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A detailed calculation of the capture rate for p +d ~v„+n + n is carried out and the result

compared with the latest data. Within the same framework we also calculate the cross sections of
v+d and v+d reactions for incident energies E 170 MeV in view of the importance of these

'V

cross sections for studying astrophysical neutrinos with the use of a heavy-water Cerenkov counter.

I. INTRODUCTION

Studying weak-interaction processes on the deuteron is
interesting for multiple reasons. From the nuclear phys-
ics point of view, it offers a useful testing ground of our
understanding of exchange current effects, for the struc-
ture of two-body nuclear systems is known with much
better accuracy than that of complex nuclei. ' It is to
be recalled here that the most convincing evidence of ex-
change currents for electromagnetic processes has been
obtained through investigations of the reactions
n +p~y+d (Ref. 6) and e+d ~e+n +p. ' In the as-
trophysical context, the detailed knowledge of the cross
sections for p+p~d+e++v, and p+e +p~d+v,
is crucially important for the quantitative description of
the thermonuclear processes occurring in the Sun. We
should further add that a project to build a heavy-water
Cerenkov counter for detecting astrophysical neutrinos is
in progress. ' Reasonably reliable estimates of the cross
sections for v-d reactions" are a prerequisite for extract-
ing useful astrophysical information from data that
would become available from the Sudbury project. '

Recently, there was a new measurement' of the rate
for muon capture by a free deuteron:

p +d~v„+n +n .

It is known that the p-d capture takes place practically
uniquely from the pd hyperfine doublet state, and the ex-
periment' measured kd, the total capture rate for the
hyperfine doublet state. The reported value is
A,z" '=470+29 s ', which is significantly larger than any
existing theoretical estimates. ' Since, as mentioned
above, the structure of the two-body nuclear systems is
reasonably well understood, this discrepancy, if really
confirmed, should constitute a serious challenge to our
understanding of the nuclear response to weak-
interaction probes. On the other hand, the latest experi-
mental result' indicates that Vd""'=409+40 s ', in good
agreement with the calculated values given in the litera-

ture. ' Expecting further developments in the measure-
rnent of Vd"~' in the near future, we consider it
worthwhile to reexamine the theoretical estimates of A,d.
One of the purposes of this article is to present a new cal-
culation of A, d, in which various ingredients that go into
its estimation are carefully examined. '

A detailed study of the p-d capture is expected to pro-
vide a measure of the reliability of our description of
intermediate-energy weak-interaction processes in the
3=2 nuclear system. This information will be useful
when we try to estimate the neutrino-deuteron reaction
cross sections. For low incident neutrino energies
relevant to the solar neutrinos, the v-d reaction cross sec-
tions were calculated in a number of works, ' ' the
most up-to-date ones given in Ref. 17 for the charged-
current reaction and in Ref. 18 for the neutral-current re-
action. As is well known, neutrinos produced in more
violent processes than the solar thermonuclear reactions
can also play important astrophysical roles, and their ob-
servation provides us with valuable information. A
dramatic example is the detection of the supernova neu-
trinos by the Kamiokande group' and by the IMB
group. Since the Sudbury heavy-water Cerenkov
counter can be used also for detecting these higher-
energy neutrinos, it would be of great current interest to
provide reliable estimates of the v-d and v-d reaction
cross sections for higher energies than hitherto available.
A second purpose of this article is to estimate the cross
sections for v-d and v-d reactions for medium energies
(E,, 170 MeV), using the framework that has been
tested with the p-d capture. We will try here to improve
the estimates given in Refs. 17 and 18.

The organization of the paper is as follows. Sections II
and III are concerned with the capture rate for

p +d~v„+n +n. After describing the formalism in
Sec. II, we present the numerical results in Sec. III. We
then proceed to evaluate in Sec. IV the cross sections for
v+d and v+d reactions. Finally, summary and discus-
sion are given in Sec. V.
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II. CAPTURE RATE FOR p +d ~v„+n + n

H)v= f d x A)v(x, t =0),
GF

&)v(x)= — —cosOC[J((x)L(, (x)+H c ], . .
2

(3)

where the leptonic current is given by

In order to shed more light on the aforementioned con-
troversy on the apparent discrepancy between A, d" ' re-
ported in Ref. 12 and A,&""",a systematic examination of
the ingredients that go into the existing theoretica1 treat-
ments will be useful. We wish to make such an exarnina-
tion here. Although the capture rate k for the pd
hyperfine quadruplet state can be discussed in the same
framework, we will concentrate here on the pd hyperfine
doublet capture rate kd. Figure 1 depicts the kinematics
of the reaction.

The theoretical capture rate of reaction Eq. (1) involves
the following three categories of "input" information: (i)
the single-nucleon weak-interaction form factors appear-
ing in transition matrix elements for the elementary pro-
cess (u +p~v„+n, (ii) the wave functions of the initial
and final two-body nuclear systems, and (iii) the exchange
currents. The first systematic study of these features was
made by Dautry, Rho, and Riska' (DRR) more than a
decade ago. Subsequently, Ivanov and Truhlik, ' ' pro-
posed to use the hard-pion approach in calculating the
exchange currents. Comparison of the present work with
the previous ones will be made later in the text.

We start with the impulse approximation (IA), neglect-
ing for the moment the exchange-current effects. The
weak interaction Hamiltonian H~ is written as

(n)V„(0)~p ) =iu(n)[fvy„+ f)vo„,k„

i—flak„]u (p),

( n
~ A„(0)~p ) =iu (n) [ f—„y„y&+Ifpy5k„

fT—o„.k.y s]u (p),

(6a)

(6b)

where k=n —p, with n (p) being the four-momentum of
the neutron (proton). The nonrelativistic reduction of the
weak-interaction Hamiltonian yields the well-known
Fujii-Primakoff effective Hamiltonian

H,»= ,' Gp co—s8cgt(1 cr( —v)

X ge ' Fv+F„a ' o, Fpcr(—vo "v

mN
I.vol p

where
mN

.vo(i). P(i) (i)gg( ) (7)

~v= l+
2mN

fv+m„fs

F4 fg 2
(fv 2m(vf(v)

mN

Fp = [m
&fp fg (fv 2m(t(f )v ) +2m (((fT ]

2mN

Defining the matrix elements of the various terms in the
eff'ective Hamiltonian for the initial state ~i ) and the final
state

~f ) by

L((x)= i g—g, (x)y„(1+y5)((i(((x),
l =e,P, 7.

(4) 2

MI=(f~ g r'J'exp( iv x —)f (x )OJ(j)~i ), (9)

whereas the hadronic current

J(„(x)= V((x)+ Aq(x)

has the matrix elements

with 8, (i) = 1'", Gz(i) —=o", 83(i ) =P", a—nd 84(i )

=—cr" P'", the transition amplitude due to the IA contri-
butions can be written as

J(n (p, )

Mf; =G cose & g, , ~n~g„),

l —cr v

2
(At(+o ( At2),

At(:FvM, ——
mN

(0 M3),

. fv „ f~At2:Fg M2 Fpv( v'M2 ) —i ( v X M3 )
— SM4

mN mN

(10)

(12)

(13)
In Eq. (10), ~(„) and ~(„) represent the lepton spin states.

For the choice of the single-nucleon weak-interaction
form factors, the following values will be used as the stan-
dard values:

2

f„(q )=1.0X 1+
0.71(GeV)

' —2

(14a)

FIG. 1. Kinematics for the ILt, +d~v„+n +n process.

2

f„(q )= —1.262X 1+
1.19(GeV)

—2

(14b)
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2

2m~f~(q )= —3.7X 1+
0.71(GeV)

Zm~fp(e') =, , f~(q'),
q +m„

fr=0,
fT=O .

—2

(14c)

(14d)

(14e)

(14f)

The value of f„(0)given in Eq. (14a) has been obtained in

a neutron P-decay correlation experiment and is
significantly different from the previously accepted
value: f„(0)= —1.254+0.006. The expression for fp
given in Eq. (14d) is based on the partially conserved axi-
al current hypothesis (PCAC) and the Goldberger-
Treiman relation. Equations (14e) and (14f) represent the
usual ansatz that there is no second-class current. In the
present work we also investigate to what extent devia-
tions of the nucleon form factors from the standard
values will affect the capture rate.

We next discuss the meson exchange-current (MEC)
effects. In Ref. 1, the MEC operators are constructed
with the use of the low-energy theorem supplemented by
the effective Lagrangian method. Ivanov and Truhlik '

g,q,
p„,, a„XB,m.

gpss ~

g2

gpss ~ gg,
(17)

with p„,=B~,—B~„and a„„=B„a„—B,a„, where m, p„,
and a„are the pion, p-meson, and A, -meson fields, re-
spectively. The effective Lagrangian involving the nu-
cleons can be written as '

have derived the MEC in the hard-pion approach, in

which one explicitly constructs the effective Lagrangian
that is consistent with current algebra, PCAC, and the
vector meson dominance. Since the hard-pion approach
gives a natural framework in which the soft-pion limit
and processes involving finite momentum transfers can be
treated on the same footing, we will use here the hard-
pion approach. ' '

The vertices relevant to our calculation derivable from
the effective Lagrangian of Ref. 25 are

gp—„nXB„.m,

=g (p„Xa,, —p, Xa„) B„a„,

LNA P.= NyuauN —mNNN —i ,gpNyuT—N -pu l' Ny—uTN ~xa
2

Kv
i —Ny „yst ( d„m gp„X m ) +—if„g„N y „ysvN a„——„' g N o „,rN p „', ,u u u u 4 i'2m~ (18)

where

Pu =Pu, + (a„XB„m—a, XB„m')+ g Xa„,
wgp

"
gu

Similarly, the part involving the N* resonance is given by

f.w.v -„=2 ' N*TN Vm
N N A

I
P71. m

Gi
+g N „'y,y „TN P„,,+H. c. , (19)

with V„n= ,'r)„m+f g„a„+O(vr —) and p„,=p„
+O(m). The vector current V„and the axial-vector
current A„corresponding to the effective Lagrangian of
Ref. 25 are

The MEC contributions due to m or p exchange that
are expected from the effective Lagrangian of the hard-
pion approach are depicted in Fig. 2 (for the axial-vector
current Az) and in Fig. 3 (for the vector current Vz).
The explicit expressions for the vertices appearing in
these diagrams acting on the nuclear configuration space
are obtained in the standard manner. Since the
effective Hamiltonian in IA, H, s of Eq. (7), was obtained
by retaining the terms up to O(1/mz) and since the
MEC contributions are of the order of 1/mz compared
to the main IA terms, we consider only leading-order
MEC terms in the nonrelativistic reduction of the two-
body contributions. The results are summarized in Ap-
pendix B. The contributions of these MEC diagrams can
be taken into account effectively by replacing the various
terms in H, s- [Eq. (7)] in the following manner:

m
yV P

P g ~P
P

2

gp

(20)

(21)

yF„~"r"-yF„~"rI'+ y A"'(i, j),

y Fp~, .vo" vr~"

(22)

The numerical values of various parameters (coupling
constants and so on) to be used in the present calculation
are listed in Appendix A.

