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We evaluate the contribution of quasifree nucleon knockout and of inelastic lepton-nucleon
scattering in inclusive electron-deuteron reactions at large momentum transfer. We examine the de-

gree of quantitative agreement with deuteron wave functions from the Reid soft-core and Bonn real-

istic nucleon-nucleon interactions. For the range of data available there is strong sensitivity to the
tensor correlations which are distinctively different in these two deuteron models. At this stage of
the analyses the Reid soft-core wave function provides a reasonable description of the data while

the Bonn wave function does not. We then include a six-quark cluster component whose relative
contribution is based on an overlap criterion and obtain a good description of all the data with both
interactions. The critical separation at which overlap occurs (formation of six-quark clusters) is

taken to be 1.0 fm and the six-quark cluster probability is 4.7% for Reid and 5.4% for Bonn. As a
consequence the quark cluster model with either Reid or Bonn wave function describe the SLAC in-

clusive electron-deuteron scattering data equally well. We then show how additional data would be
decisive in resolving which model is ultimately more correct.

I. INTRODUCTION

Deep-inelastic lepton-nucleus inclusive reactions (ab-
breviated DIS) have been the subject of much discussion
recently. ' As the momentum transfer of the probe in-
creases we expect the degrees of freedom relevant for the
description of the process to change from hadrons to
quarks. At what range of momentum transfer this transi-
tion takes place is, at present, a matter of controversy. In
order to elucidate the role of non-nucleonic degrees of
freedom and possible exotic phenomena in high-energy
lepton-nucleus interactions one must first evaluate the
contribution of nucleonic degrees of freedom within con-
ventional models including quasielastic and inelastic pro-
cesses. The main purpose of this work is to assemble ex-
isting results and present new results that support the fol-
lowing claims.

(I) For all the available deep-inelastic lepton-deuteron
inclusive data for Q ~ I GeV and Bjorken x )0.5 there
is a substantial contribution from quasielastic nucleon
knockout evaluated from conventional nuclear models in
lowest order and from Fermi motion smearing of the nu-
cleon inelastic structure function.

(2) Comparisons between the Reid soft-core (RSC) and
Bonn wave-function results for DIS on deuterium (nu-
cleon quasielastic and inelastic processes only) display
substantial sensitivity to tensor correlations in the range
of existing data. Within this approach the stronger ten-
sor forces of RSC provide a better but not satisfactory
agreement with these data.

(3) Including the six-quark cluster effects of the quark
cluster model (QCM) provides a good description of all

these DIS on deuterium data with both interactions.
This paper is organized as follows. In Sec. II we re-

view the model used for the calculation of quasielastic
nucleon knockout, the chief features of the chosen deu-
terium wave functions, and introduce the choice of the
nucleon form factors. In Sec. III we summarize the mod-
el for smearing the nucleons' inelastic structure functions
to obtain the "three-quark (3-q) cluster" contribution to
the deuterium inelastic structure function. We combine
the quasielastic contribution and the 3-q inelastic struc-
ture function in Sec. IV and compare with SLAC
data. ' In Sec. V we introduce the "six-quark (6-q) clus-
ter" contribution of the QCM. Finally Sec. VI contains
the results from the full QCM and Sec. VII contains our
conclusions.

II. MODEL FOR INCLUSIVE ( e, e')
REACTION NEAR THE QUASIELASTIC PEAK

We begin this section by establishing our notation for
lepton-nucleus scattering. We then introduce the model
for the quasifree nucleon knockout process which as-
sumes that we know only the ground-state nucleon
three-momentum distribution in the target rest frame and
that we can neglect the final-state interactions. This
model could be used with either a relativistic or nonrela-
tivistic dynamical picture of the nucleus which yields this
ground-state distribution. This treatment represents a
smearing over the Fermi motion which is approximate
and open for discussion. Eventually it would be desirable
to have a fully consistent treatment of the hadronic dy-
namics and kinematics, but this is not presently available
to our knowledge. This is especially challenging, since, to
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be realistic for our purposes, such a consistent model
must reproduce the nucleon-nucleon (X-X) scattering
data and the deuterium ground-state properties.

