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Branching ratios in low-energy deuteron-induced reactions
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We consider (d,p) and (d, n) reactions on light nuclei at low energies. A simple estimate using the
second-order distorted-wave Born approximation shows that Coulomb-induced predissociation of
the deuteron inAuences the relative rate by less than 10%. This disagrees with a previous explana-
tion of experiments involving "Li targets and invalidates speculations about such eft'ects in "cold
fusion" experiments.

I. INTRODUCTION

The influence of the Coulomb field is a familiar and
dominant feature in many nuclear reactions. Apart from
the usual Gamow penetration through the barrier, one of
the earliest phenomenon considered was the disruption of
the deuteron by the Coulomb field of the target. This was
used by Oppenheimer and Phillips' to deduce the binding
energy of the deuteron from (d, n) excitation functions
measured by Lawrence et al.

Oppenheimer and Phillips (OP) noted that the
Coulomb field of the target nucleus acts only on the pro-
ton in the deuteron, not on the deuteron's center of mass.
This leads to an effective polarization of the deuteron or,
more precisely, a p-wave component in the deuteron's
internal wave function. The degree of polarization de-
pends sensitively on the deuteron binding energy and, OP
concluded, enhances the (d, n) cross sections beyond the
simple Gamow form.

Simple arguments might suggest that the OP process
should also modify the relative rates of the (d, n) and
(d, p) reactions on isospin zero targets. Following
Coulomb disruption of the deuteron, the neutron need
not penetrate the Coulomb barrier to reach the nucleus,
while the proton must. Hence, one might expect that

~(d tl) i+(d p)—

There are, however, many other factors that could cause
I to differ from unity, including differing Q values, opti-
cal potentials, and Coulomb distortion of the final-state
proton wave function; isospin mixing in complex nuclei is
also a consideration. Such effects are expected to be
smaller for lighter targets and can, in any event, be ac-
counted for accurately through conventional distorted-
wave Born approximation (DWBA) calculations.

Cecil et al. measured the relative rates of the
Li(d, n, ) and Li(d, p, ) reactions and claimed to have

demonstrated the influence of the OP process on 1". They
found that their data agreed with conventional DWBA
calculations at high bombarding energies (Fd ) 500 keV),
but became systematically smaller than predictions as the
bombarding energy was lowered; at Ed=60 keV, the
shortfall was some 20%. The OP process has also been of
interest in connection with recent "cold fusion" experi-

ments as a mechanism for suppressing d+d~ He+n
relative to d +d ~'H+p (Ref. 4), as required by the ex-
perimental claims. Crucial here is the magnitude of the
OP effect and its variation with energy, particularly at en-
ergies below those accessible experimentally.

In this paper we estimate the influence of the OP pro-
cess on the branching ratio. Apart from the calculations
of Ref. 3, with which we take serious issue in the follow-
ing, this has not been done quantitatively before. We find
that for deuteron and Li targets, the OP corrections to I
are small ( ( 10%) and are largely independent of energy.
Thus, we are left without a simple explanation of the data
in Ref. 3 and believe that the OP process is irrelevant to
low-energy d +d reactions.

Our presentation is organized as follows. We begin in
Sec. II by developing a simple zero-range approximation
for the second-order DWBA expression for a (d,p) or
(d, n) reaction. In Sec. III, we discuss the calculations of
Ref. 3 in light of these expressions. In Sec. IV, we
present some schematic calculations of I for d, Li, and
heavy targets. Throughout, our emphasis is not on doing
the most sophisticated calculation possible, but rather on
rough estimates of the OP correction to I .

II. OP CORRECTIONS TO D%'BA

A. Formulation

We consider (d, p) and (d, n) reactions on an infinitely
massive, structureless target nucleus of charge Z. The
coordinates describing this system are the target-proton
and target-neutron separations (r, r„) or, equivalently,
the internucleon distance r=r —r, and center-of-mass
position R=(r + r„)/2. We take the Hamiltonian to be
(fi= 1)

H = T + T„+V (r )+ V„(r„)+V „(r) .