~cr, .v g Fpa" vr" + g P' '(i,j.), (23)
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FIG. 3. Processes contributing to vector exchange current in
the hard-pion approach (Ref. 21). Vz stands for the vector
current.

FIG. 2. Processes contributing to axial-vector exchange
current in the hard-pion approach (Ref. 21). A; stands for the
axial-vector current, while 1

~
stands for the A, meson; the oth-

er symbols will be self-explanatory.

m pf

CT I 'VO I
'P 7

o, vcr, g P'r'"+ g v "(i,j), (24)
m~ i (j

(i) ~(I) (I)

(i) p(r) (iI+ y a(2)() j) (25)
f~
my I (j

The change in Eq. (22) is due to the space component of
diagrams (a), (c), (d), (e), and (f) in Fig. 2, while that in

Eq. (23) is due to diagram (b) of Fig. 2. The diagrams in
Fig. 3 give rise to v' '(i,j ) in Eq. (24). Finally, the change
in Eq. (25) comes from the time component of diagrams
(c), (d), and (e) in Fig. 2, and a ' '(i,j ) represents the
Kubodera-Delorme-Rho (KDR) exchange current in
the context of the hard-pion approach. Its importance to
the pd-capture neutron spectrum has been emphasized in
Ref. 28.

In evaluating the nuclear matrix element of two-body
operators, the short-range behavior of the two-body
operators is of importance. We therefore take account of
the finite size of the nucleon by attaching to each meson-
baryon vertex a form factor Ks(q ) of the form

In this expression ms (8 =sr, p, or A&) is the meson
mass, and Az is a cutoff parameter, which is taken to be
the same for the NNB and N*NB vertices. Specifically,
we use A =1.25 GeV, A =1.50 GeV, and A„=1.85

GeV. The introduction of the form factor K~(q ) leads
to a modification of the radial dependence of the two-
body operator. The details of this modification are given
in Appendix D.

For the nucleon-nucleon interaction that determines
the wave functions of the initial deuteron and the final n-
n scattering state, we use here three different potentials:
the Reid soft-core (RSC) potential, the Reid hard-core
(RHC) potential, and the Paris potential. "

One problem here is that, if we use the phenomenologi-
cal nuclear forces, the current conservation is not
satisfied for the vector current. A way out is to invoke
the Siegert theorem ' to place a constraint on the lon-
gitudinal part of the vector current. In fact, with the ex-
tended Siegert theorem, which was fully developed for
photonuclear processes, one can in principle construct
multipole operators for the general vector current includ-
ing meson-exchange effects in such a manner that the
current conservation be respected. However, in the
present case where the axial current gives a dominant
contribution and which involves rather high momentum
transfers, the effect of incorporating the Siegert theorem
is expected to be much less important than in the pho-
tonuclear reactions. We therefore use here a simplified
method in which the one-body current is modified so that
the current conservation is guaranteed. As will be dis-
cussed later, this simple treatment seems sufficiently ac-
curate for our purposes.

The current conservation implies

f e '" "V.J"d x = i f e ' "[H,p]d x—,A~ —m~2

K( )=Bq =A2+ 2
. (26)

which can be easily rewritten as

(27)
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E —E,f
E (28)

Ef —E,
(29)

The decomposition of the vector current J into one- and
two-body parts, J =J, +J2, leads to

tudes are obtained with prescription of Eq. (32) based on
the Siegert theorem, whereas for the spin-flip vector-
current transition amplitudes we evaluate explicitly the
contributions of the diagrams in Fig. 3 by using the
effective two-body operators derived in Appendix B.

The capture rate from the p-d hyperfine doublet state
is expressed as

For the one-body part J
&

given by

1
A&=GF cos 9~ dE„pm~E„y„~Tf; ~

2772
(33}

JV 1
1

2mN

we should have

(2p, —v}+
2mN

vXo, (3O)
with

E2
m —c —2E —E-

P 4m N

=0

E
v'JI = (v'p;)

mN 2mN
(31) where p=(p, —p2)/2, E„=p /(2m&), and e=2m~

—m&', the factor

JR) =FvM)—
mN

m
fvME,

(v M3)

(32)

It is to be noted here that only spin-nonflip two-body
effects can be taken into account by this procedure.
Thus, in the context of pd capture, one expects that the
J2 effects for the final PJ, FJ, . . . are approximately in-
cluded, but that the M1 transitions leading to, e.g. , the
final 'S0 state must be treated separately. In the present
paper, the spin-nonflip vector-current transition ampli-

It is not a trivial task to determine an explicit form of J2
that satisfies Eq. (29). We therefore assume that by re-
placing the J& term appearing in the impulse approxima-
tion expression with —[(Ef E; )IE,—]p, one can
effectively take into account the contribution of the J2
term. This amounts to making, in Eq. (12), the following
replacement:

Q 1 + (m„—s —2E„)/rnid
(34)

represents recoil correction for the center-of-mass motion
of the final n nsystem-.

~ Tf; ~
is the square of the transi-

tion matrix element for the hyperfine doublet capture in-
tegrated over the directions of p and v. In the present
work we do not introduce the "one-point" approximation
for the muon wave function, f (x) in Eq. (7), but retain
the radial dependence of the muon wave function calcu-
lated for the point nuclear charge. The general expres-
sion for

~ Tf; ~
is quite involved and therefore relegated to

Appendix C. For the sake of comparison with the previ-
ous work, ' it may be useful to give the expression for
~Tf; ~

for a simplified case in which the d-state com-
ponent in the deuteron is taken into account only for the
s-wave final n-n scattering state, and the nuclear interac-
tion is considered only for the s-wave n-n state, all other
higher-l states treated as free waves. For this simplified
case,

~ Tf; can be written as

HK~ Tf; ~
=12[F„H ,'Fp(H+&2J—)]——8(F„—,'Fp)f„—

mN

L =even, L&0
(2L+1) 12(F„,'Fp) HL ——8(—F„—3')f„HLK—L

mN

5

+16 g (2L+1) ( ~FV+Fq+ ~Fp —', FpFq FyFq+ ~FpFy)HL —,'(2Fq Fp Fv)fq HLKI
L =odd mN

—8[F„H ,'Fp(H +&2J)]—3—DO+ " (Do+ &2D~ )+ D3
m„v fp
2m+ f~ mN

+ ,'[Fq (H —2&2J)+—Fp(H +&2J)]D), (35)

where F~=(m„/E }f~, and the radial integrals for the IA contributions are defined by

F(p) rH= dr g0 u r
0 P 2 2

F0~Pr~ . rJ = f dr j~ w (r)f
0 p 2 2

(36a)

(32b)
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Fo(p") . vr d u (r)K= — rdr J&
0 p 2 dr r

J

r
2

(36c)

oc vr rHL= J rdrjL(pr)JL u(r)f
0 2 2

(36d)

2d . L . vr L+1 . vr
2L+1 2 2L+1 + 2

d u(r)
dl r

(36e)

In the above, f (r) is the radial function of the muon ls
orbit; we use here the Bohr orbit for the point nuclear
charge. The functions u(r) and w(r) are the deuteron s-
and d-wave radial functions, respectively, and Fo(pr) is
the s-wave radial function for the final n-n relative
motion. The terms involving Do, Do, Dz, D, , and D, in

Eq. (35) represent exchange-current contributions [D„
arises from A '(i, j), Do and D', from P' '(i,j ), D, from
a' '(i, j), and D, from v (i,j )], and the explicit expres-
sions of Do, Do, D2, D, , and D3 are given in Appendix
D. If we drop from the above equations the terms of
0(plmz), i.e., K and KL, the resulting expressions are
identical with those given by DRR except for the follow-
ing points: (1) the exchange currents here are derived
from the hard-pion approach, (2) the variation of the
muon wave function over the nuclear volume is taken
into account here, and (3) the present treatment includes
the MEC effects for the vector current, which were
dropped in DRR.

III. NUMERICAL RESULTS

that the MEC effects are sensitive to two-nucleon short-
range correlation; the MEC contributions given in Table
I would become larger by a factor of —1.4 if the short-
range correlation v ere ignored.

