P(5r)= fdE, dE, P(EO, E, , E2, . . . )

1 XJXg —, dx exp
2jcj [ C~

1 6~
(2vrgx )' 2 gxexp

1':0 l:0
(B3)

We observe that, if all the c were fixed and roughly
equal, g», ~» would, to a good degree of approximation,
be given by 2g c, . (We assume that the sum over k runs
over many terms: then a central limit theorem applies,
implying g» ox» has a narrow Gaussian distribution
centered at 2$,c, .) Hence, the subsequent approximate
analysis of P(6~ j can parallel that of Sec. VI.
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