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Covariant multiple scattering series for elastic projectile-target scattering
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A covariant formulation of the multiple scattering series for the optical potential is presented.
We consider the case of a scalar "nucleon" interacting with a spin zero isospin zero A-body target

through meson exchange. We show that a covariant equation for the projectile-target t matrix can

be obtained that sums the ladder and crossed ladder diagrams efficiently. From this equation, a
multiple scattering series for the optical potential is derived, and we show that in the impulse ap-

proximation, the two-body t matrix associated with the first-order optical potential is the one in

which one particle is kept on mass shell. The meaning of various terms in the multiple scattering
series is given and we describe how to construct the first-order optical potential for elastic scattering
calculations.

I. INTRODUCTION

It is well known that the relativistic (Dirac equation)
calculations give superior results to the nonrelativistic
(NR) calculations in the case of p-nucleus elastic scatter-
ing and have been widely used in recent calculations. '
The first-order optical potential used in these calculations
is the relativistic impulse approximation' (RIA) which is
a relativistic generalization of the nonrelativistic tp ap-
proximation. In the NR theory the elastic scattering of
the projectile from the target nucleus is described by an
effective interaction (optical potential) which is to be used
in the Schrodinger equation, and the scattering observ-
ables are then obtained. The optical potential itself can
be expressed as an infinite series of scattering terms, sin-

gle, double, etc. , scatterings (hence the name multiple
scattering series) in which there are no two successive
scatterings from the same target particle. By keeping
only the first term of the infinite series of the optical po-
tential we obtain the first-order optical potential. The tp
approximation is achieved only after two more approxi-
mations, namely the impulse approximation which treats
the struck target nucleon as though it were free, and the
factorization approximation which assumes that the
range of the interaction is small compared to the size of
the nucleus. The last approximation is usually applied in
order to avoid the complexities of performing the folding
integral to obtain the optical potential. The existence of
a multiple scattering series for the optical potential (in
fact there are several in the literature) provides us with a
means to calculate systematic corrections to the first-
order results.

In the relativistic p-nucleus scattering calculations the
effective one-body equation is taken to be the fixed energy
Dirac equation. This choice is intuitively appealing as
long as one considers the proton as an elementary fer-

mion, but the actual validity of this assumption is still in
question. This type of question will be answered only
when one has the nonperturbative aspects of QCD under
the same degree of control as in NR theories. Now the
question arises as to what effective interaction (optical
potential) should be used in the Dirac equation to de-
scribe p-nucleus scattering. As mentioned above, in all
the relativistic calculations, the optical potential used has
been the RIA. ' The RIA optical potential is obtained by
simply folding a relativistic AN amplitude with the nu-
clear density matrix. Strictly speaking, use of the RIA is
an intuitive guess guided by the nonrelativistic multiple
scattering formalism, since a relativistic multiple scatter-
ing theory (RMST) has not been available.

It is important to realize that without a multiple
scattering theory the t matrix associated with the first-
order optical potential cannot be unambiguously deter-
mined and consequently the characters of the corrections
to be made to the first-order optical potential are not well
defined. The absence of such a theory prevents us from
making systematic corrections, such as Pauli blocking, in
a consistent manner. Therefore it is highly desirable to
have an RMST. Probably the most appropriate approach
might be to apply the methods of field theory to the prob-
lem. But the development of the RMST in this direction
has been hampered by the problems arising in the treat-
ment of the interacting many-body ground state,
description of the residual interaction between the projec-
tile particle and the target constituents, and many other
obstacles not encountered in the NR theory.

In this work we take a less formal but more intuitive
approach and describe the projectile-nucleus scattering
problem in a meson exchange model. A brief account of
this work has already been given. In this paper we will
develop the ideas reported there in more detail.

From the beginning, we would like to make it clear
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that our aim is to derive a multiple scattering theory for
the projectile-nucleus scattering in the context of meson
exchange. We will not consider the full implication of
the formal field theoretical treatment of the interacting
many-body problem, which is admittedly very difficult.
We develop an approach which permits the standard
multiple scattering techniques of NR theory to be applied
with slight modification. We ignore the full complica-
tions of antisymmetry required by the Pauli principle and
also ignore the spin part of the problem. We do not as-
sume any particular form of equation for the projectile-
nucleus t matrix, but begin with the most obvious fact
that the t matrix is obtained by summing an infinite set of
diagrams in which the projectile is interacting with the
target particles through meson exchange. Although the
approach we take in this work seems much less compli-
cated than the formal field theoretical approach, it has its
share of problems, such as the appearance of spurious
singularities and the necessity for judicious treatment of
the crossed meson diagrams. In this work we show how
an RMST can be formulated within the context of meson
exchange, unambiguously determine the t matrix associ-
ated with the optical potential, and show that under the
impulse approximation the t matrix to be used in the
first-order optical potential is the solution of a relativistic
two-body equation in which one particle is kept on its
mass shell.

This paper is arranged as follows. In Sec. II the deriva-
tion of a multiple scattering series of the optical potential
is reviewed, following the approach of Watson. In Sec.
III A it is shown how the crossed meson diagrams should
be treated together with the box diagram for the case
where the intermediate state target is in the ground state.
In Sec. III B the complications that arise in the case of in-
termediate target excited states are discussed, and it is
shown how to handle the box and crossed box diagrams
in this case. In Sec. IIIC a covariant equation for the
projectile-target t matrix is presented and it is shown how
a multiple scattering series for the optical potential can
be derived. The meaning of various terms in the multiple
scattering series are discussed, and it is shown that the
most appropriate two-body t matrix to be used in the
first-order optical potential under the impulse approxima-
tion is the one calculated from a covariant equation in
which one particle is kept on the mass shell. A general
discussion and conclusion follows.