Here, T „=—V'-„ /2M are the nucleon kinetic energies
p, n

(M is the nucleon mass), V „describe the interactions of
the nucleons with the target, and V, is the internucleon
potential. An alternative representation of the Hamil-
tonian is
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H = T„+V „+TR + Ud (R ) + ( Vp + V„—Ud ),
—:H„+HR+ W

(2a)

(2b)

B. Second-order DWBA

The T-matrix element describing a (d,p) reaction can
be written in the "post" representation as

where T„=—V„/M is the relative kinetic energy of the
nucleons, TR = —V~/4M is the center-of-mass kinetic
energy of the deuteron, and Ud(R) is a distorting poten-
tial that we have added and subtracted. Clearly H, and

HR describe the internal and center-of-mass motion of
the deuteron, while W, which induces the nontrivial dy-
namics, can be made small by a judicious choice of Ud.

W = V„+V —
Ud = U, (R—r/2) —U, (R),

= r/2 V U, (R),
(1 la)

(1 lb)

where U, is the Coulomb potential generated by the tar-
get. This term is odd under isospin symmetry (i.e., under
r~ —r) so that, in the absence of static effects, we may
put

first-order correction. Clearly, analogous expressions can
be written down for the (d, n) cross section.

We will be interested in the difference between the
(d,p) and (d, n) cross sections. These will be due to both
"static" effects (different Q values, V~X V„) and dynamic
effects associated with W. The relevant part of W is that
due to the Coulomb interaction. In particular,

(3)

where (I}z is the bound-state wave function of the neu-

tron, which solves

(T„+V„)P~ = —e„()}~,

~(0) ~(0)
~ (d pi T(d, n)

(1) (1)
(d, p) (d, n)

where T(d', is given by Eq. (10b) as

T', d', = f dRdr()I)~(R r/2)y(k —' (R+r/2)

(12)

with e„ the neutron binding energy. The distorted wave
'(r~ ) is the solution to the one-body problem

P
and

X V~„(r)()}d(r)yk+ (R) (13)

(T~+ V), )yk '=El
P P

(4) rdRdr'dR' 3 R—r 2
ik r

that asymptotically approaches e ' '+ "incoming
spherical wave, " and +'I,+' is the exact outgoing-wave

solution to the full Schrodinger equation

Xyk ' (R+r/2)V~„(r)
P

XGs(Rr;R'r')r' VU, (R')$d(r')g'k+'(R')

(E —H)q (k+) =0,"d (5) (14)

where E =Ed —ed and ed =2.22 MeV is the deuteron
binding energy.

In the DWBA, we rewrite (5) as

(E H H))P'+—'= W—% +'
R r kd kd

so that to first order in W,

1+'k+'=Id(r)rk+ (R)+
d d E+ —HR —H„ d

(6)

(7)

with outgoing-wave boundary conditions, and E indi-
cates lim„O+{E+ig). The amplitude (3) then becomes

(0) (1)
T(d, p) (d p) (d,p)

(d P) ( PBYk I Vjm IldXkd

(10a)

(10b)

(dI )=&AX'k 'I V,„+ Wlpdrk'+'& . (10c)
R r

Here, T' ' is the usual DWBA amplitude and T''' is the

Here, pd is the internal wave function of the deuteron
solving

(T, + V „)(t.d(r)= edpd(r), —

gk+ '(R) is the distorted deuteron wave solving

( T~ + Ud )ykd '(R) =Ed&kd '(R)

with the Green's function

Gz(Rr; R'r') = ( Rrl
1 IR'r'& .E+ —H —HR r

(15)

More generally, T', d )WTId'„) and IT(d', IWTId „) I
be-

cause of static effects. As the cross section is proportion-
al to kl TI2, where k is the wave number of the outgoing
nucleon, we have for the ratio of cross sections

(d, n}

0(d, p)

kn T~(d, n) T(dn) I
', T(1)

1 —4Re
k

I

T(o) + T()) Is T(o)
p (dp) (d p)

(16)

where the approximation is valid in the absence of static
effects. The magnitude and energy dependence of I will
be the focus of our study.