We have considered here not only the pion-exchange
but also the p-exchange diagrams (see Figs. 2 and 3). The
contributions of the p-exchange processes are as follows.
(We take as an example the case of the RSC potential. )

Of the axial-vector current MEC contribution, 22.0 s
the p-exhange part is —8.5 s '. Of the M1-type vector
current contribution, 7.8 s ', the p-exchange part gives—1.0 s '. Thus the p-exchange current plays a
significant role in the axial-vector current MEC and M1-
type vector current MEC, which have been calculated
through the explicit evaluation of the Feynman diagrams
in Figs. 2 and 3.

As explained earlier, the E1-type vector current contri-
bution is estimated by invoking the Siegert theorem in-
stead of using the Feynman diagrams. Table I indicates
that the effect of incorporating the Siegert theorem
through the prescription of Eq. (32) is to increase k'd"'""

Table I gives the numerical results calculated with the
standard values [Eq. (14)] of the nucleon weak-interaction
form factors. It is to be observed that the results for the
three different potentials have only minor differences, and
therefore we can discuss them collectively. We see from
this table that, in the IA without the exchange current,
k'd"'""=364—369 s ' and that the contribution of the
terms of 0 (p/mjv) is about 2 orders of magnitude small-
er than the leading terms of 0(1); this checks with the
results reported by Pascual et al. The inclusion of the
meson-exchange current substantially increases the cap-
ture rate, leading to k&""'=397—400 s '. Thus k&"'"" ob-
tained with the standard framework of the IA plus
exchange-current effects is in good agreement with
A d""'=409+40 s ' of Ref. 13, but disagrees with
A, d" '=470+29 s ' reported in Ref. 12.

The present calculation includes the MEC effects for
both the vector and axial-vector currents, whereas the
previous work' took into account only the axial-vector
current MEC. Table I indicates that 70% of the MEC
contribution is due to the axial-vector current, while the
newly calculated vector current MEC constitutes the
remaining 30%. Of the axial-vector current MEC, the
predominant part comes from the space component, the
time component (corresponding to the KDR current )

adding to kd""" only -0.5 s '. This is in conformity
with the general consideration of KDR. -' We remark

RSC RHC Paris

Final state L=O
Final state L = 1

Final state L=2
Final state L=3
1~L ~5
O(1)

232.0
118.6

6.9
3.0

128.8
360.8

230.9
118~ 9

6.9
3.0

129.1

360.0

233.5
120.6

7.0
3.1

131.0
364.5

4.4 4.5

IA=O(1)+0 365.2 364.4 369.0

MEC (axial)
KDR
MEC (vector [M, (!
Siegert theorem
MEC (total)
A,d"'""=IA+ MEC {total)

22.0
0.5
7.8
2.3

32.6
397.8

22.7
0.4
7.6
2.4

33.1

397.5

19.9
0.5
7.8
2.4

30.6
399.6

TABLE I. Total capture rate k',&"'"" in units of s ' calculated
with the standard values of the nucleon weak-interaction form
factors given in Eq. {14). Three different nuclear potentials are
used: the Reid soft-core potential (RSC), the Reid hard-core
potential (RHC), and the Paris potential. For each case are
given kz"'"" and its decomposition into various individual contri-
butions.
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by -2 s '. An independent calculation by the Osaka
group based on the extended Siegert theorem shows a
similar tendency.

We have taken into account in this work the radial
dependence of the muon wave function without invoking
the one-point approximation. This improvement has
been found to decrease A.d""' by 6 s

We now discuss the effects of deviations of the nucleon
weak-interaction form factors from the standard values.
The form factors fv, f~, and f„are already well deter-
mined empirically so that the freedom of variation, if
any, exists only with fz, fz, and fp. The conserved
vector-current (CVC) hypothesis dictates that fz =0, but
no such restriction exists for the second-class axial-vector
current form factor fr. There have been a great many
experimental works to obtain information on fr, and a
chi-squares fitting to the totality of the existing nuclear
P-decay data yielded ~fz(0)~ ~ ~f~(0)~ /2. Sat the 90%
confidence level. We will examine the maximum possible
change in A, 'd""" when ~fz(0)~ is allowed to vary within
this empirical upper limit. Since our purpose here is to
obtain an estimate of the maximum possible change, we
may ignore the q dependence of fz(q ). As for the
choice of pseudoscalar form factor, the inAuence of varia-
tion in f~ was discussed in Ref. 1. We examine here the
joint effects of deviations of fr and fp from their stan-
dard values. To this end, we will allow fp to deviate
from the standard value by the amount compatible with
the precision with which the Goldberger-Treiman rela-
tion has been tested. To be specific, by introducing
p= fp(0)/[f~(0)]„,„d„d with [f~(0)]„,„d„d
=2m~f„(0)lm given by Eq. (14d), we consider the
three cases P= 1 and 1+0.1. Here, again, we only deal
with possible changes in the overall strength of fp, keep-
ing the q dependence of f~(q ) fixed as given by Eq.
(14d).

The results for nonstandard values of fr and fI, are
given in Tables II—IV. We can see from these tables that,

even if we allow for the maximum possible change of the
single-nucleon form factors, it is impossible to obtain
k&""' as large as A, d" '=470+29 s ' reported in Ref. 12.
The maximum value within the present framework (cor-
responding to the choice P=0.9, fr = —f@/2.5, and the
Paris potential) is A. 'd"""=422 s ', which is significantly
smaller than the lower end of the experimental value
given in Ref. 12.

Ahrens et al. recently derived a stringent upper limit
to the second-class current strength from an analysis of
high-energy v„-p scattering data. The target of this ex-
periment consists of complex nuclei as well as protons,
but it is argued that the analysis is free from nuclear-
medium effects once the quasifree kinematical region is
selected. In our opinion, however, this argument may re-
quire a closer examination. As exemplified by the
e +d ~e + n +p reaction wherein substantial exchange-
current effects are observed even in the kinematical re-
gion involving large momentum transfers, there may be
nuclear-medium effects that were not reckoned with in
the analysis of Ref. 38. Until this point is clarified, we
should probably take the conclusion cf Ref. 38 with some
reservation. This is why we have used here the upper
limit to fr determined in Ref. 36, although this may turn
out to be too generous an allowance for fz, once the
above-mentioned ambiguity is removed. Anyway, the use
of the upper limit

~ fr ~

&
~f~~/2. 5 will serve the purpose

of demonstrating that even the most generous allowance
for fr cannot reproduce A, 'd"~' of Ref. 12.

We explain here some technical details concerning the
truncation scheme used in the present calculation. The
number of partial waves in the final n-n system that can
be included in actual numerical calculations is limited for
practical reasons. We show in Table V how many partial
waves in the final state have been taken into account, de-
pending on the importance of transition operators in
question. Table V also indicates which cases contain
both the s- and d-state components in the initial deuteron

TABLE II. Capture rate A,d in units of s calculated with the Reid soft-core potential. The break-
down of A, d into the impulse approximation term and the exchange-current contribution is also shown;
the former is further decomposed into the contributions of O(1) and O(p/M). Case (a) corresponds to
the standard choice of fr, i.e., fr =0, as expressed in Eq. (14f), whereas cases (b) and (c) correspond, re-
spectively, to fr =f~I2.5 and —f~I2.5, the maximum allowed magnitude described in the text. For
each of these cases, the row with P= 1 corresponds to the use of the standard value offp as given in Eq.
(14d), whereas the rows with P= 1+0.1 represent possible deviations from the standard value. The stan-
dard results corresponding to the choice of the form factors given in Eq. (14) are underlined.

(a) 0
0.9
1.0
1.1

O(1)

368.3
360.8
353.3

O(p/m~ )

4.5
4.4
4.4

Exchange

33.0
32.6
32.3

Total

405.8
397.8
390.0

(b) fg/2. 5

0.9
1.0
1.1

355.4
348.0
340.7

4.4
4.4
4.3

32.4
32.0
31.6

392.2
384.4
376.6

(c) f~I2.5—0.9
1.0
1.1

3&1.4
373.7
366.1

45
4.5
4.5

33.6
33.2
32.9

419.5
411.4
403.5
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TABLE III. Capture rate A.„ in units of s ' calculated with the Reid hard-core potential. For fur-

ther explanations, see the caption of Table II.

(a} 0
0.9
1.0
1.1

O(1)

367.4
360.0
352.5

O(p/m, )

44
4.4
4.3

Exchange

33.5
33. 1

32.8

Total

405.3
397.5

389.6

(b) fg/2 5. 0.9
1.0
1 ' 1

354.6
347.2
339.9

4.3
4.3
4.3

32.9
32.5
32.2

391.8
384.0
376.4

(c) f~ /2—.5
0.9
1.0
1.1

380.5
372.8
365.2

44
4.4
4.4

34.2
33.8
33.4

419.1

411.0
403.0

wave function and which cases include only the s-state
component. As can be seen from Table V, the present
calculation takes into account considerably more com-
ponents of the two-nucleon wave functions than in the
work of Sotona and Truhlik. The main purpose of this
generalization is to recheck the validity of the truncation
scheme DRR used on the base of the work of Sotona and
Truhlik. To this end, we have carried out a calculation
in which only those components appearing in Eq. (35) are
retained (Table VI). By comparing the results of the two
calculations, we reconfirmed that the truncation scheme
used in Ref. 1 changes kd by less than 0.5 s ' and thus
has a sufficient accuracy for the present purpose.

In comparing the present results with those in the
literature, we need to recall that the previous works'-
used f„(0)=—1.25, a value that was standard at the
time of those calculations. Furthermore, the "one-point"
approximation for the muon wave function was em-

ployed, and f (r) was fixed at its value at r=0 So, for the.

sake of comparison, we have repeated our calculation us-

ing the old value f„(0)=—1.25 and the one-point ap-
proximation. The results are summarized in Table VII,
from which one can see that there are significant
discrepancies between the previous and present calcula-
tions; the old value of A, d due to the leading-order IA

terms is larger by as much as —20 s '. We could not
trace the origin of this difference. The only comment
we can make here is that, if we ignore the recoil correc-
tion in our treatment by setting y„=l, the results (given
as TKK(~ I in Table VII) agree very well with the previ-
ous ones. [Note that the difference in modeling the ex-
change current explains the difference between the MEC
contribution in DRR (Ref. 1) and that in Ivanov and
Truhlik (IT) and TKK.]