II. NONRELATIVISTIC FORMALISM

In this section the nonrelativistic multiple scattering
formalism is reviewed. The approach of Watson is fol-
lowed, since it is more closely related to our relativistic
formalism than the more commonly used Kerman-
McManus-Thaler (KMT) method. Since we are interest-
ed in deriving a relativistic multiple scattering series for
the optical potential, we will bypass the multiple scatter-
ing treatment of the t matrix and will concentrate, in the
present section, on the multiple scattering analysis of the
nonrelativistic optical potential.

We begin with a total Hamiltonian H for the
projectile-nucleus system given by

H =Ho+ V,

with

(2.1)

and

Ho —Hq +ho (2.2)

H„= gh+ QU; (2.3)

A

V= QU, . (2.4)

Notice that the total Hamiltonian H is separated into two
parts, the unperturbed Hamiltonian Ho and the residual
interaction V. It is the separability of H into Ho and V,

which permits the derivation of a multiple scattering for-
malism. The residual interaction V is taken to be the sum
of the two-body interactions between the projectile parti-
cle "0" and the target particle "i." The unperturbed
Hamiltonian Ho is written as the sum of the target Ham-
iltonian H„and ho, the kinetic energy operator for the
projectile. In NR formalism, the target Hamiltonian is
just the kinetic energy operators of the target particles
plus the sum of their pair interactions.

The separation of the total Hamiltonian in Eq. (2.1) im-

plies that we have some means in finding the solution to
the target Hamiltonian H„. Therefore in NR theory the
complexities of the A-body problem are separated from
the rest at the very beginning. Now write the
Lippmann-Schwinger equation for the projectile-nucleus
t matrix in operator form as

T = V+ VGOT

with

(2.5)

Go = (E HO+i rl)— (2.6)

Here Go is the unperturbed Green's function and the ig
prescription has been used to incorporate the outgoing
boundary condition. The many-body nature of Eq. (2.5)
is apparent since the propagator Go involves the target
Hamiltonian H~.

For elastic scattering problems it is useful to introduce
an effective one-body potential (optical potential). The
optical potential is defined as the potential that describes
the passage of a projectile through the nucleus with the
nucleus treated as a passive medium, i.e., the nucleus is
treated as though it cannot be excited. To accomplish
this, first define a projection operator P which projects
onto the ground state of the target and Q which projects
onto the excited states of the target including the breakup
states. Therefore,

P+g=1,
where

(2.7}

T = U+ UPGGPT, (2.9)

(2.8)

and ~go) is the target ground state. Now Eq. (2.5} can be
rewritten as
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U= V+ VQGoQU . (2.10)

U, =v, +v;QGOQ g U, . (2.11)

The U appearing in these equations is the optical poten-
tial operator and Eq. (2.9) together with Eq. (2.10) are
equivalent to Eq. (2.5).

Since we are dealing with strong interactions, it is im-
practical to solve Eq. (2.10) for U as it stands. It is at this
point that the multiple scattering approach provides us
with a big advantage. We may express Uas g;"=, U, and
rewrite Eq. (2.10) as

that we have written the optical potential in terms of the
free t matrix t instead of ~. For high projectile energies
the differences between t and ~ become negligible and the
impulse approximation should give good results. The last
term represents the multiple scattering terms. For NR
scattering calculations the t matrix appearing in Eq.
(2.19) can be obtained from Eq. (2.17) by employing a
choice of v, for example the Reid potential, or by fitting
the NN experimental data directly by using an appropri-
ate functional form. After the choice for the t matrix is
made, solving Eq. (2.17) together with Eq. (2.9) is just a
technicality.

Now define the Watson ~ operator as

r, = u, + u, QGoQr, (2.12)

and observe that Eq. (2.11) can be written in terms of r,

U;=r;+r, QGOQ g U (2.13)

Summing over the index i in the last equation gives the
Watson multiple scattering series for the optical potential
operator,

A A

U= gr+ grQGOQQUl. (2.14)

Notice that Eq. (2. 14) is an infinite series in r instead of
the two-body interactions u as in Eq. (2.10). Each term of
Eq. (2.14) can be interpreted as single scattering, double
scattering, and so on, hence the name multiple scattering
series. By keeping only the first term of the series we ob-
tain the first-order Watson optical potential

U 1st (2.15)

The operator ~ is not the free two-body t matrix be-
cause of the many-body propagator in Eq. (2.12), but re-
lated to it by

r=t+t(QG, Q —g)r,
where the free two-body t-matrix is defined as

t =v +vgt,

(2.16)

(2.17)

with g the free two-body propagator. For high projectile
incident energies one usually approximates r by t (im-
pulse approximation ) and obtains for the first-order
Watson impulse approximation optical potential

U 1st
Im (2. 18)

We can also rewrite Eq. (2.14) in terms of the free two-
body t matrix, t:

U= gt, + gt, (QG, Q g)U, + g t, QG—,QU, . (2. 19)

As we have mentioned above the first term in Eq. (2.19)
gives the first-order impulse approximation optical poten-
tial. The second term can be interpreted as the propaga-
tor correction term. This term originates from the fact

III. RELATIVISTIC FORMALISM

In the last section we reviewed the nonrelativistic mul-
tiple scattering formalism and outlined how a multiple
scattering series for the optical potential can be obtained.
We pointed out that the key feature that enables us to
construct a multiple scattering series is the separability of
the total Hamiltonian into an unperturbed Hamiltonian
describing the free projectile-target system and the resid-
ual interaction which is the sum of the two-body interac-
tions between the projectile and the target particles. Un-
fortunately, there is no analogous procedure in the rela-
tivistic case. First of all, one cannot naively write the tar-
get Hamiltonian as the sum of the Dirac Hamiltonians
plus the sum of two-body interactions, since the Hamil-
tonian written in this manner does not have a lower
bound. In order to treat the projectile-target scattering
consistently in a relativistic formalism one needs to resort
to a field theoretical approach.