The electron scattering cross section from a free nu-
cleon or from a free nucleus in the laboratory frame when
no spin information is retained is usually written as

o 20
dOdE' ' ' '

2
W, (lql, v) —2W, ( ql, v)tan'—

where the Mott cross section o M is given by

in detail to elucidate these features.
Consider elastic lepton-nucleon scattering from a nu-

cleon moving in the laboratory frame with a three-
momentum k and energy E, (lk ). In keeping with the
usual impulse approximation, the neglect of final-state in-
teractions and the neglect of the Ilux factor, and E, (lkl )

fixed by the conservation of energy and momentum with
an on-shell spectator nucleus we arrive at

m 5(v+E, (lkl) E(l—k+ql))
dII dE' E(lk+ql }E)(lk )

o. cos (8/2)
4E sin" ( 8/2 )

(2) Wel 2 Wel tan2

with

X (P„lJ„(0)IP)5'(P+q P„), —(3)

P 1'

p~ py q q (4)

and

Here 0 is the lepton scattering angle, E the incident ener-

gy and E' the outgoing energy of the electron, q is the
three-momentum transfer, v is the energy transfer with
the quantities expressed in the laboratory system, and o.
is the fine structure constant. The square of the four-
momentum transfer is q =v —

Iq = —
Q . The struc-

ture functions W, and W2 appear in the response tensor
W" which may be written as

W"'=g "'W, +P "P 'W2

=(2n) Q~P, IJ„(0)IP)
P„

where

7

W' =F'+ F'
2 I 2 2

4m

fl 2
W"

,
=—,(F, +xF2}

4m

(9)

(10)

Here F, and F2 are the Dirac and Pauli form factors and
K is the anomalous magnetic moment. The nucleon mass
is denoted by m. The spinors have been normalized such
that uu =1. We are following the conventions of Bjorken
and Drell.

The above result holds for a neutron or a proton and
has been obtained with an average over the nucleon spin.
To finish embedding this in a nucleus in our simplest ap-
proximation scheme we assume that the nucleon has a
laboratory momentum distribution n(lkl ) =n(k) in the
initial state given by any dynamical model and we aver-
age over this initial state:

(P q)q"

q

1

MT

IP) denotes the target state and Mr is the mass of the
target. The interpretation of the sum over the states
IP„) is as follows: In the case of elastic scattering from
an isolated nucleon there is only a plane-wave state IP, )
consistent with four-momentum conservation; in the case
of quasifree nucleon knockout from an isolated nucleus
initially at rest, the states IP, ) consist of a continuum
nucleon of momentum k and a residual nucleus of
momentum —k. The longitudinal and transverse
response functions are given by

~L( Iql, v}=, —W~( lql, v)+ W&( Iql, v)
I
ql' Iql'

q q

Rr(lql v)= 2W((lq v} .

The most frequently employed model for quasifree nu-
cleon knockout is based on a nonrelativistic Schrodinger
picture of the nucleus. For very light nuclei exact numer-
ical ground-state wave functions have been obtained for
realistic N-N interactions. Consequently, these wave
functions feature high momentum components in the sin-
gle nucleon motion which arise from tensor and short-
range correlations. Below, we examine the deuteron case

, =(Zo +No„).0'

dA dE'

m5(v+E&(IkI) —E(lk+q) }
X d'k n(k)

E( k+q )

with

20o. =o.
M

W", —2W'~ tan— (12)

where j stands for n or p, and

f d k n(k)=1 . (13)

with

, =(Zo. +Xo.„), , f n(k)k dk,
dA, dE' ~ "

~q~
(14)

k, =a+b,
k, = la bl, —

It is important to note that a factor m /E, (lkl) has been
absorbed into n(k) by virtue of the normalization chosen.
We utilize the symmetry and the delta function to reduce
the cross section to a single dimensional integral. This
results in
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with

(M„*,+m)1—
A

interactions should be more accurate.
In Fig. 1 we present the single nucleon momentum dis-

tributions in the deuteron n(k) emerging from the
ground-state wave functions of the RSC and of the Bonn

(M„*,—m)
X 1—

A

1/2

(15) 10 =s0
I I I

I

b= 1+q~
(M*, , )

—m

2 A
(16)

1o-1 h=RSC
d = Bonn

(a)

where

(17)

10
I

1O-4

4

In the above e~ is the energy to remove a single nucleon
and leave the A —1 system in the ground state and e* is
any excitation energy in the residual system. In this ap-
plication to deuterium MT =Md, M„*

l
=m, and e* =O.