We summarize this section as follows. We have corro-
borated the conclusion that it is difficult to explain
A.&" '=470+29 s ' reported in Ref. 12 within the stan-
dard framework of the IA supplemented by meson-
exchange effects; on the other hand, the present results
are in good agreement with A, &" '=409+40 s ' obtained
in Ref. 13. In this situation, we tentatively take the
view that the agreement between A, d" ' of Ref. 13 and
k'd""' supports the present theoretical framework more
strongly than the disagreement between k&" ' of Ref. 12
and kd""" disproves it. To the extent that this view is ten-
able, the calculational method used here is reliable up to
the experimental accuracy achieved in Ref. 13, i.e., at the
10% level, for the intermediate-energy weak process in-
volving the 3=2 nuclear system. Needless to say, we
should await the clarification of the experimental situa-

TABLE IV. Capture rate kz in units of s ' calculated with the Paris potential. For further explana-
tions, see the caption of Table II.

(a) 0
0.9
1.0
1.1

O(1)

372. 1

364. 5

356.9

O(p jm, )

4.5
4. 5

4.4

Exchange

31.0
30.6
30.3

Total

407.6
399.6
391.6

(b) f~/2. 5

0.9
1.0
1.1

359.1

351.6
344.2

4.5
44
4.4

30.4
30.0
29.7

394.0
386.0

378.3

(c) —f~ /2. 5

0.9
1.0
1.1

385.4
377.6
369.9

46

4 5

31.5
31.2
30.9

421.5
413.3
405.3
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TABLE V. Chart to show which components in the initial and final two-nucleon wave functions
have been included in obtaining the results shown in Tables I—IV. The circles and double circles indi-
cate components that have been included. For the double-circled entries the nuclear interaction in the
final n-n system have been taken into account, while the single-circled entries have been treated as free
waves.

IA

Operators

O(1)

Component
in deuteron

Partial waves in final n-n system
L=1 L=2 L=3 L=4

0
0

L=5

O
5'

rnid

0

Exch. A, N*

others 0
0

IV. CROSS SECTIONS FOR v-d And v-d REACTIONS

A. Calculational method

As mentioned in Sec. I, reasonably reliable estimates of
the cross sections for v(v)-d reactions are in great
demand for extracting useful astrophysical information
from data that would become available from the planned
heavy-water Cerenkov counter at Sudbury. ' One of the
great advantages of the heavy-water Cerenkov counter is
that it can detect both the neutral-current and charged-
current reactions, and record them separately. As was
emphasized in Ref. 39, the detection of neutral-current

TABLE VI. Comparison of the "truncated" calculation with
the "full" calculation. For each of the three nuclear potentials,
the row labeled (a) gives kz""" and its breakdown into the vari-
ous individual contributions calculated with the use of the
simplified formula for ~T, , ~ [Eq. (35)]. The row labeled (b)
gives the results obtained with the full expression for

~ Tf, ~

given in Eq. (C9).

Potential

RSC

O{1)

(a) 361.0
{b) 360.8

O(p/m~ )

4.4
4.4

Exchange

31.9
32.6

Total

397.3
397.8

tion before making any final conclusion, but we consider
it reasonable to take this view as a working hypothesis
when estimating the neutrino-deuteron reaction cross
sections in the next section. We should add that for
lower-energy neutrinos (E„20 MeV), where the well-

established IA term dominates, the calculational method
used here is reliable with a few percent precision.

reactions is crucially important for testing the
Mikheyev-Smirnov-Wolfenstein (MSW) mechanism as a
possible solution for the solar neutrino problem. Furth-
ermore, the detection of both the neutral-current and
charged-current reactions enables us to determine the
neutrino mass difference by measuring arrival time delays
of supernova neutrinos. '

We evaluate here the cross sections for v-d and v-d re-
actions for medium energies (E,,

~ 170 MeV) in the
framework of the impulse approximation (IA) supple-
mented by the exchange current. The validity of this ap-
proach in this kinematical region has been tested in the
electromagnetic process and in the p-d capture treated
in the preceding sections. As stated at the end of Sec. III,
the experimental situation with the pd capture rate is yet
to be clarified, but we are here tentatively assuming that
the good agreement between A, d"~' of Ref. 13 and A.&""'

supports the calculational method used here. With this
working hypothesis accepted, the present calculation is
expected to be reliable at the —10% level for F., ~170
MeV. ' On the other hand, for lower incident energies,
F. , 20 MeV, this method is known to be reliable up to
the level of a few percent.

TABLE VII. Comparison with the previous works. DRR:
Dautry et al. (Ref. 1); IT: Ivanov and Truhlik (Ref. 2); TKK:
present work. The row labeled TKK'+' represents the case in
which the recoil correction is artificially neglected, i.e., y„=1.
In the row labeled IT, the entry 38* was deduced by rescaling
the corresponding entry in Ref. 2 by the ratio f „(b,

rr A—width)/f ~ (quark model).

RHC

Paris

(a) 360.4
(b) 360.0

{a) 364.8
(b) 364.5

4.4
4.4

4.5
4.5

32.5
33.1

30.0
30.6

397.3
397.5

399.3
399.6

DRR
IT
TKK
TKK'=

IA(O (1))

381
380
362
381

Exch.

24

35
37

Total

405
418
397
418



42 WEAK INTERACTION PROCESSES ON DEUTERIUM: MUON . ~ . 1703

v, +d~e +p+p,
v, +d~e++n +n,

(37a)

(37b)

Apart from the use of the hard-pion approach, the
main difFerences between the present treatment and that
of Refs. 17 and 18 are as follows: (i) The effects of finite
momentum transfers are taken into account by retaining
the form factor j i(qr); (ii) for the relative motion of the
outgoing two-nucleon system, we include partial waves
up to l (5, whereas only the l=O state was considered in
Refs. 17 and 18; and (iii) the MEC are considered in a
more systematic way. That is, both the vector current
and axial-vector current MEC contributions are evalu-
ated here using the hard-pion approach ' ' (with the sup-
plementary use of the Siegert theorem for the spin-nonAip
vector current transitions). In Ref. 18, mainly because of
the neglect of partial waves higher than the s state, the
theoretical cross sections were assigned relative errors of
-50% for incident energy as low as F. , —50 MeV. The
improved calculation described here can significantly
reduce theoretical uncertainties.

We are concerned with the calculation of cross sections
for the charged-current reactions:

and cross sections for the neutral-current reactions:

v+d -~x'+n +p,
v+0 —+v +n +p

(38a)

(38b)

Since the treatment of the charged-current reaction is
exactly the same as that of the p capture apart from trivi-
al Hermitian conjugation necessary for dealing with the
inverse process, we can immediately write down the cross
section o,,:

1 epeppl g
cc I tl c' $

1 ( )/2

XGj. Cos HcF(Zf, eo)~T~ (39)

where vp and v are the energy and momentum of the neu-
trino, ep and e are the energy and momentum of the elec-
tron or positron, e =ie~, z =v.e, p=(p& —p2)/2,
F.„=p /(2m~-), and F(Zf, eo) is the Fermi factor. The
transition matrix element squared T~ is given with good
accuracy by

~T~ =f„[1—
—,'(v e)](H +J )+[(v q)(e q) —

, (v e)]J—(2V'2H+J)

+ —(f, —2m,-f„:) [(v q) —(e.q)] H — —J ——-[(e.q)+(v.q)](H+&2J)4 1 1 1 2

3f, ' ' " 2m, v'2 3m,

+ g (2L+1)HIf~ [1—
,'(v e)]+—(f,—2m, :f'~) [(v.q) —(e q)] — [(e q)+(v..q)]3f, ' ' 2m, 3m

+ g (2L +1)Ht [1+(v e)]—'-ft, +2[1—
—,'(v e)]f, + —",f~(f,, —2m~ f~ )

— [(v q) —(e q)]
L =odd

L V 5 H'

—(f,, +=', f', )
—[(e q-)+(v q)]
Pl g-

—2f 4 {[1—
—,(v.e)](HDO+ JD, )+[(v q)(e q) —

—,'(v e)][&2JDo+(&2H +J)D, ] I

1 1 1—', (fp —2m, vfg ) [(v.q) —(e.q)] H — —J DQ-
Pl )- v'2 v'2

+ [(v q)+(e q)](H+&2J)(D„+&2D2)+=,'f ~ [(v q) —(e.q)] H — —J D-, ,3m p- m& v'2

with

Fo(p&) . qrH= dr -jo —u(r),
0 p 2

Fp{pr) qrJ=I dr j~ —w(r),
0 p 2

qr
HL = r dr ji (prj)L —u (r) .

(4 la)

(41b)

(41c)

Here the upper (lower) sign corresponds to the neutrino
(antineutrino) reaction, and q; =

v&
—e~; the electron

mass has been neglected. The radial integrals Dp, D2,
and D, for the exchange-current contribution have al-
ready appeared in connection with Eq. (35), and their ex-
plicit expressions are given in Appendix D. [In the actual
calculation, we drop the contribution of the KDR
current and that of diagram (c) in Fig. 3, since their
roles in the pd capture have been found to be small. We
also remark that the contribution of diagram (b) of Fig. 2,
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being proportional to the lepton mass, can be ignored in
the present context. ] In writing down Eq. (40), we have
taken into account the final-state nucleon-nucleon in-
teraction only for the s wave, since our experience with
the p-d capture indicates that it is a good approximation
to ignore the nuclear interaction for higher partial waves.
For the p-p final state, however, it is understood that
jz(pr) appearing in the definition of HL [Eq. (41c)] should
be replaced by the regular Coulomb radial function.