In this work we take a less ambitious route and show
that a relativistic multiple scattering series can be formu-
lated in the context of a relativistic meson exchange mod-
el. In the following we will consider a scalar "nucleon"
interacting with an A-body spin zero isospin zero target
where the interaction between the projectile and the tar-
get is described by meson exchange. Since we do not as-
sume any particular form of equation for the projectile
target t matrix, we will start from the most obvious fact
that it can be obtained by summing all possible meson ex-
change diagrams for the projectile target system. A
minimal set of meson exchange diagrams required for any
such theory is the set of ladder and crossed ladder dia-
grams. In the limit when the heavy target becomes
infinitely massive, this set reduces to a one-body equation
for the lighter particle moving in an instantaneous poten-
tial produced by the heavier particle (the one-body lim-
it ), and at high energies gives the eikonal approximation
to scattering. In this work we seek a theory in which
these relativistic ladder and crossed ladder diagrams are
summed efficiently.

In Fig. 1 the target is represented by a double line, the
dashed lines represent the exchange particle (meson), and
the solid line represents the projectile. For the intermedi-
ate states the target can be in its ground state, denoted by
n =0, or in excited states, n WO, which includes the
breakup states. The notation is very compact; each dia-
gram in Fig. 1 actually represents a set of diagrams which
can be obtained by opening up the bubbles at the meson-



1684 KHIN MAUNG MAUNG AND FRANZ GROSS 42

I
I
I

I
I
I
I

C)

(a)

I
I
I
I
I
I
I
I

C)
n

(b)

I
I
I
I
I
I
I
I

()

r

'i /
JP %E/

(3 t. )
n

(c)

n, m (3 C) E)
n m

n, m

I r
Il

/
l

|.) () C)

n, m

/
/ /

/ /
/

/ g /
/ /

/ r~
/

/ /

(3 t. ) C)
n rn

n, m

r
r

r

r

C) C) C)
n m

n, m

/
/

/
/

/
/

/

C) (3 n, m

/

/
/

/
/ Ill

/
/

/

C) (3 |.)

FIG. 1. The projectile-target t matrix is shown as the sum of all meson exchange processes up to the six order diagrams. The sin-

gle line represents the projectile and the double line represents the target. The dashed lines are the exchanged meson. (a) is the one
meson exchange term, (b) is the box, and (c) the crossed box. In the fourth and higher order diagrams, all possible intermediate target
states are summed.

target vertices. For example, the set of diagrams con-
tained in the box, Fig. 1(b), and crossed-box, Fig. 1(c), are
shown explicitly in Figs. 2 and 3.

In our view, the solution of the relativistic problem in
the meson exchange approximation is equivalent to
finding an integral equation which sums all of the dia-
grams shown in Fig. 1. The construction of such an
equation confronts us with three problems. The first

problem, which does not occur in the nonrelativistic case,
is the appearance of the crossed meson diagrams. These
and all other irreducible diagrams (i.e., those which can-
not be separated into two pieces by a line which intersects
only the projectile and the target) will be included in the
kernel of the integral equation. The second problem con-
cerns the treatment of excited states. All diagrams, ex-

cept for the one meson exchange term, include terms in
which the target propagates in an excited state. A third
problem is that each diagram includes terms in which the
projectile may interact with two or more different target
particles (multipie scattering). In this section, we will
first discuss how the crossed diagrams are handled, and
then discuss the complications arising from the oc-
currence of excited states.

A. Cancellation between the box and crossed-box diagrams

We know from the two-body problem that the ladder
sum does not give a good approximation to the true solu-
tion of the Bethe-Salpeter equation. There is no reason to
believe that it would be otherwise here. In fact, in the

) (~)

FIG. 2. Figure 1(b) is redrawn by opening up the bubbles at the meson-target vertices. The sum is over the target particles.
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v
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FIG. 3. Figure 1(c) is redrawn by opening up the bubbles at the meson-target vertices. The sum is over the target particles.

two-body problem the box diagram and the crossed-box
diagram tend to cancel, showing that it is unjustified to
neglect crossed meson diagrams.

In this section we show that the cancellations between
the box diagram and the cross-box diagram still occur in
the case of projectile nucleus scattering. In order to
demonstrate this cancellation, we perform the integration
over the relative energy for the intermediate states.

In Fig. 4 the box diagram, Fig. 1(b), and the crossed-
box diagram, Fig. 1(c), are redrawn and for the four-
mornentum variables for each internal particle are la-
beled. For our purpose now, it is sufhcient to consider
the target as a structureless particle as shown in Fig. 4.
By employing standard Feynman rules the box and
crossed-box diagrams of Fig. 4 are given by the following
expressions:

;g4 d k'dpo[co (e(k) —po) i—ri)—
(2~) [e (k') —po —iri][E„(k')—( W —po) i ri]—

4 d k'dpo[co —(e(k) —po)~ —iri]

(2~) [e (q) —(2e (k) —
po ) —ir)][E2(k') —( W —po )~ —ir)]

where the total four rnomenta in the c.rn. is

p +P =( W, 0)=p'+P'=p" +P",
and the three momenta and the on-shell energies are defined as

p= —P =k; q=p —p'+p"; p'= —P'=k',

co=[p +(k' —k) ]' ' e(k)=(m +k )' E„(k)=(M +k )'

(3.1)

(3.2)

We assume forward scattering, i.e., k=k", so that the meson poles become double poles. The external particles are tak-
en to be on their mass shell.