For sufficiently large ~q~ the integral in Eq. (14) be-
comes approximately a function of only k&. It comes as
no surprise that k& is the same as the "y" variable chosen
by some authors in analyzing data and other models. It
is worth noting again that the result for d o. /dQ, dE'
holds within our approximation for relativistic and non-
relativistic models for n(k) when appropriately normal-
ized. In particular one does not obtain factors such as
dv/dk~~ or dv/dy which often appear in place of m /~q~

in some authors' expression for d 0./d0 dE'.
The approximations in obtaining this model involve

the neglect of a convection current contribution' and the
use of on-shell form factors. We have examined this con-
vection current contribution in the context of an extreme
single-particle shell model of the nucleus and found it to
be small when Q ~0.25 GeV . We have used on-shell
form factors since to our knowledge there is no unique
theory for off-shell nucleon form factors. "

To treat the Fermi motion effects at the level of
evaluating a theory of the scattering amplitude (as op-
posed to smearing a cross section in our model above), we
adapted the relativistic formalism of Ref. 10 (Celenza
et al. ) to a calculation using nonrelativistic wave func-
tions. In this treatment we confirmed the convection
current contribution was negligible. In this calculation,
as everywhere else, we employed on-shell form factors.
For Q ~0.25 GeV the results of this calculation were
indistinguishable from the results obtained using the
model presented in this work.

We concentrate on deuterium, which is not only the
simplest of nuclei with the lowest binding energy per par-
ticle and the lowest average density, but is also the nu-
cleus for which the DIS (e,e') data are available over the
widest kinematic range. The primary focus here is on the
intermediate momentum components of two deuteron
wave functions which are constrained to reproduce the
measured low-energy properties of deuterium. Since the
system is so weakly bound and so diffuse it is also the sys-
tem for which our approximation of neglecting final-state
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FIG. 1. (a) The total momentum distribution of a single nu-

cleon in a deuterium nucleus for the RSC potential (dashes) and
for the Bonn potential (solid). (b) The RSC momentum distribu-
tion of a single nucleon in a deuterium nucleus (solid) and its S-
state (dashes) and D-state (dotdashes) components. (c) The
Bonn momentum distribution of a single nucleon in a deuterium
nucleus (solid) and its S-state (dashes) and D-state (dotdashes)
components.
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N-N potentials. Figure 1(a) presents the total n (k) which
is the sum of the S-state (u) and D-state (w) contribu-
tions. That is,

n(k)=u (k)+w (k)

~ Jjo(kr)u(r)rdr~
1

2~2

+
~ fj 2(kr)w(r)r dr

~
(20)

For convenience we use the simplified parametrizations
of the deuterium ground-state wave functions as in Refs.
2 and 3. Noticeable differences between the RSC and
Bonn distributions are found for k ~0.25 GeV. RSC is
larger than Bonn by more than a factor of 30 at k =1
GeV. In the range 1.4 k 2.0 GeV Bonn is stronger
than RSC by about an order of magnitude. Figures 1(b)
and 1(c) are intended to elucidate the origins of these
differences by displaying separately the S-state and D-
state contributions to the total distribution in the RSC
and Bonn, respectively. Although the D state constitutes
only 6.48% of the RSC ground state and only 4.25% of
Bonn ground state, the S-state and D-state contributions
to the total momentum distributions are comparable
around k =0.25 GeV for both potentials. For
0.25 ~ k &0.60 GeV the D-state contribution dominates
in both cases. For 0.60~k ~1.0 GeV the situation is
more complex. In the case of Bonn the S- and D-state
contributions are comparable. On the other hand, for
RSC, the S-state contribution is rising relative to the D-
state contribution. The net result is that the RSC S-state
contribution at k =1 GeV is nearly 100 times the S-state
contribution from Bonn. On the other hand, the RSC
D-state contribution at k = 1 GeV is only about 20 times
the D-state contribution from Bonn. However, when
k ~ 1.3 GeV the trend reverses; the total from Bonn dom-
inates that from RSC as shown in Fig. 1(a). The data we
address are primarily sensitive to these details for k
values up to about 0.75 GeV. One main point we wish to
stress is that due to the importance of the D state for mo-
menta up to at least 1 GeV one must go beyond this
momentum to isolate the role of short-range correlations.
This is consistent with a naive picture based on the de
Broglie relation where a momentum less than 1 GeV im-
plies distance sensitivity greater than 1 fm. Thus, a ma-
jor focus of our investigation is upon the intermediate
momenta components of deuterium which are dominated
by tensor correlations.