For the neutral-current process, we start with the
effective Hamiltonian

GF
P P (42)

The lepton current L„ is written as
L„=—iu„y„(1+y~)u„ for the reaction (38a) and
L„= iu y—„(1+y5)u„ for the reaction (38b). The ha-
dronic neutral current J„'' in the standard (Weinberg-
Salam-Glashow-Iliopoulos-Maiani) model is given by

I'„ I = V„+A„—2 sin 8 ( V + V„) . (43)

Here V„ is the isoscalar vector current, V„' (i = 1,2,3) the
isovector vector current, and A„' (i=1,2,3) the isovector
axial-vector current; Ow (sin 8w=0.23) is the Weinberg
angle. Obviously, J„' ' has both isoscalar and isovector
parts:

(44)

J' =' = —2 sin2O V'
P W p

J '=(1—2sln 0 )V +A
P

(45)

~nc HIA +HMEc
eff eff eff (46)

In the neutral-current reactions Eqs. (38a) and (38b),
the final n-p state can have both T=O and 1. This implies
that the isoscalar and isovector currents can interfere in
general. However, for angle-averaged, spin-independent
observables, there is no interference between the isoscalar
and isovector contributions for the following reason. The
channel spin of the final n-p system can be used as one of
the quantum numbers to specify final states. This implies
that the contribution of spin-triplet and spin-singlet final
states can be added incoherently with no interference be-
tween them. Meanwhile, averaging over the orientation
of the n-p relative motion eliminates interference between
partial waves of different parities. Since the spin and par-
ity of a two-nucleon state uniquely determine its isospin,
we can conclude that there is no interference between the
isotriplet and isosinglet final states. This situation
renders the role of isoscalar contributions practically
negligible. On the other hand, the dominant isovector
neutral current is simply related to the charged current
by a rotation in isospin space (apart from the difference in
the coupling constants). Thus we can work with the
effective Hamiltonian

with where

'fv+ fwo "q L4(r, )
2mN

(I)

+ f~o + (fv 2mjvfw)o" Xq+ fvq L*(r, )
2mN 2m' 2

(47)

with

fv=(1 —2 sin'|) w)f v fw =(1—2 sin'~w)f w

Following the above discussion, we only have to consider the MEC for the dominant isovector current. Then the MEC
contribution of relevance can be written as

JMEc I-v'2

where JM&c is obtained from A (i,j) and v '(i,j) [see Eqs. (22)—(25) and Appendix B] by changing + into 3. We note
here again that we need not consider the exchange current coming from diagram (b) of Fig. 2, whose contribution is
proportional to the lepton mass. Furthermore, we ignore the KDR current and the contribution of diagram (c) of Fig.
3 since their roles in the pd capture rate were very minor.

The cross section o.„,for the neutral-current reaction is given by

dE d
3 GF' 2~' 1+(eo v~)i2m~— (49)

where eo and e are the energy and momentum of the final neutrino, e = ~e~, and z =v.e. For the contribution of the iso-
vector part of the hadronic current, the transition matrix element squared

~
T~ is given, with the same approximation as

for Eq. (40), by
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ITI =f„[1—
—,'(v e)](H +J'-)+[(v.q)(e q) ——', (v.e)]J(2&2H+ J)

2

+ (fy —2mzf„', ) [(v.q) —(e q)] H — —J — [(e.q)+(v. q)](8+V'2J)~4, , 1 1 13f„' ~ "'
2m, : v'2 3m ~

+ $ (2L +1)HLf„[1—
—,'(v.e)]+ (fy —2m~ fIy) [(v.q) —(e q)] — [(e q)+(v q)]3fg 2m~ 3mv

2

+ g (2L+1)HL [1+(v e)] ' fy+2[1 —
—,'(v e)]f„+—",f„(fy 2mv f—Iy) [(v.q) —(e q)]

L =odd

—(fy + —,
' f„' ) [(e q)+(v q)]

mz

—2f ~ [[1—
—,'(v e)](HDO+ JD2)+[(v q)(e q) —

—,'(v e)][&2JDO+(&2H+ J)D2] I

1 1 1

, (fy 2m—)/fan
—
) [(v q) —(e q)] H — —J Do-

m~

[(v q) —(e q)] H — —J D3,v'2+ [(v q)+(e q)](H+v'2J)(D +0&2D~)+ ',f„—
3mN mN

(50)

where the upper (lower) sign corresponds to the neutrino
(antineutrino) reaction. If we ignore in Eq. (50) the terms
that involve the n-p partial waves other than the s wave,
the corresponding cross section should agree with the ex-
pression given by Eqs. (17) and (18) in Ref. 18. From this
comparison, we have found that Eq. (18) of Ref. 18 in-

volves an error; the factor +—,
' should read +=', . This

completes the explanation of our calculational method,
and numerical results will be presented in Sec. IV B.

slightly so that a„=—23.7 fm is reproduced. To achieve
this, we have changed, as in Ref. 18, the strength of the
nonpion part of the Reid potential. The results given in
Table VIII and Fig. 5 have been obtained after applying

I I I 0 I I 1
I I I

B. Numerical results

In calculating the charged-current reaction cross sec-
tions cr„[Eq. (39)] and the neutral-current reaction cross
section 0„, [Eq. (49)], we use the standard values of the
nucleon weak-interaction form factors listed in Eq. (14)
and the Reid soft-core potential. The results of the calcu-
lation of the p-d capture rate indicate that using the oth-
er potentials (the Reid hard-core and Paris potentials)
will lead to practically the same results. The estimates of
the cross sections are shown in Table VIII and in Figs. 4
and 5. As remarked earlier, these cross sections are con-
sidered to be reliable at the —10% level for incident en-
ergies E,,

~ 170 MeV; for lower-energy neutrinos, E,, ~ 20
MeV, where the well-established IA terms give
overwhelmingly dominant contributions, the reliability is
expected to be better than a few percent.

Regarding the neutral-current reaction cross sections,
there are two comments to be made here. The first is
concerned with charge-dependent effects in the two-
nucleon system. As is well known, the scattering length
a„ for the spin-singlet n-p system is different from the
scattering length a„„ for the n-n system; a, = —23.7 fm,
while a„„=—18.7+0.6 fm. Since the original Reid po-
tential does not take account of the charge dependence,
we need to modify the Reid potential for the n-p channel

1O-4'-

FIG. 4. Cross sections for charged-current processes.
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TABLE VIII. Total cross sections for neutrino reactions on deuteron calculated as functions of the

incident neutrino energy E, The Reid soft-core potential was used.

E,, (MeV)

4
6
8

10
12
14
16
18
20
25
30
35
40
45
50
60
70
80
90

100
110
120
130
140
150
160
170

d (v, v')np
X10 ' cm'

0.0307
0.201
0.554
1.10
1.86
2.82
3.99
5.38
6.99

12.0
18.4
26.3
35.7
46.6
59.1

88.4
124
165
211
262
317
375
437
502
568
637
706

d (~, ~ ')np
X10 '- cm-'

0.0302
0.196
0.534
1.05
1.75
2.62
3.67
4.90
6.29

10.5
15.7
21.8
28.8
36.6
45.2
64.3
85.7

109
133
158
184
209
235
259
284
307
330

d (v, e )pp
X 10 cm

0.158
0.624
1.46
2.71
4.37
6.48
9.05

12.1

15.6
26.6
40.9
58.7
80.1

105
134
204
289
390
506
635
777
930

1090
1260
1440
1630
1820

d(v, e+)nn
X10 ' cm

0.116
0.515
1.23
2.27
3.63
5.30
7.28
9.55

16.5
25.0
35.1

46.5
59.2
72.9

103
136
170
205
239
272
303
333
360
384
406
425

this modification. The effect of the charge dependence is
expected to be more pronounced in the low-energy re-
gion, wherein the role of the nuclear final-state interac-
tion is more significant. Our explicit calculation indicates
that the introduction of the charge-dependent effect
enhances o(vd~v'np) and o.(vd~V'np) by 11% for
E,,

=4 MeV, 3.7% for E,, = 10 MeV, 2.1% for E,,
=20

MeV, and 0.8% for E,, =50 MeV. We have checked that
this feature is practically independent of choices between
(slightly) different nuclear potentials, so long as these po-
tentials reproduce a„=—23.7 fm.

The second comment is concerned with the isoscalar
neutral current, J„=—2 sin t9~ V„. As discussed ear-
lier in the text, the absence of interference between the
isovector and isoscalar contributions to the total cross
section leads us to expect that the role of the isoscalar
current will be minor. To ascertain this expectation, we
have calculated explicitly the contribution of the isoscal-
ar current in IA, and have found that it increases o.„,
only by a few percent even at E,,

—150 MeV. (For low in-
cident energies, the isoscalar transition operator reduces
to the unit operator and hence cannot give rise to any nu-
clear transitions. ) Since this is within uncertainties of the
present calculational method itself, we can ignore the iso-
scalar neutral current altogether.