Figures 5(a) and 5(b) show the locations of the poles (when ~k and k'~ are small) for the box diagram and crossed-
box diagram, respectively. We will evaluate the box and crossed-box diagrams by using the residue theorem. In the fol-
lowing expressions the superscript on M distinguishes between the box and the crossed-box diagrams, the subscript is
for the type of pole under consideration, and the letters U (upper half plane) and L (for lower half plane) are used to re-
mind us how the contour is closed. For example M "

( U, n =0) means the negative energy projectile pole (
—p) contri-

bution from the fourth-order box diagram (4A ) for n =0, and the integration contour is closed in the upper half plane.
Evaluate the box diagram for n =0. Close the contour in the upper half plane and pick up the target positive energy

pole, double meson pole, and the projectile negative pole:

M "(U, n =0)=M+T(U, n =0)+M "(U, n =0)+M "(U,n =0),
where we have used the subscript m suggestively for the meson double pole contribution. These contributions are

d k'[co —(Eo(k') —Eo(k)) ]
M "(U, n =0)=-

(2m) [2Eo(k')][e (k') —(e(k)+Eo(k) —Eo(k')) ]

M "(U,n =0)=—

(2vr) 4' [e (k') —(e(k) —co) ] [Eo(k') —(Eo(k)+co) ]
4 d k'

(2') [co —(e(k)+e(k')) [2e(k')][Eo(k') —(W+e(k')) ]



1686 KHIN MAUNG MAUNG AND FRANZ GROSS 42

where

A =[En(k') —(Eo(k)+co) ][[e (k') —(e(k) —co) ]+2'(e(k) —co)]

8 =2'(Eo(k)+cu)[e (k') —(e(k) —co) ] .

For the crossed-box diagram we close the contour in the lower half plane for all n and pick up the double meson

poles and negative energy projectile and target poles:

M (L,n)=M (L,n)+M (L,n)+M z(L, n) .

The individual pole contributions are

d k'[F+G]
(2m) 4' [e (q) —(e(k) —cu)2] [E„(k')—(Eo(k) —co) ]

4 d k'
M (L,n)=-

(2m ) [cu —(e (k)+e (q)) ] [2e (q)][E„(k')—(Eo(k) —e (k) —e (q) ) ]

d k'[co (Eo(k—)+E„(k')) ]
M T(L, n) = —

3 2(2tr)3 [e (q) —(e(k) —Eo(k) —E„(k')) ][2E„(k')]

where

F =[E2(k') —(Eo(k) —cu) ]I[e (q) —(e(k) —co) ]+2co(e(k) —co)I

G =2'(Eo(k) —cu)[e (q) —(e(k) —co) ] .

At this stage one could show that, at threshold, the
dominant contribution of the box diagram for n =0
comes from the positive energy target pole and the meson
poles give the second largest contribution. For the

I

crossed-box diagram, the meson pole contribution is the
dominant one and is nearly equal to the meson pole con-
tribution from the box diagram but with a relative nega-
tive sign. Since we are interested in other energies beside

P' pl l
p' plane (Box)

P P'

P'= P+p-p' P+P-P"

—eK. e —& W —E,K K'
0» ~

~ 00
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P P
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r
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2e,+e, &+EK

FIG. 4. Figures 1(b) and 1(c) are redrawn with explicit labels
for the projectile and the target momenta.

FIG. 5. The pole structures of the box diagram [Fig. 4(a)]
and the crossed-box diagram [Fig. 4(b)] are shown in the com-
plex po plane. The circled dots represent the double meson

poles.
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threshold, we evaluate the various pole contributions
without any further approximations. The only restriction
is forward scattering.

Figure 6 demonstrates the cancellation between the
box diagram and the crossed-box diagram. The dashed
line is ~(M " +M„")/M+"T~, the absolute magnitude of
the ratio of the sum of negative energy projectile pole and
meson pole contribution to the positive energy target pole
contribution for n =0. The dotted line is the ratio of all
the pole contributions from the crossed box to the posi-
tive energy target pole of the box diagram. These two
lines lie practically on top of each other. Finally, the
solid line is ~(M "+M "+M )/M+"T~ which is the ra-
tio of the sum of the full crossed box and negative energy
projectile pole plus the meson poles of the box diagram to
the positive energy pole of the box diagram. In these cal-
culations, the target mass is taken to be Mo = 16m, where
m is the mass of the projectile particle and the meson
mass is taken to be p=m/7. This figure shows that,
when the target is in the ground state (n =0), the poles of
the box diagram, which remain after the target is put on-
shell, and the crossed-box diagram, are each of the order
of 10—30% of the leading M+"T term, and hence are far
from being negligible. However, when the box and
crossed box are taken together, an excellent cancellation
occurs, as shown by the solid line for the energy range
shown. After the cancellation, the positive energy target
pole clearly dominates, and whatever is left over is less
than 0.3% of this dominant contribution.

If the projectile is put on mass shell, instead of the tar-
get, the ratio of the correction from the box and the
crossed box to the leading term would be
((M "T+M "+M )/M+~ ~, and this is the dot-dashed
line shown in Fig. 6. This result shows that the cancella-
tion between the box and crossed-box diagrams is not as
complete when the projectile is on-shell, but still quite
good. The terms which remain are now between 1—4%

n=0

of the leading term, an order of magnitude larger than
when the target is on-shell.

Figure 7 shows the A dependence of these cancella-
tions. The legend of the curves mean the same as in Fig.
6, but they are shown as functions of the target mass
Mo= Am, where the binding energy is neglected. The
projectile laboratory kinetic energy is fixed at 1 GeV. As
can be seen from the solid line, if the target is on-shell the
cancellations become better as A increases, and exact
cancellation occurs when 3~~. As shown by the solid
line, this is an excellent approximation even for light nu-
clei. If the projectile is on-shell the cancellation does not
improve as A ~~, shown by the dot-dashed line,
reAecting the fact that, in this case, the cancellation de-
pends on the properties of the projectile and not on the
target.