The choice of nucleon form factor as a function of Q
is a nontrivial issue at the large values of Q with which
we are concerned. %'e will not present an in-depth dis-
cussion here but simply select the parametrization of Ref.
12 for (7 (Q ) and for o„(Q ). A detailed comparison
among a wide range of choices has been presented and
discussed in reference to the nucleon elastic form factor
data by Gari and Kriimpelmann. '

III. THE THREE-QUARK CLUSTERS

In this section we would like to focus on the smearing
correction to the inelastic lepton scattering amplitude
due to the bound nucleons undergoing Fermi motion in
the deuteron. Although there is a controversy' ' about
how the smearing procedure is implemented there is no
doubt that in a nucleon based picture of the nucleus there
is a need for treating the Fermi motion. ' Since the
deuteron is not only the simplest but also a diffuse and
barely bound nuclear system, one does not intuitively ex-
pect the total DIS cross section of the deuteron (od ) to
be significantly different from the sum of the DIS cross
sections of the free nucleons (o +0„) in the region
where the energy scale is many GeV. However, West' '
pointed out that the effect of smearing due to Fermi
motion is not negligible.

The assumptions listed below are commonly made for
the spin-averaged cross section which we evaluate here.
These assumptions are parallel to those made in evaluat-
ing the quasielastic process in the preceding section.

(1) The deuteron is considered as a (p, n ) bound state in
which we neglect the isobar admixture, the six-quark de-
gree of freedom, and the meson exchange current contri-
bution. Later in this paper we consider a specific model,
the quark cluster model, for the six-quark effects.

(2) The "off'-shell kinematics" —"on-shell dynamics"
formalism is adopted. In other words, we use the on-shell
amplitude but off-shell kinematics.

(3) We work in the impulse approximation and there-
fore do not consider the shadowing corrections or final-
state interactions (FSI).

Before introducing the smearing procedure, we briefly
explain how we have selected the on-shell amplitude
squared, the nucleon inelastic structure functions. There
exist several parametrizations' ' —among them the
Buras and Gaemers' (BG) parametrization' is widely
used. When we compared the results from calculations
based on these models with the SLAC proton data (2.5
GeV ~Q ~10.0 GeV ), we found substantial disagree-
ment since the data exhibit hadronic resonances not ac-
counted for in the models. These parametrizations are
typically intended for applications at higher values of Q .
Therefore we turned to the SLAC parametrization of
these same proton data (Fig. 2) which yields a

g /data=2. 6. The quality of this parametrization is
clearly seen in contrast to the global (resonance free) fit of
BG. This is especially important since much of the
deuteron data' we analyze were taken with these same
virtual photon kinematics.

In order to incorporate these resonance effects into the
neutron structure function we multiply the SLAC proton
structure function by the ratio of the neutron to the pro-
ton structure functions in the BG parametrization,

~SLAC(n), ~SLAC(p)
(

grBG(n) y grBG(p)
)2 V 2 V V

Note that since the data we analyze were taken at small
laboratory angles (8' and 10'), the W) contributions to
the cross sections are negligible.

With these assumptions and neglecting the role of spin,
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the forward virtual Compton amplitude (Fig. 3) is given
as

aI1d

2( 2)

4m(2m. ) (p —m +i@)
(24)

(2') (p —m +i@)

x Ia)I1, , (s')I 0(s' —m )

d k= y„ f ko /m

where

s =(P+q)
s'=(p+q )

(21)

(22)

(23)

Now the question is how to recognize the nonrelativis-
tic wave function in Eq. (21). Atwood and West' ' '
chose the following normalization:

f „ If(k)I'= I, (25)

by identifying n(k}, the absolute square of the nonrela-
tivistic deuteron wave function, with

If(k) I /(ko/m ).
We, however, follow Kusno and Moravcsik, ' as well as
Frankfurt and Strikman, ' who adopted a different nor-
malization using arguments we summarize below:
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FIG. 2. Electron-proton inclusive data from SLAC experiment E133 (Ref. 6} expressed as vW2 vs Bjorken x. The solid curve
represents the SLAC parametrization discussed in the text while the dashed curve gives the results from the parametrization of Ref.
17.
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, 2(E, (lkl)+k, )
n(k)= f(k)l'

k0 Md
(26b)

FIG. 3. Impulse-approximation Feynman diagram for the in-
clusive lepton-deuteron scattering. The wavy line represents the
incident virtual photon of four-momentum q; the single solid
lines are the struck nucleon of four-momentum p and the spec-
tator nucleon of four-momentum k. The double line represents
the target of four-momentum P.