Since solar neutrinos relevant to the deuterium detec-
tor are the B-decay neutrinos and the hep neutrinos, we

1()-4'—

]() l) I e s s ~ I a

() i()

I'„ I, iI t )

FIG. 5. Cross sections for neutral-current processes.
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(0„( B))=1.22X10 cm

(o „(hep) ) =3. 14 X 10 cm

while those for the neutral-current reactions are

(5 la)

(51b)

(cr„,( B))=4.72X10 " cm~,

(0„,(hep)) =1.32X10 cm

(52a)

(52b)

have calculated the neutrino-deuteron cross sections
averaged over the spectra for the B decay ' and hep
neutrinos. The results for the charged-current reactions
are

We note that (o„,( B) ) obtained here is —15% larger
than the corresponding value in Ref. 18. [The inclusion
of the charge-dependent effect increases (cr„,( B)) by
—5% both in the present work and in Ref. 18.] With the
use of these new estimates together with the B-neutrino
and hep-neutrino fluxes obtained from the standard solar
model, we can calculate the event rates of deuterium
disintegration in the one-kiloton D20 Sudbury Neutrino
Observatory. The results are (the 100% detection
efficiency assumed)

1.35(1 0.38)X10 yr 'kt ', for 'B neutrino,
charged-current events =

4. 54(1+0.38) X 10' yr
' kt ', for hep neutrino,

5.21(1 0.38) X 10 yr
' kt ', for B neutrino,

neutral-current events =
1.91(1+0.38) X10' yr 'kt ', for hep neutrino .

(53)

(54)

(cr~p(FD)) =(3.35T,;"—3.70)X10 " cm

(o „„(FD)) =(3.05T,; —7. 82) X 10 cm

(o (MB)) =(3.06T'„"—3.42)X10 ' cm',

(o „„(MB)) =(2.75T„—7.09) X 10 cm

Neutral-current reactions:

(55a)

(55b)

(56a)

These event rates are expected to contain 38% errors due
to uncertainties in the neutrino flux calculated in the
standard solar model. (The uncertainties in the estimated
cross sections themselves are negligible in this context. )

The neutrinos produced in a supernova explosion ap-
proximately obey the Fermi-Dirac (FD) or Maxwell-
Boltzmann (MB) spectrum. We therefore give in Table
IX (Table X) the cross sections averaged over the FD
(MB) spectrum. Convenient fitting formulas for these re-
sults are as follows.

Charged current reactions:

(o',,(FD)) =(1.63T,' —2.78)X 10 cm

(0'„(FD))=(2.03T, —3.76) 'X 10 cm

(0',,(MB) ) =(1.50T„—2.61)X 10 ' cm

(iT (MB)) =(1.87T,; —3.58)X10 cm

(57a)

(57b)

(58a)

(58b)

Given a supernova explosion model that predicts the
temperature of neutrinos and antineutrinos of different
flavors as well as their fluences, one can easily calculate,
as Bahcall et al. ' did, the event rates expected at the
Sudbury Neutrino Observatory. It is generally expected "
that the temperature T(v, ) of the electron neutrinos is

typically 4—5 MeV, whereas the temperature of muonic
and tau neutrinos is somewhat higher, 8—10 MeV. For
the sake of definiteness, let us take T(v, )=T(v, )=5
MeV and T(v„)= T(v„)= T(v, ) = T(v, ) =10 MeV.
Furthermore, let us use the following typical neutrino
fluences

TABLE IX. Total cross sections for neutrino reactions on deuteron averaged over the Fermi-Dirac
spectrum with temperature T, The Reid soft-core potential was used.

T,. (MeV)

2
3

4
5

6
7
8
9

10

d (v, v')np
X 10 cm

0.524
1.62
3.41
5.90
9.12

13.1
17.8
23.2
29.4

d (v, v ')np
X 10 cm

0.493
1.49
3.03
5.11
7.69

10.7
14.2
18.1

22.4

d (v, e )pp
X10 ' cm

1.31
3.79
7.74

13.3
20.5
29.5
40.3
52.9
67.2

d(v, e+)nn
X 10 cm

0.582
2.05
4.47
7.80

12.0
16.9
22.5

28.8
35.6
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TABLE X. Total cross sections for neutrino reactions on deuteron averaged over the Maxwell-

Boltzmann spectrum with temperature T,. The Reid soft-core potential was used.

T,, (MeV)

2
3
4
5

6
7
8

9
10

d (v, v')np
X 10 cm

0.477
1.49
3.13
5.42
8.39

12.1

16.4
21.4
27.1

d (v, v')np
X 10 cm

0.450
1.36
2.78
4.70
7.09
9.92

13.2
16.8
20.7

d (v, e )pp
X 10 cm

1.20
3.47
7.12

12.2
18.9
27.2
37.1

48.8
62.0

d(v, e+)nn
X 10 cm

0.528
1.87
4.09
7.16

11.0
15.6
20.8
26.6
32.9

P(v, ) =2.4X 10" cm
8 kpc

distance

'2

P(v„)=Q(v„)=(t(v, ) =$(v, ) =1.7X 10" cm
8 kpc

distance

(t(v, )-0.7$(v, ) .

For these values, we expect

total charged-current events= .

2

2.71X 102 P, for FD,
distance

2

2.48X10' P «r MB
distance

(59a)

(59b)

total neutral-current events =

'2

1.20X10 . , for FD,
distance

2

(60a)

1 10X 103 "P
distance

for MB . (60b)

Finally, for the sake of completeness, we give in Table
XI the cross sections averaged over the spectra of the
neutrinos emitted in the muon decay. As is well known,
the electron-neutrino spectrum is given as
dN (E„)(electron) = (192/m „)(m 12 E„)E,dE,„wh—ile

the muon-neutrino spectrum as dN (E„)(muon) = (64I
m„)( —,'m„E„)E,, dE, —

It will be useful to summarize here the main points of

improvements we have made over the treatment of Bah-
call, Kubodera, and Nozawa' (BKN). (1) We have in-
cluded the partial waves for the Anal X-X relative motion
up to 1=5, whereas BKN considered only the l=0 wave.
(2) We have taken account of the effects of finite momen-
tum transfers by retaining the factor ji(qr) coming from
the retardation expansion, while BKN, in treating the
1=0 wave, used an approximation jo(qr)=1. (3) BKN

TABLE XI. Total cross sections for neutrino reactions on deuteron averaged over the p-decay neu-
trino spectrum. The Reid soft-core potential was used.

Neutrino

(., )(( v, ) )

(v„)((v„))

d {v, v')np
X10 " cm'

2.42
3.35

d {v,v')np
X10 4' cm'

1.97
2.66

d (v, e )pp
X10 ' cm

5.43

d (v, e+ )nn
X10 ' cm

3.16
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calculated the meson-exchange effects only for the axial-
vector current, but we have evaluated the meson-
exchange contributions to the vector current as well; the
spin-nonflip contribution has been estimated by the use of
the Siegert theorem, while the spin-flip contribution by
the explicit calculation of the Feynrnan diagrams in Fig.
3. The influences of these improvements become progres-
sively more important as the incident neutrino energy in-
creases.
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V. DISCUSSION AND SUMMARY APPENDIX A

We have made a detailed calculation of Xd, the rate of
muon capture by the deuteron from the doublet hyperfine
state, in the standard framework of the impulse approxi-
mation (IA) supplemented by exchange-current effects.
For taking into account the exchange current, we have
used the hard-pion approach, ' ' which incorporates
current algebra, PCAC, and the vector-meson domi-
nance, and which provides a natural framework for treat-
ing the soft-pion limit and processes involving finite
momentum transfers on the same footing. The effect of
the vector-current conservation has been included by in-

voking the Siegert theorem. Furthermore, the radial
dependence of the muon wave function has been retained
without invoking the "one-point" approximation. For
the standard choice of the nucleon weak-interaction form
factors, we have obtained A,d""'=397—400 s ', the small
variation coming from the use of three different nuclear
forces (the Reid soft-core, Reid hard-core, and Paris po-
tentials). The change in A,&"""caused by the variation of
the nucleon weak-interaction form factors within the
known limits turns out to be small. Thus it is extremely
diicult to explain A, &" '=470+29 s ' reported in Ref. 12
within the framework of the IA supplemented with the
exchange-current contributions. On the other hand,
the k'd"'"" obtained in the present calculation agrees well

with kd"~'=409+40 s ' given in Ref. 13.
In the same theoretical framework as used for the p-d

capture, we have calculated the cross sections for the
neutrino-deuteron reactions, which are of great current
interest in connection with the Sudbury project' to build
a large heavy-water Cerenkov counter. For both the
charged-current and neutral-current reactions, we have
evaluated the cross sections up to E,, =170 MeV. To the
extent that the agreement between A, d" ' of Ref. 13 and
A.z""' can be taken as evidence for the validity of the
present calculational method, the cross sections obtained
here are expected to be reliable at the —10% level for
intermediate-energy neutrinos (E,,

~ 170 MeV). For
lower incident energies (E, ~ 20 MeV), the present results
are reliable at the 2—3% level. The estimates of the cross
sections given here are expected to be of value in studying
astrophysical neutrinos with the use of the planned
heavy-water Cerenkov counter. ' Obviously, it is very
important to settle down the controversy on the experi-
mental values of A.d, and we hope that this will be done
soon.

The values of the parameters used in the present work
are as follows. Masses: m =938.272 MeV, m„=939.573
MeV, md = 1875.628 MeV, m = 1232 MeV, m

=138.13 MeV, m =776 MeV, and m„=&2m; the
1

pion decay constant: f =93 MeV. The coupling con-
stants:

2 2

gq =g, =2.77, =0.08 .
f raw

4~ '
4w

(A 1)

For the mNN* coupling constant, we use the value deter-
mined from the b, -decay width:

=0.35 .
4m

(A2)

Note that this value is larger than the quark-model value
by 50%. As for the tensor coupling constant K~, we use

KV

for the weak interaction vertex, and

(A3)

Kv 6.6 (A4)

for the strong interaction vertex. Furthermore, to deter-
mine the pNX* coupling constant, we make use of the re-
lation (g 6, /m v)-'=(f + /m ) together with the

quark-model value

fpNh'

4m

72 gp

25 2

2
m 1

( I+~~)
2m~ 4~ ' (A5)

and obtain

6 = —'( I+a ~) (A6)

APPENDIX B

We give here explicit expressions for the two-body
operators corresponding to the exchange current process-
es given in Figs. 2 and 3.