The above results suggest that, when the target is in
the ground state, it is an excellent approximation to keep
only the positive energy target pole for the intermediate
states, which is equivalent to keeping the ground state
target on its mass shell in all intermediate states. The
cancellation is less complete and the approximation less
accurate for realistic cases with spin and charge ex-
change, so that it is desirable, in the general case, to in-
clude (at least in principle) these extra terms as higher or-
der corrections to the kernel [they become part of t ' in
Eq. (3.5) as described below].

The alternative approach of putting the projectile on
shell has been seen to be less well justified; the additional
correction terms are larger and do not decrease as
A ~ ~. %e believe that this analysis provides a satisfac-
tory motivation for using a fixed energy Dirac equation,
in which the projectile is off-shell and the target is on-
shell, to describe elastic nucleon-nucleus scattering.

B. Treatment of the excited states

In this subsection we will consider how to treat the in-
termediate target excited states. It would be tempting to
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FIG. 6. The cancellations between the box diagram and the
crossed-box diagram are shown for n =0. The target mass is
taken to be Mp = 16m where m is the mass of the projectile. See
the discussion in the text.

10 20
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30 40

FIG. 7. The target mass dependence of the cancellation is
shown for n =0. The projectile laboratory kinetic energy is tak-
en to be 1 GeV. See the discussion in the text.
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say that the same approximation that we have advocated
in the case of n =0 should work here also, and that the
excited state of the target should be put on mass shell.
But for n &0, further complications may arise because of
the so-called dissolution singularities. '

The dissolution singularities are spurious singularities
which arise when a highly excited heavy target is put on
its mass shell. To see how they come about, consider put-
ting the excited target on its mass shell in the expression
for the box diagram, i.e.,

5[pa —( W —E„(k'))]
[E„(k')—( W —po ) i']—'~2ni

2E„(k')
The projectile propagator in (3.1) can be factorized into

[e (k') —po ]
' = [e (k')+( W E„(k—') )]

X [e (k') —( W —E„(k'))]

In the last expression we see that there are two singulari-
ties, one at W=e(k')+E„(k') which is the usual elastic
cut and the other one at W=E„(k')—e(k') which is the
dissolution singularity. This second singularity is spuri-
ous because it does not occur when the diagram is calcu-
lated exactly. (It can be shown that it is cancelled by a
similar singularity in the M " term. ) When n =0, this
singularity occurs at 8'=Eo —e, which is way below
threshold and hence not of importance. However, when
the intermediate state is highly excited (n%0), the singu-
larity can move into the physical region and is a cause for
concern. It has been an obstacle in developing an RMST.

To see when this singularity becomes potentially
dangerous, study the locations of the poles in the box dia-
gram, Fig. 5(a). By approximating W=MO+m (thresh-
old) and taking ~k'~ to be small so that e(k')=m and
E„(k')=M„, we see that the negative energy projectile
pole and the positive energy target pole are separated by
an amount Mo —M„+2m in the upper half plane. As M„
increases, the positive energy target pole moves towards
the negative energy projectile pole and when the excita-
tion energy of the target reaches 2m the poles touch and

a singularity arises. In this situation it is clearly not a
good approximation to take one of these poles and
"neglect" the other. In addition to these spurious singu-
larities in the projectile propagator, there are other spuri-
ous singularities arising from the meson propagators
when the excited state target is put on its mass shell. For
calculational purposes these meson singularities are even
worse than the ones from the projectile propagator since
they can arise for relatively low excitation energies. At
threshold they will appear when the excitation energy
reaches the meson mass.

The situation in the lower half plane [Fig. 5(a)] is
di8'erent. As E„ increases the negative energy target pole
moves away from the positive energy projectile pole. To
see this explicitly we put the projectile on its mass shell in
Eq. (3.1):

5(p 0
—e (k') }

[e (k') —po ] ' —+2mi
Ze k'

and the target propagator is now

[E„(k')—( W —po)] '=[E„(k')—( W —e(k'))]

X [E„(k')+ ( W —e (k') ) ]

and exhibits no spurious singularities in the physical re-
gion. It can easily be seen that meson propagators do not
have any such singularities either.

The above analysis suggests that, when we evaluate the
expression (3.1) for n =0, we should close the contour in
the upper half plane (to obtain the best approximation),
but for n&0 we should close the contour in the lower
half plane to eliminate the problem of spurious singulari-
ties.

We now study the accuracy of this prescription by
evaluating the box diagram for n&0 by closing the con-
tour in the lower half plane. The contributions come
from the positive energy projectile pole, double meson
pole, and negative energy target pole:

M "(L,nWO}=M+" (L,nWO)+M„"(L, n&0)+M "r(L,nAO) .

The contribution from these poles is

4
M~+" (L,n&0) =-

(2m )

M "T(L,n WO) =-
(2vr)

4
M4" (V, n&0) =

(2m)

d k'

[co —(e(k) —e(k'}) ] [2e(k')][E„(k')—(W —e(k')) ]
d'k'

[co —(E (ko) E+„(k')) ] [e (k') —( W+E„(k')) ][2E„(k')]
d k'[C+D]

4' [e (k') —(e(k)+co) ] [E„(k')—(Eo(k) —a)) ]

where

C =[E„(k')—(Eo(k) —co) ][[e (k') —(e(k)+co) ]—2'(e(k)+co)],
D =2'(EO(k) —co)[e (k') —(e(k)+co} ] .
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which in c.m. frame is

1 &(p,
' —e (k') )

(2') 2e(k')[E„(k') —( W —e(k')) ]

Equation (3.3) is the first major result of this paper. It
is a three-dimensional covariant equation for the
projectile-target t matrix. If the multimeson exchange ir-
reducible diagrams (to be described below) are neglected
the driving term of this equation, V, assumes a very sim-

ple form. It is the sum of one meson exchanges between
the projectile and the target particles. The special feature
of this equation is that it has two three-dimensional prop-
agators in which the target is on mass shell when the tar-
get is in the ground state and the projectile is on mass
shell when the target is in an excited state.