, 2 E, (lkl)+k3f "" If(k)l' -~(E, (lk )+k, )=1,
ko/m Me

Frankfurt and Strikman' ' criticized the normaliza-
tion of Eq. (25) since it is inconsistent with the usual nor-
malization dictated by requiring that the elastic elec-
tromagnetic form factor at Q =0 be equal to the total
charge. In addition, Kusno and Moravcsik derived the
normalization of Eq. (26a) by using light-front kinematics
in Ref. 16 and showed it satisfied the Frankfurt and Strik-
man criterion. By comparing the normalization of the
nonrelativistic wave function we adopted [Eq. (20)] with
Eqs. (26), we observe that they agree provided we ignore
the 0 function in Eq. (26a). Putting in the 9 function in-
troduces an error of one part in 10000. Thus our nor-
malization has this error since we retain the t9 function
throughout our work. Another parametrization of the
nucleon momentum density in terms of the light cone
variables is G(x, k, ) and is normalized

fd'k, f dx G(x, k, )=1,

so that we identify

(26a) where x is the light cone fraction on one of the nucleons
and k, is the transverse momentum. The four momenta
are defined by

Md MdP"= P+,Oi, P-
4P ' ' 4P

Pq Pq
q

(2&)

k"'= g ~+k2 Q2+k2
(1 —x )P+ ,

—ki, (1 —x)P—
4(1 —x )P

'
4(1 —x )P

(1—x )Md —k —k, (1—x )Md —k —k~p"= xP+ , k~, xP—
4(1 —x )P 4(1 —x )P

Here P= —,'(Po+P, ) is an arbitrary parameter, and x =1—(ko+k, )/2P. In the deuteron rest frame P= —,'Md, and
x =1—(ko+k3)/Md. Meanwhile the function G(x, k, ) is the new function for the integrand of Eq. (26) with the new
variables.

Furthermore, we identify the function G(x, k, ) in our notation as

G(x, k, ) = Md+
(1 —x) M„

n(k(x, k, ))6(Md E, ), — (29)

where E~=(m'+k~)' . Therefore, the deuteron inelastic structure obtained through this smearing' of the nucleon's
(3-q) inelastic structure function over the motion given by n(k) is

v W', -q( g', v) = g f d k f G(x, k )B , [v' W"'(Q', v') ], —
0 X V

i =p, n

where v'=(p-q )/2m is different from v=(I.q )/2m, and

(30)

I2x m v —4xm v (q~.k~)+m v [q C, +2(q~ k~) ]+mvq (q~.k~)C„+q C~+q Md(q~. k~) I,
2(q2Md2 —m 2V2)2

(31)

and where
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C3= 1

1 —x
[2xm —2x(1 —x )Md+(3x —1)kz],

C4= [
—3E~+[4—(1+x) ]Md],

1

1 x

3k4,
C, = + [3m +(3x' —2x —1)Md]

4(1 —x ) 2(1 —x )

(32)

As discussed in Sec. II the quasielastic single nucleon
knockout mechanism contributes significantly to the in-
elastic cross section in the kinematic range within which

1
[3m +2m Md(x +2x —3)+Md(3x —4x +2x —4x+3)] .

4(1 —x )
I

IV. RESULTS FROM THE the deuteron data were taken —Q between 2.5 and 10
"CONVENTIONAL" APPROACH GeV; the quasielastic peak is clearly revealed in the data.

In order to describe the data, therefore, the deuteron in-
elastic structure function at least should contain the in-
coherent sum of the quasielastic vW2" (Sec. II) and the
smeared inelastic structure functions (Sec. III). That is,
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W'D'= m "+ W'-q
2 (33)

We refer to v&2 ' given by Eq. (33) as the "convention-
al" approach since it relies in a major way on measured
free-space elastic and inelastic properties of nucleons and
on traditional models of nuclear structure.

Utilizing this approach we present comparisons with
data in Figs. 4, 5, 6, and 7 for selected data sets in the
range 2.5 Q -10.0 GeV . The results are plotted as a
function of Bjorken x =Q i2m v for vW~ ' which, for
the data, is dined as the double-differential cross section
multiplied by v and divided by the Mott cross section
crM. The results of Figs. 4 and 6 correspond to the RSC
(Ref. 2} potential while those of Figs. 5 and 7 correspond
to the Bonn potential. The calculations are performed in

the following two ways. First, all the values of v8'2 are
calculated at a fixed Q and 0 (8 or 10'j, with v and F. (or
F. ') changing to cover the desired range of x. Second, the
calculations are performed at the Q, v values corre-
sponding to each data point and joined by a smooth
curve. These two methods lead to indistinguishable
theoretical results.