(i) The two-body operator A' '(i, j) appearing in Eq.
(22) describes the exchange current for the space com-
ponent of the axial-vector current due to diagrams (a), (c),
{d), {e), and (f) in Fig. 2, and can be correspondingly
decomposed as
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A' '(i, j)=J"(a)+J"(c)+J"(d)

+J"(e)+J"(f) . (B1)
C, = — (1+~~), C~ =

8m~f2 S~ Sm~f~

Although the explicit expressions were given by Ivanov
and Truhlik, ' we reproduce them here for the sake of
completeness. The generic form J" for J"(a) and J"(c) is
written as

J"=(r,Xr2) IC, [—,'(a, Xoz)f, ,—'T—[ox~ lf2]

+Czi [—3(cr, —crz)f3+T(~ ~ )f4]I

+(rl 2) C3[ 3(ol o2)f5+T(~ ~ )f6], (B2)

f& =f3= f dae '"+' "'g&(r,a),
f2=f4= f dae '"+' "'gz(r, a),

2 1
g)(r, a)=a ——, gz(r, a)=a +—,

r r

a =[(1—a)av +a(m —m )+m ]'i

J"(e): A, prr contribution,

(B10a)

(B10b)

(B1 1)

where

T(A)=—r(r A) —
—,
' A, (B3}

Ci=— 1 fw 1
(1+vv }, C2 =

Sm Sm~f S~ Sm~f

and f s are radial functions to be described below,
r=r, —rz, r=r/vari, and C, 's numerical constants. The
individual expressions for these two operators are as fol-
lows.

J"(a): X" excitation term with pion exchange (3&
current),

1f, =f3
= da e '"+' "'g4(r, a),

0

fr=f4= f dae "+' "g~(r,a),
0

4
g4(r, a) =a a ——

r

(B12a)

(B12b)

2 m.f~
C = ——

m~ m~ 4~ Cq =0, C3 = —C), (B4)
g, (r, a)=a a ————

2
a+—1 6 1

r r r
f, =fs= Yo(x ), fr=f6=Y2(x ), f3=f~=0, (B5)

where

=m r,

J"(f): N' excitation term with p-meson exchange ( 2,
current),

J"(f)=(r,Xr2) IC, [—,'(o, Xo2)f, + —,'T(~ x~2}f2]
X

e
Yo(x )=

X
(B6) +('Ti T2) C3[—,'(o'i —o2)f ~

Y(x }= 1+ + Yo(x ).3 3

X~

J "(c): Contact term,

m' f„ (1+xv),4~ Smxf„
m'. f„

C =—
4~ Sm~f' 2

' (B7)

C3 =0,
f, =f, = Yo(x ), f, =f4= Y2(x } fr=fr=0 .

8 f N~* Gi m m~2 3

9 m m~ m„4~
1+Kg

Xg
2m~ m~ m~

C3= —Ci,
f, =f~= Yo(x ), fr=f6=Y2(xp)

with

x =mr.

(B13)

(B14a)

(B14b)

The generic form J" for J "(d) and J"(e) is written as

J"=(r&&«~) [Cl[3(oiXo2)fl pT[cr xa }f21

(BS)
(ii) The operator P'2'(i, j) in Eq. (23) is the exchange

current for the axial-vector current due to diagram (b) of
Fig. 2:
P'"(i j)=I(r, Xr2) C, [ ,'(o, Xo'~—)vf't, T[cr, xn ].vfz]

+C2i [—,'o2f3+T( lf4]I+(1~2) .

(B9)
The individual expressions for these two operators are as
follows.

J"(d): p vr current cont-ribution,

+(r, —r, ) C, [-,'(o, —o, ) vf&

m„
+T( ) vf6]I

v +m„
(B15)



42 WEAK INTERACTION PROCESSES ON DEUTERIUM: MUON. . . 1711

where

m f,
C = ——

1 9 mv —mv
C, = —C], (816a)

The individual contributions are as follows.
J (a): Contact term,

f, =f, = Yo(x„), fz= f6= Y, (x ), f, =f4=0 .

(816b)

J"(a)=C~"—,'[(r, Xrz) o, (az r)Y, (x )+(1~2)],
(8 1 ga)

(iii) The operator v' '(i,j ) in Eq. (24) represents the ex-

change current for the vector current and consists of five

terms corresponding to diagrams (a)—(e) in Fig. 3:

v"'(i,j)=J (a)+J (b)+J (c)+J (d)+J (e) .

C =4'"
2f

'2 2m
(81gb)

(817) J (b): Mesonic current contribution,

1

J (b)= —iE,, CV
' ,' (r&X—rz) da a + —r(o

&
v)(oz. r) — (o t

v—)o, e '"+' "'+(1~2) (819a)

lb) 2 fa
3 2f

a =[(1—a)av +m ]'~

J (c): A, p~ contribution,

(819b)

(819c)

1J (c)= iE,, C~' — (r, Xr—z) da a+ —vX(rXo, )(r oz)+ —vX(cr, Xoz) e '"+' "'+(1~2) (820a)

2C'=—(c)
V 2f,

2

1

4w
(820b)

a =[(1—a)av +a(m ~
—m' )+mz ]'~z . (820c)

J (d): N' excitation term with pion exchange (p current),

J (d)= iE,, CV' , [(r, ——rz) (t(v—Xr)[(a,—oz) r]—
—,'[vX(a, oz)]I—Yz(x )+ —,'[vX(a& —oz)]YO(x ))

+(r, Xrz) I[vX(rXo, )(az r)+ —,'vX. (o, Xaz)]Y, (x )
——', [vX(o, Xoz)]YO(x )I+(1~2)],

(821a)

C(d)
V

j'2 2j vvg 8 m

m,*- —m v

(82 lb)

J (e): N* excitation tenn with p-meson exchange (p current),

J (e)= iE„C~",'[(r—, —rz) (I—(vXr)[(o,—az) r] —
—,'[vX(o, —oz)]] Yz(x ) ——', [vX(o, —oz)]Yo(x ))

+(r, Xrz) [[vX(rXo, )(o, r)+ —,'vX(o, Xo., )]Yz(x )+—', [vX(o, Xoz)]YO(x )I+(1~2)],
(822a)

(, ) 1 6,
C~ '= (1+~,. ) g2m' my

4 m

4~ 9 m,*.—m„-
(B22b)

(iv) The operator a -"(i,j ) in Eq. (25) accounts for the
exchange current for the time component of the axial-
vector current and has contributions from diagrams (c),
(d), and (e) of Fig. 2:

Explicit expressions for the individual terms are as fol-
lows.

J4 (c): Contact term,

a '(i,j )=14 (c)+J4"(d)+J4" (e) . (B23} J4" (c)=(r, Xrz) Cz"i [r.(o, —o z)]f, , (B24)
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() m~ fA 1

4m 4f 2 2

f3= Yi(x ),

(B2Sa)

(B25b)

2m f~
8vr 4f ~

1

& e
—ar+iav r

3
0

J~ (e): A (pm. contribution,

(B28a)

(B28b)

with

Y, (x )= 1+ Y(i(x ) .
1

(B26)

The contributions of diagrams (d) and (e) are both of the
form

C&e) 1

8n4f. ~

1f3= dae '"+' "'g3(r, a),
0

where

(B29a)

(B29b)

J4" =(r( Xr2) Cxi (r.o 2)f3+(1~2) .

J~ (d): p ncur-rent contribution,

(B27) g3(r, a)=a ——a ——,= 2 2 2

with a given by Eq. (Bl 1).

APPENDIX C

We give here explicit expressions for
I Tf, I for the case wherein the nucleon-nucleon interaction in the final n nstate-

is included for t%0 partial waves as well as for the s wave.
In the impulse approximation (IA), we have

g [I'VI & JfII J, ills; &I'+F~
I &zfll=J', illa; &I'

J, I

+(+g+2FPF~ )I & jfll:-I'ilil& I' —2FvF~ &jfll:-I i'lli; & &if ll:-J(II& &'

2+VFp&zfII:-g'(—IIIJ; &&Jfll=g'(IIIJ &*++~&ifll:-I illJ &&sfll:-J IIIJ &*

+2FpFg &ifll:I', ilil; &&ifll:J,ijll&'] (Cl)

where
Ij;=1) is the initial deuteron state, and

I jf ) s are final n nstates with -the total spin jf. The transition operators
:"z"i' (n =1, . . . , 7) are defined as below:

2
:-J'i = [1—( —1)']j i Yi(r)5J i, (C2)

:-Ji
=ji {[ Yi(r)(8(o i] —

(
—1)'[Yi(r)(8(o'2] ), (C3)

1/2

:-1i
= ji+ i {[ Yi+((r)ai] —( —1) [ Yi+ i(r)a21 I8J, i

{3) (t + 1 . vr J
2l +1 2

1/2
I

21+1 ji i {[Yi,(r)No(] —
(
—1)'[ i,(r) (C4)

:-J,'= g (
—1)' '~j, ( {[Y, (r)(8(o, ]' Jd j

—
(
—1)'{[ Yi(r)(8 (Tp]' Jd ] )8J i,

2

1/2

(5I —[ 1 + ( 1 )I]
I+1

2l +1
vrj i+i [Yi+i(r)Jd] + 2I+12 [ Yi-((r) Jd ]' 4, ( (C6)

(C7)
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(7) —v'6 y7

J

I+i
2l + j.