In Eq. (3.3) V is the sum of all irreducible meson ex-
change contributions. In order to derive a multiple
scattering series for the optical potential in a fashion
similar to NR theory we write

n=0

nPO
n$0

r
)rr

r
r

() (3

FIG. 10. Diagrams which contribute to 0' are shown to
fourth order. The first term is the one meson exchange term.
The rest of the diagrams are the irreducible diagrams as defined
in the text. The dotted circle on a line indicates that the dia-

gram is to be calculated without the on-shell contribution for
the projectile (targetj. These irreducible diagrams as a whole
are defined as 0 ' in Eq. (3.4).

V= gu, +V', (3.4)

where the first term is the one meson exchange diagrams
summed over the target particle index. The second term

includes the contributions from the irreducible dia-
grams involving multimeson exchange. To be explicit,
the fourth-order contributions to P'' would be the parts
of the box diagram, which do not have the target on mass
shell when n =0, and the projectile on mass shell when
nWO, and the crossed-box diagram. These are illustrated
in Fig. 10. Higher order diagrams with similar
qualifications constitute the rest of V'. It is now clear
that V through 0'' can include diagrams in which the
projectile particle interacts with more than one target
particle through meson exchange. We therefore separate
out the processes in which only one target particle is in-
volved and write

V'= $K,, + $K;;;+ + $A, , (3.5)

A;= g K,J+ g K;JI+ (3.6)
jwi j&i, l

where K;;, E;... etc. are the contributions from the mul-
timeson exchange irreducible diagrams in which only one
target particle is involved. A are the multimeson ex-
change irreducible diagrams with more than one target
particle interacting with the projectile. We have demon-
strated, to the fourth order, that these terms (i.e., IC;, and

K; ) are very sinall compared to u, . It was shown in Refs.
12 and 13 that higher order terms such as A, I are also
small when the scattering takes place at threshold. We
believe that the higher order K's will also be small above
threshold.

We note that it is possible to define separate t matrices
with deriving terms E, , E; I, etc. , and derive a multiple
scattering series. In that approach the resultant multiple
scattering series will have a whole set of t matrices. We
want to formulate our multiple scattering series in terms
of a new t matrix whose kernel is the sum of irreducible
diagrams involving only one target particle, i.e.,

U, +K„+ . . As pointed out above, the terms K.... etc.
are small compared to U, but we will include these terms
in the kernel of the new t matrix for the sake of complete-
ness. The terms given by A, involve more than one target
particle and they will be treated in such a manner that
they would appear as higher order corrections in the
resultant multiple scattering series.

In the following we will show how a multiple scattering
series for the optical potential that corresponds to Eq.
(3.3) can be obtained. By employing the projection
operator method, we can rewrite Eq. (3.3) as coupled
equations:

T = U+ UPG„OPT= U+ TPG„DPU,

U= V+ VQG~~OQU= V+ UQG~~OQV .

(3.7a)

(3.7b)

+ g(u, +K,, + . +A, )Gi'~oU, .
E&J

(3.8)

In the above equation, and in the following, the projec-
tion operators P and Q are suppressed. It is to be under-
stood that P goes with G„cand Q goes with G~~z. Add-
ing and subtracting the quantity g; (u;+K;;+ )gO;
and dropping the sum over i gives

U; =(u;+K;;+ . )+(u;+K;;+ . )gU;

+ g (u, +K;;+ )(Gf~o —g5J )U)
J

+A, + g A;Gf~oU),
J

(3.9)

Here U is our optical potential operator and we seek a
multiple scattering series expression for this operator. It
should be noted that Eqs. (3.7) are three-dimensional
equations. The first one, Eq. (3.7a), is the effective one-
body equation for the projectile, and for a fermion projec-
tile it becomes the fixed energy Dirac equation.

Next, as in the NR theory, we write 0= g; 0; and ob-
tain

g U,. = g ( u, +K„+ +A,. )
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and

t, =(u, +IC,, + )+(u;+If;;+ . )gt;

v; =A;+(v, +l;;+ )gu,

=A;+(v;+k;;+ )gA;+

=A,. +t;gA, .

(3.10)

(3.11)

Resumming over the index i gives

0= gr, + QF, (GJ'« g)U, —+ g t, G~«C',

+ g v; 1+ QG~~oU (3.12)

Equation (3.12) is our multiple scattering series for the
optical potential, and it is the second major result of this
paper. It should be compared with the NR analogue Eq.
(2.19}.

The first term of this series can be interpreted as the
single scattering term for the optical potential and it is

given by a t matrix driven by a kernel which is the sum of
all irreducible diagrams involving only one target parti-
cle. The second term is the propagator correction term
which obviously depends on our choice of the propagator
g and its NR analog is the second term of Eq. (2.19). The
third term on the RHS of (3.12) is the relativistic analog
of the third term of Eq. (2.19) and corresponds to multi-

ple scattering corrections and they are directly related to
two, three, etc. , particle correlations and can be assumed
to be small in the first approximation.

The last term includes iterations with the irreducible
diagrams which have more than one target particle in-

volved (see the definition of u; and A; ) and it does not
contribute in the single scattering processes. These terms
have no NR analog and they originate from the mul-
timeson exchange irreducible diagrams. We note that it
is also possible to recombine this last term with the third
term by separating the pieces according to the number of
target particles involved. For example the first contribu-
tion to the double scattering would be g, ,~, k, . It
should be noted that because of the conspiracy among the
diagrams, these terms are quite small and will not carry
the same weight as the true double scattering term such
as t;G„&ot, but they would constitute an interesting
correction to the double scattering term.