The first major impression gained from Figs. 4—7 is
that for the values of x ) 1 there is a substantial contribu-
tion from quasielastic knockout evaluated with conven-
tional nuclear models in lowest order (i.e., with the
neglect of final-state interactions). This conclusion is true
for calculations based on RSC and on Bonn wave func-
tions. We do not concentrate here on the discrepancies
between theory and data which will be resolved in a later
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section. The second major conclusion concerns the re-
gion x (1 where we find large contributions from the nu-
cleon inelastic structure function. These inelastic contri-
butions show approximate Bjorken scaling (independence
of Q at fixed x) and hence become more important with
increasing Q relative to the quasielastic nucleon
knockout process. This is clearly seen in the data for
vW~ where there is approximate independence of Q at
x =0.75 whereas the data at the quasielastic peak (x =1)
decrease by about a factor of 44 as Q increases from 2.5
to 10.0 GeV . Indeed the behavior of the quasielastic
peak and the entire x & 1 data have been extensively stud-
ied in terms of y scaling. ' The calculated curves are in-
structive since the total result follows the trends in the

data and since the quasielastic component reflects pure y
scaling while the inelastic component nearly exhibits
Bjorken x scaling. The trend in the calculated curves
from Q =2.5 to 10.0 GeV indicates the data are ap-
proaching a region where Bjorken scaling should set in
and, hence, y scaling should become invalid. The onset of
x scaling for x & 1 is about the same for the results ob-
tained with both the RSC and the Bonn wave functions.

The sensitivity to the deuteron wave function for
x ) 1.25 is clearly seen by comparing the results in Figs.
4—7. The Bonn wave function significantly underpredicts
the data while the RSC does reasonably well in this kine-
matic region. %e have examined the individual S-state
and D-state contributions to v Wf' and have found that,
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in all cases shown, it is the D-state contribution which
dominates for 1.25~x ~1.75. For x) 1.75 the S-state
contribution again becomes significant. The better agree-
ment obtained with RSC is due to its enhanced momen-
tum components in the range 0.25 ~ k ~ 1.0 GeV which
were described above.

Some recent efforts' have obtained results for low-

energy properties of nuclei which may favor the Bonn po-
tential over the RSC potential. Up to this stage our ap-
plications in this paper would tend to favor the RSC re-
sults over the Bonn results. However, we feel our results
should not be viewed as providing a definitive test of
these wave functions. Rather, additional effects, such as
the six-quark cluster effects evaluated below, should be
included with a representative sample of realistic wave

functions in order to obtain a true perspective of their po-
tential significance.

A significant uncertainty in the overall magnitude of
our results for v8'z' in Figs. 4—7 arises from uncertain-
ties in the nucleon elastic form factors. The detailed
studies by Gari and Krumpelmann' indicate that these
uncertainties increase substantially for Q ) 4 GeV . It is
satisfying that the quasielastic peak in conjunction with
vW2 reasonably tracks with Q the measured v&2 at
x =1. Some improvement of the agreement between the
conventional approach and the data may be achieved by
modifying the nucleon form factors but we have not
elected to explore that challenging problem in the current
work.
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V. THE QUARK CLUSTER MODEL

As shown in the figures in the preceding section, in the
high x region, especially with higher Q there is still
room for improvement in the model to obtain better
agreement with the data. We, therefore, introduce the
six-quark (6-q) cluster component of the quark cluster
model (QCM) into our calculation in this section. The
QCM was first introduced to fit certain x ) 1 features of
the He DIS data. A careful analysis based on the con-
ventional nuclear physics ' (only nucleonic degree of free-
dom considered) had been unsuccessful. Later, it was
shown that the QCM is also capable of explaining the
European Muon Collaboration (EMC) effect. There are
three main assumptions of the QCM. The first two are
traditional assumptions for any parton model interpreta-
tion of deep-inelastic lepton-hadron data while the third
is particular to the nuclear environment. The assump-
tions of the QCM are as follows.

(1) A photon absorbed by a nucleus at high Q is ab-
sorbed by a quark through a quasifree process when
viewed in the infinite momentum frame.