]/2

1 I+1 1 J'+' (I[Y,+,(r)cr(]'Jd j +( —1)'[[Y(+,(r)o~]'J„] )
2

]y2
1 I

1 I —1 1 ~( ( 2
(I[Y( ((r)g (7(] Jd I +( —1)'I[Y( ((r}ozl Jd I ) ~pl

(C8)

where Jd is the deuteron total spin operator.
When we include the contributions of the MEC operators described in Appendix B by making substitutions given in

Eqs. (22)—(25), the expression for
~ Tf; ~

becomes as follows:

~Tf, ~~=12[F„H(m —,'Fp(H—(g+v 2J(~)] —8(F„—,'Fp)f„—H(gK
P7l ~

+ 4, [Fy(H()( —v 2Jo( ) Fq (—2HO(+ v'2JO( )]

+ 4[Fy(v'2H((+JI() Fq(2v 2HI( JI( )+Fp(v 2H((+ J(()]
+ —,

' [Fv( v'2H(
( +J I, ) F„(2 v—2H

I (
—J ( ( ) +Fp ( v 2H ( (

——", J ( ( ) ]

+2[FV(v'2H~( —
—,'Jq() F„(2 V—H2~+(—,'Jq, )+Fp(v'2H~, + —,'J~, )]

2

2 l 2 ~ 2 l 0+24 Fg H22 3 Fp H22 —J22 + —J22v'2 v'2
+ 36[FgHpp —3Fp(Hgp 7 &2Jpp )]

+108(F„(Fp)(H4—)—
L =even, L 40

8(2L +1)(F„—(Fp)f 4 HLK(
1

m&;

+ g 16(2L +1)( (F(, +Fq + (Fp ~FpFq FVFq + (FpFv}(HL )

L =3,5

5

—", (2L +1)(2Fg Fp F( )f„— H—LKL
L =odd m~

8[F„H(~ ,
'—Fp(H(~+v —2J—(g)] 3DO+ " (D()+v 2D~)+ — D3

2m, . f„ m&

+ ', [F„(H(~—2v'2J(~ —)+Fp(H(~+ v 2J(~ )]D, ,

—
—,
' C [FI (H(), —v'2JO, ) F„(2H +0—v 2JO, ) ][4EO, ( Y() )+2v 2G (), ( Yo )+2EO, ( Y~ ) + v 2G0, ( Y~ ) ]

—4C[2[F(,(v'2HI(+ JI( ) Fq(2v'2H I,
——J',

( )+Fp(v 2H'((+ J(( )]

+[F(,(v'2H((+JI( ) F„(2 2vH(( —J—I, )+Fp(v'2H', (
——', JI( )]I

X [4v'2E',
( ( Yo )

—2G '„(Y() )
—v 2E', , ( Y~ ) + 14G', , ( Y~ ) ]

——',CI2[FV(v 2H~, —
—,(J~, ) F„(2v'2H,' + —,'(J~, )]—

+3[FV(V2Hq( —
—,'Jq, ) F„( 22vH +~(-,'J—

~, )+Fp(v 2H~, + ,'J~()]j

X [4v'2E q, ( Y() ) +—', G q ( ( Y() ) + —,
' v 2E ~ ( ( Y~ ) + —'," G ~ ( ( Y~ ) ]

+24&2C 2 FgHgp —3Fp Hpp —
&

—Jpp+ &
—Jpp +3[FgHpp —

—,'Fp(Hpp —7&2Jpp)] Gyp( Yg ),

where
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vr r
H I

= dr jL p pJ 2 2

FJ((pr) vr T
JJ(=f dr ji w(r)f

p 2

(C 10)

(C 1 1)

EL(YB) f d 1
Y; (xs)u(r)f (C12)

Gii(Y; )=f dr ji Y, (xs)u)(r)f (C13)

3m~ 4
4~ 9 m

'2

m~ m~
(C14)

In the above, F,((pr) is the radial function for the final n nre-lative motion specified by the quantum numbers Ij, ii. The
radar~»ntegrals I(, HI, and EL that are concerned with the IA contributions are defined in the text [Eq. (36)], and

H =H, Joo =J. The terms involving Do, D2, Do, D2, D] and D3 are due to the MEC contributions, and their explicit
expressions are given in Appendix D.

APPENDIX D

Here we deal with the two-body radial integrals Do, D2, Do, D2, D, , and D& appearing in Eqs. (35) and (C9). The
formalism used here essentially follows the standard procedure, and we have no claim for originality in this regard.
We give explicit expressions for the radial integrals just for the sake of coherence in presentation and also for clarifying
the connection between the treatment of the p-d capture and that of the v-d reaction. The first five of the above D's are
due to the axial-current MEC (Fig. 2), while D& is due to the vector-current MEC (Fig. 3). Do and D2 arise from
A' '(i,j ) [Eqs. (22) and (Bl)],Do and D2 from P' '(i,j) [Eqs. (23) and (B15)],and D) from a( '(i, j) [Eqs. (25) and (B23)].
Di comes from v' '(i,j ) [Eqs. (24) and (B17)]. We first give their expressions for the case wherein the form factor effects
are ignored, i.e., K2)—:1 in Eq. (26):

D()=2v'2C')"J (Y2)+—', C~)" J ( Y )+ J (Y2) +—', C2" [J()(Y() ) —v'2J (Y2 )]

+—'C' ' I (W )+()—I (W(') + 'C '[I (W()')——v2I (W(')]

+—', C')' I (W(4)+ I (W~q) +—', C2"[I (W(4) —v 2I (W~q)]+2&2C'( J()( Y(2), (D 1)

D =2v'2C") J (Y' ) — J (Y )2 ( 2 2 v'2 2 2

+ 4( (c) J2( Yn )+ JO( Yc )
( J2( Yn ) + 4( (c) [J2( Yn ) ~2JO( Ym )+J (y2c )]

+ —,C') ' I (Z()')+ —I (Z(2) 'I (Z(2) +—4—C2 '[I (Z()') —v'2I (Z(2)+I (Z(2)]

+—'C~)" I (Z(4)+ I (Z~q) —'I (Z~q) + 4C2'[I—(Z~q) v2I (Z(5 )+I (Z—~q)]1 4 ~2 5 P 5 3 2

+2v 2C) J2( Y(2 )
— J2( Y(2 ) (D2)

D,'=2v'2C(b)J2( Y;), (D3)

Di —2V'2C(b) JO( Yvr ) J2( Yc ) (D4)

D) =2C» '[J, ( Y) )
—v'2J) ( Y", )]+2C» '[Io(X(0 ) —v'2I2(X(0 )]+2C»"[I (X(i ) —v'2I (X(3 )], (D5)
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where we have used the relation C'1 ' = —C 3

D3=2mz CI' —J](Y] )+ J](Y]') —CI ' I (W]')+I (Z2 )+ —[I ( Wz )+I (Z6 )]

C(".' Io( ~ '
) Io(Z ' }+ [I2( g '

)
' I2(Z ] )]

+C(d) +2J2( Yn)-Jo(yrr)+ J2( Yn )
C(e] v'2J2( Yp) Jo( Yp)+ J2( Yp)

The integrals appearing in the above expressions are
defined as follows:

l

Q~:—as(m~, m )

=[—(1 —a )v + —,'(1+a)(m —m )+m ]' (DS)
Fo(pr) r

Io(A, )=f dr A, (r)u(r)f
0 P 2

z a - F'p ) a rI (A, )=f dr A, (r)w(r)f
0 P 2

Fo(pr) . vr r
Jg(Y, )= f dr jz Y, (xa)u(r)f

0 p 2

Fo(pr) vr r
Jz(Y; )= f dr jz Y, (xz)w(r)f

0 p 2

1

W, (r)= —,
' f da jo( „'avr)f, (r, a—),—1

1

X,~(r)= —,
' f da j, (]avr)f, (r, a),—

1

1

Z, (r)= —,
' f da j2( ,'avr)f, (r, a)—,—

1

f, (r, a)=exp( asr)g, (r—, a),
go(r, a)=1,

2
g, (r, a)=a~ ——,

1
g2 (r, a) =a~+ —,

g3 (r, a) =a~ ——a~ ——
2

2 2

r

4
g4 (r, a) —Qs Qs

g, (r, a) =a& az —— ——
2

az+—1 6 1

r r

4
g6 (r, a}=a~+—,

(D7)

Y](xs ) Y] (xs ) A Y] (x~ ) ~(A 1 )x~ Yo(XA )

(D9)
Y~(xs )~ Y~(xs ) X'Y2(x~ )

—
—,'A(A—,

—1)x~ Y,(x„),
with &.=—AB ~ B &B = Br and & w —=ABr ~+B Furth-
errnore, we need to change f, ( r, a ) in the following
manner. Define

F, (mz, m, ):f, (r, a), —

and apply the modification

F, (ms, m )~I', (m~, m )+F, (A~, A, )

F, (ms, A )
—F, (A&, m„) .—

(D 10)

(D 1 1)

In the present work we use the same cutoff factors for
both the NNB and NN'B vertices and choose

A =1.25 GeV,

A =1.50 GeV,

A ~
=1.85 GeV .

l

(D12)

The above explanation applies to the case of p-d cap-
ture. In order to derive the formulas relevant to the neu-
trino reaction [Eqs. (40) and (50)], we only need to make
the following substitutions:

As discussed in the text, we take account of the finite
size of N and N* by introducing the form factor
Ks(q )=(A~ —ms)/(A]]]+q ) [see Eq. (26)], where Az
is a cutoff factor, and m~ is the meson mass (B =n, p, or
A]). The introduction of Kz(q ) leads to the following
transformation of the radial functions Yo(x~}, Y](x~),
and Y2(xs ), appearing in the two-body operators:

Yo(x~)~ Yo(xs }—A. yo(x~) — (A, —1)x~ Yo(xA),
1

2k

5
g7 (r, a)=aB ——,

v = lvl-q —=:q, f —~1.
2

(D13)
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