Keeping the first term only gives a single scattering ap-
proximation for the optical potential. The propagator g
has not yet been specified. In principle, one could use
any convenient t matrix for the t operator in Eq. (3.12) as
long as we are willing to incorporate the corrections

where we have introduced a new propagator g whose
properties are not specified at this stage. Taking the
second term on the right-hand side (RHS} of Eq. (3.9) to
the left-hand side (LHS) and operating from the left with
the inverse of [1—(u;+E;;+ )g] gives

U:t + g t (Gf«gfi )U +u 1+ QG~~oU
J J

where we have defined t, and U, as

represented by the rest of the terms in Eq. (3.12). In
practice one usually keeps only the first term of the series
and the judicious choice of g is then essential.

Under normal conditions, the second term gives the
largest correction to the single scattering approximation,
and we therefore should pay the greatest attention to this
term. We would like to choose our propagator g so that
this correction is minimal. This can be accomplished by
choosing the propagator g as shown in Fig. 11. In this
figure, both the heavy A —1 cluster and the projectile are
kept on their mass shell. " In the medium energy range
the terms represented by the sum g t; QG~«Qt; are dom-
inated by the one nucleon knockout term and our choice
of g described above would exactly cancel these dominant
inelastic contributions and ensure that they are exactly
accounted for in the t matrix itself given by Eq. (3.10).
Restricting the A —1 cluster to the mass shell ensures
cluster separability of the remaining two-nucleon sys-
tem. "

With this choice of g, Eq. (3.10) for t, in the NN sub-

space reduces to the one particle on mass shell (spectator)
equation previously introduced by one of us. ' A feature
of this equation, discussed in Refs. 8 and 13, is that the
multimeson irreducible diagrams E„, E;,„etc., are ex-

pected to be small compared to v;, and can be neglected.
To be specific, after neglecting these terms the t; of Eq.
(3.10) becomes

t, =U, +U, gt, . (3.10a)

l
i X

/
I

A

FIG. 11. The optimum choice of the propagator g of Eq.
(3.10). The projectile and the A —1 cluster are both on the
mass shell, indicated by a cross. This choice of g minimizes the
leading correction term [the second term of Eq. (3.&2}).

The projection of t, onto this subspace will be denoted

by t, . The only difference between t, and the free two-
body t matrix is the shift in the total energy of the two-
body subspace due to the motion of the free A —1 clus-
ter. In analogy with the NR theory, this choice of g can
be viewed as the "impulse approximation" choice of g in
our theory. The spectator Eq. (3.10a) is shown diagram-
matically in Fig. 12.

We conclude that the most appropriate t matrix to be
used in the optical potential should be calculated from a
covariant three-dimensional equation for two particles in
which one particle is kept on its mass shell. This choice
will minimize the leading correction to the multiple
scattering series Eq. (3.12).

The last step is to carry out the necessary projections
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FIG. 12. The spectator (one particle on-shell) equation is

shown diagrammatically. The crosses on a line mean that the
particle is on the mass shell.

coordinates), but is identical to t, if one particle is on-
shell in the initial and final state (and the delta function in
the A —1 coordinates is dropped). Furthermore, no fur-
ther equation must be solved to obtain it; it is obtained
directly from t, by quadrature, Eq. (3.16a). Equation
(3.16a) is illustrated in Fig. 13; its fourth-order contribu-
tion was already encountered in one of the terms in Fig.
2.

to obtain final equations for elastic scattering in the im-

pulse approximation. The elastic scattering amplitude is
T =PS'P, which satisfies the equation

T=U+UG~ OT, (3.13)

where U =PUP. Equation (3.13) is just the projection of
Eq. (3.7a). In the single scattering approximation,

t; =v;+t;gv; . (3.10b)

Using both (3.10a) and (3.10b) we obtain an alternative
equation for t, ,

t, =v;+ v,.gv;+ v;gt, gv; . (3.15)

If we define v;(t, ) to be the projection of v;(t; ) onto the
subspace of states connected to g, the first-order optical
potential in the impulse approximation (IA) is finally ob-
tained as

UI~ = QPt;P

= g (Pv; P +Pv, gv; P+Pv, gt, gv, P), (3.16a)

where

t, =v;+v,.gt,. =v;+t;gv; . (3.16b)

Note that Eq. (3.16b) is equivalent to the two-body equa-
tion with the projectile on-shell, as described above and
illustrated in Fig. 12 and (3.15) tells how all four legs of
this two-body t matrix are extrapolated off-shell for use in
the optical potential. Note that t, has all four legs off-
shell (and includes a delta function in the A —1 spectator

I I
t I

t I

I

FIG. 13. This figure represents the quadrature equation
(3.16a). The fully off-shell t matrix t is shown by an open oval.
The shaded oval is the spectator t matrix of Eq. (3.10a). The
first term on the RHS is the fully off-shell version of one meson
exchange contribution used in Eq. (3.10a}.

where U =POP. Equation (3.13) is just the projection of
Eq. (3.7a). In the single scattering approximation,

(3.14)

IV. DISCUSSION AND CONCLUSION

The idea that the projectile-target scattering amplitude
is given by a relativistic equation where the kernel of the
equation is the sum of certain diagrams was previously
introduced in Ref. 17. However, these authors did not
discuss meson exchange, nor did they derive any details
about the multiple scattering series or the appropriate
choice of relativistic equation and two-body amplitude.

In this paper we have considered a covariant formalism
for projectile-target scattering in the context of meson ex-
change, and have shown that a multiple scattering series
for the optical potential can be derived. We do not claim
that we have derived an RMST starting from a field
theoretical Lagrangian, but we do claim that we have de-
rived a multiple scattering theory in a covariant manner.
Every step of our derivation is manifestly covariant and
the end result, the t matrix associated with the impulse
approximation optical potential, must also be calculated
from a relativistically covariant equation.