(2) The quark is a constituent of a quasifree color-
singlet cluster in the nucleus.

(3) A three-quark (3-q) cluster (nucleon) is assigned a
critical radius R C. Clusters with I, =6, 9, 12, . . . , 3 A

quarks are defined by the number of 3-q clusters joined by
links of length ~ 2RC.

The critical radius Rc is taken as a free parameter and
adjusted to fit data. If R~ =0 gives the best overall fit to
the data, then no quark clusters other than nucleons (3-q)
are formed, and the conventional approach presented in
the preceding sections survives. On the other hand, if Rc
is large, say 1.5 fm, the nucleus has a high probability of
being found in the 3A-q cluster configuration. Rz was
found to be 0.50+0.05 fm from fitting the He data. In
what follows we show that RC=0. 50 fm yields a 4.7'
(5.4%%uo) 6-q cluster configuration in deuterium with the
RSC (Bonn) wave function and we examine the conse-
quences for the description of the DIS deuterium data.

The model is easily visualized in the Breit frame
defined by requiring the quark which absorbs the photon
to have longitudinal momentum +k before and —k after
the interaction. Therefore, the four-momentum of the
virtual photon in this frame is q"=(0,0,,

—2k), and

Q =4k . If the initial target four-momentum is
P"=(Ep, O„P ) in the same fraine, then

where we sum over all quarks in the nucleus, e is the
charge on the quark j, and JV (x) is the probability of
finding quark j carrying fraction x /A of the total nuclear
momentum P. If we approximate with a properly weight-
ed average of up and down quark distributions, JV(x), we
can write

vW2(v, Q') =- g e, JV(x—) .
quarks g

(37)

According to the model assumptions the quarks are
found in an i-quark cluster (i =3,6, . . . , 3A) within the
nucleus with probability p, so that

JV(x) = g p, P, (x),
clusters i

(38)

where P, (x ) is the x distribution of quarks from an i q-
cluster in the nucleus. Therefore, if we write

(39)

6

vWz~= g e, P6(x)—,
g=1

(40)

vW '=p (vW ~+vW~")+p (vW ~),
where

p3= J dr[u (r)+w (r)],
2Rc

p6= dr u r+W r

(41)

(42)

(43)

with p 3 +p 6
= 1. We carry out these integrals with

Rz =0.50 fm for both the RSC and Bonn wave functions.
We obtain p, =0.953 and p 6

=0.047 for RSC and

p3 =0.946 and p6=0. 054 for Bonn. The larger 6-q clus-
ter probability for Bonn reflects somewhat weaker short-
range correlations.

The above description has been qualitative in that it
neglects the role of transverse motion. The more com-
plete description of Sec. III will be adopted for vWz
Since the 6-q cluster is at rest in the nuclear c.m. frame
for deuterium there is no need to consider its transverse
motion. Therefore, the "6-q structure function, " v8'~
with the modification of replacing x by g, the Nachtmann
quark variable, is argued ' to be

then the deuteron inelastic structure function is written
as

2P"q„=2P( —2k ) = —2Am v .

As a result

k= —P,X

(34)

vW ~=
2

where

e

g e, P6((),
2

1
L

10

(44)

with x =Q /2m v. Thus, x /A is the fraction of the total
nuclear momentum P carried by the struck quark. The
inelastic nuclear structure function hence can be written,
according to the parton model, as with

l. 850 069
v'g/2 2

(45)

vW, (v, Q') = g e,
'—Ã, (x),

quarks g

(36)

2x

1+(1+Q /v )'i (46)

Much of the x-2 data we study were acquired with
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where

Ps

&I —(2m/W'), if W) 2m,

0, otherwise.
(48)

Here W =s=(P+q) .

the final-state invariant mass only a few tens of MeV
above breakup threshold. The 6-q inelastic structure
function should be modified to respect at least the phase-
space limitations just above this threshold. We there-
fore introduce a threshold factor A, to modify the 6-q
structure function [Eq. (44)]:

6

v&2"=R,~ g e; P6((), (47)
i=1

VI. RESULTS WITH THE
FULL QUARK CLUSTER MODEL

We proceed to compare the same data sets as above
with the results of the full QCM. In Fig. 8 (10) we
present the QCM results for the RSC wave function in
comparison with the SLAC E133 (E101) data. The 3-q
and the 6-q cluster contributions at fixed x & 1 clearly rise
together with Q relative to the quasielastic contribution.
However, excluding the E101 data in Fig. 10 for Q & 6.0
GeV, these inclusive data do not go to sufficiently high x
and sufficiently high Q to be sensitive to the 6-q cluster
contribution when the model is based on the RSC wave
function. For the E101 data at Q ~6.0 GeV the model
calculations show large contributions from the 6-q cluster
but the present uncertainties in the data prevent us from
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making definitive conclusions. As a consequence we can
say the conventional approach (Figs. 4 and 6) and the
QCM (Figs. 8 and 10) when based on the RSC wave func-
tion provide an equally acceptable description of these
data.

In Figs. 9 and 11 we present the QCM results for the
Bonn wave function in comparison with the same data
sets. Here, we observe rather dramatic consequences due
to the 6-q cluster contributions. The overall agreement
between theory and experiment is considerably improved
by the QCM in the x ) 1 region over the conventional re-
sults of Figs. 5 and 7.

VII. CONCLUSIONS

We have evaluated the contribution of quasifree nu-
cleon knockout and of inelastic lepton-nucleon scattering
in inclusive electron-deuteron reactions at large momen-
tum transfer. We examined the degree of quantitative
agreement with deuteron wave functions from the RSC
and Bonn realistic nucleon-nucleon interactions. For the
range of data available we showed there is strong sensi-
tivity to the tensor correlations which are distinctively
different in these two deuteron models. At this stage the
RSC wave function provided a reasonable description of
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results from the quark cluster model based on the Bonn wave function. The quasielastic component is represented by the dotted
curve and the 3-q smeared inelastic is represented by the dashed curve. The dot-dashed curve stands for the 6-q inelastic. The solid
curve represents the incoherent sum of these contributions.



1678 G. YEN, J. P. VARY, A. HARINDRANATH, AND H. J. PIRNER 42

the data while the Bonn wave function did not. We then
introduced a 6-q cluster component whose relative con-
tribution is based on an overlap criterion and obtained a
good description of all the data with both interactions.
The critical separation at which overlap occurs (forma-
tion of 6-q clusters) is taken to be 1.0 fm and the 6-q clus-
ter probability is 4.7% for RSC and 5.4%%uo for Bonn. It
has been speculated that an additional signal of 6-q clus-
ters in these DIS data could be observable through
coherent effects between the 3-q and 6-q inelastic contri-
butions.

The description of the DIS deuterium data with the
QCM is as good as the conventional description when
both are based on the RSC wave function. The descrip-
tion of the same data with the QCM is definitely superior

to the conventional description when both are based on
the Bonn wave function. The QCM results with the
Bonn wave function are similar to the QCM results with
RSC even though their respective results in the conven-
tional model were very different. This implies that the
QCM is more "robust" (i.e. , has greater independence of
the adopted deuterium wave function) than the conven-
tional approach. It is easy to see why this is true. For
fixed R&, as one diminishes the short- and intermediate-
range correlations the large x contributions from the qua-
sielastic and 3-q inelastic processes decrease. At the same
time p6 will increase and therefore larger 6-q cluster con-
tributions will emerge offsetting the decreases in the other
processes.

It is worthwhile to recall that there are a number of ap-
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FIG. 11. Electron-deuteron inclusive data from SLAC experiment E101 (Ref. 5) expressed as v8', vs Bjorken x compared with the
results from the quark cluster model based on the Bonn wave function. The quasielastic component is represented by the dotted
curve and the 3-q smeared inelastic is represented by the dashed curve. The dot-dashed curve stands for the 6-q inelastic. The solid
curve represents the incoherent sum of these contributions.

proximations made in developing the models presented
herein. Two approximations which stand out as limiting
the strength of our conclusions are the use of deuteron
wave functions from the nonrelativistic formalism and
the neglect of final-state interactions. It is hoped that
these limitations can be removed in future efforts.

In view of our results it is worth speculating on experi-
ments which could help resolve which wave function
forms a superior basis for comparison with data. In-
clusive data at x ) I and at higher g would be one ave-
nue since RSC and Bonn still differ somewhat in that re-
gion. More exclusive data, such as (e, e'm. ) for x ) I even
at somewhat lower Q2, could resolve between these mod-

els and wave functions since the integrated yield could be
compared with the sum of the v8'z q and v8'z presented
in the various models here. It is our hope that these
theoretical results will strongly motivate new experiments
in these directions.
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