In conclusion, we will restate what we have accom-
plished in this paper. In the context of meson exchange
we have derived a covariant equation for the projectile-
nucleus t matrix Eq. (3.3). This equation was derived by
considering the cancellations between the box and
crossed-box diagrams and we have also shown how the
spurious singularities can be avoided. We then derived a
multiple scattering series for the optical potential and
showed, in the impulse approximation, that the t matrix
associated with the optical potential is to be calculated
from a relativistic three-dimensional equation in which
one particle is kept on its mass shell. We also described
how the fully off-shell extension of this t matrix Eq.
(3.10a) can be calculated from a quadrature, Eq. (3.16a).
We emphasize that our development leads to a precise
definition of the t matrix to be used in the impulse ap-
proximation of the first-order optical potential. This is
the principal difference between our result and the RIA
as commonly used. The t matrix is to be obtained from a
one particle on mass shell equation. Hence intermediate
states with both nucleons in negative energy states cannot
occur, except at the "end points, " as illustrated in Fig.
13. This result is obtained from a careful analysis of
meson exchange diagrams, and seems to be the most ap-
propriate for the problem of elastic nucleon-nucleus
scattering. Numerical tests support this approach. It has
been found that the contributions from channels in which
both nucleons are in negative energy states are negligi-
ble. ' The amplitudes calculated from Eq. (3.16b) have
been used in an analysis of p- Ca elastic scattering, ' '
and excellent agreement with experimental data has been
obtained. Differences between ours and that of Tjon and
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Wallace' were visible, but not large.
Since our first-order impulse approximation optical po-

tential is derived from a multiple scattering theory, it is

possible to make systematic corrections to the first-order
calculations. We first intend to calculate the four leg off-

shell t matrix from the quadrature equation (3.16a) and
then evaluate other corrections. For example the double
scattering correction term can be calculated in a straight-
forward manner as in the NR theory. Calculation of
two-particle correlation functions, in a relativistically
consistent manner, will be an obstacle. In the first ap-
proximation, one could treat the excited state target as a
nonrelativistic object and neglect the small contributions
from the negative energy propagation. In this approxi-
mation the second order (double scattering terms) in the
expansion of the optical potential can be calculated in a
standard manner by employing the t matrix obtained
from the spectator equation.

Finally we point out that we have not considered the
problem of antisymmetry between the projectile and the
target particles, nor the self-consistent treatment of the
3-body target state. We have also ignored the complica-
tions due to spin. It is very likely that the projectile-
target antisymmetry can be closely approximated by the
Takeda-Watson' prescription used. in NR calculations.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge helpful conversations
with S. J. Wallace, who first alerted us to the problems of
dissolution singularities. We would also like to thank P.
C. Tandy and W. Van Orden for discussions on the sub-
ject on various occasions. K.M.M. would like to ac-
knowledge the kind hospitality of CEBAF. This work
was supported in part by the Department of Energy,
through CEBAF, and by NASA Grant No. NAG-1-477.

'J. R. Shepard, J. A. McNeil, and S. J. Wallace, Phys. Rev. Lett.
50, 1443 (1983);J. A. Tjon and S. J. Wallace, Phys. Rev. C 36,
1085 (1987}.

~B. C. Clark, S. Hama, R. L. Mercer, L. Ray, and B. D. Serot,
Phys. Rev. Lett. 50, 1644 (1983); B. C. Clark, S. Hama, R. L.
Mercer, L. Ray, and G. W. Hoffmann, Phys. Rev. C 28, 1421

(1983); L. Ray and G. W. Hoffmann, ibid. 31, 538 (1985); M.
V. Hynes, A. Picklesimer, P. C. Tandy, and R. M. Thaler,
Phys. Rev. Lett. 52, 978 (1984); Phys. Rev. C 31, 1438 (1985).

G. E. Brown and D. G. Ravenhall, Proc. R. Soc. London, Sect.
A 208, 552 (1951);J. Sucher, Rep. Prog. Phys. 41, 1781 (1978);
Phys. Rev. A 22, 348 (1980).

4K. M. Maung and F. Gross, Bull. Am. Phys. Soc. 32, 1029
(1987); F. Gross and K. M. Maung, Phys. Lett. B 229, 188
(1989).

~K. M. Watson, Phys. Rev. 89, 575 (1953).
A. K. Kerrnan, H. McManus, and R. M. Thaler, Ann. Phys.

(N.Y.) 8, 511 {1959).
7Good accounts on the NR multiple scattering theories can be

found in J. M. Einsberg and D. S. Kolton, Theory of Meson

Interactions with Nuclei (Wiley Interscience, New York,

1980); P. C. Tandy, in Relativistic Dynamics and Quark
Nuclear Physics, edited by M. B. Johnson and A. Picklesimer
(Wiley Interscience, New York, 1986).

F. Gross, Phys. Rev. C 26, 2203 (1982).
M. Levy and J. Sucher, Phys. Rev. 186, 1656 (1969); H. D. I.

Abarbanel and C. Itzykson, Phys. Rev. Lett. 23, 53 (1969); S.
J. Wallace and J, A. McNeil, Phys. Rev. D 16, 3565 (1977).
S. J. Wallace (private communication).

'Note that the prescription that the A —1 cluster be on mass
shell has been given by L. S. Celenza and C. M. Shakin, Rela-
tivistic Nuclear Physics (World Scientific, Singapore, 1986), p.
194.

F. Gross, Phys. Rev. C 26, 2226 (1982).
' F. Gross, Phys. Rev. 186, 1448 (1969).

F. Gross, K. M. Maung, T. Tjon, L. W. Townsend, and S. J.
Wallace (unpublished).

' F. Gross, K. M. Maung, T. Tjon, L. W. Townsend, and S. J.
Wallace, Phys. Rev. C 40, R10 (1989).
G. Takeda and K. M. Watson, Phys. Rev. 97, 1336 (1955).

7L. S. Celenza, M. K. Liou, L. C. Liu, and C. M. Shakin, Phys.
Rev. C 10, 398 (1974).