C. Zero-range approximation

V „(r)(t)d(r)-Do6(r),

Do= f dr V „(r)(t)d(r),

(17a)

(17b)

We begin our analysis of Eqs. (13) and (14) by noting
that V „ is likely the shortest-range function in the in-

tegrand. Thus, to evaluate (13) we make the usual zero-
range approximation
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so that

TIO~'
)
=Do f dRQ~(R)yI, '(R)yI,+'(R) .

P
(18)

integral in (22) is proportional to R, and we can write

T(g'p) — dRdR' ~ R yk
' R

as

TIz'
~

= fdRdR'dr/~(R —r/2)yk ' (R+r/2)

To similarly reduce TIz' ~, note that (14) can be written

(R) Ps(R)
BR

XD, ( R, R', r )y„'+ '( R' ), (19a)
X h(R, R')R.R 'gI, '(R') . (23)

D, (R,R', r)

=,'VU, (R') f dr' V „(r)Gz(Rr;R'r')r'pq(r') . (19b)

From the rotational invariance of 6, the r' integral must
be proportional to r and V(r) makes D, short range in r.
Thus, we can put

A more transparent form of (23) that can compare direct-
ly to (18) is

T(q' )
= f dRdR'Ps(R)yk ' (R)B(R,R')yq+(R'),

(24)
'(R)

B(R,R')=R R'b(R, R') ln
BR P'(R)

D, (R,R';r)= —2b(R, R')R' V5(r),

with

(20)
D. Reduction to radial integrals

b (R,R') =
—,', U,'(R ')f dr dr' V~„(r)Gz(Rr; R'r')r' rgb(r').

(21)

A reduction to radial form follows by putting

P~(R)=fs(R)YI (R)/R;yq '(R)=C((R)YI* (R)/R,
P

Here, U,'(R')—:dU, /dR'. Upon inserting (20) into (19a)
and performing the r integral by parts, we have

T(~ )
= fdRdR'[P~(R)VyI, ' (R)

' (R)Vp~(R)] A(R, R')R'yk+'(R') . (22)
P

so that

T(pp) Do dR ~ R C( R pk+'R

and

(25)

(26)

As we are interested in the OP process at the very
lowest energies, we assume that yI,

+ ' is pure s wave. (The

contribution from p waves is estimated in Sec. IID.)

Then the rotational invariance of 5 implies that the R'

T(g'p) = f dR f dR'f~(R)C, (R)P(R, R')y~I+'(R').

(27)

where

~2

P= fdRdR'B(R, R')

R', , a C(g)
U,'(R') ln fdRdR'R R'f drdr'V„(r)Gz(Rr;R'r')r' r'Pz(r') . (28)

The required r, r' integrals are best handled in momen-
tum space, if we make the reasonable assumption that
V„vanishes in p waves (pure Serber force). Thus,

fdrdr'V„(r)Gz(Rr;R'r')r' rgb(r')

dq V'„(q)gq(q)G~ ', (R;R'), (29)

where

V~„(q) V „(r)
Qz(q) f pa(r)

V'„(q) =d V~„(q)/dq,

P'(q) =d P(q) /dq,

and the center-of-mass Green's function is

G',."(R;R')=(R~ ~R') .1

co Hg

G' '(R;R')= g, , (R,R')P((R R'), (32)

The rotational invariance of G' ' allows the expansion

~p„(r)
s (30)

so that
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B(R,R')= U'(R') ln
aR f, (R)

X g dq Vp~ q d q g]~ p/M RR
0

If we take the quantization axis to be along kd (so that
only m =0 terms are nonvanishing) and keep only the s-

and p-wave parts of the expansion, we can use the identi-
ty

(33) 0-, =0-,+ tan (37)

g( (R,R')= — F(„(R()H(„(R)),M
nK

(34)

where K = —4M'. Here, F is the solution that is regu-
lar at the origin and H is the solution that decays ex-
ponentially at large R when co is negative (i.e., Ed is less
than ed) and approaches a pure outgoing wave when co is
positive. The solutions are normalized so that their R-
independent Wronskian is F'H —H'F =K. Thus, finally,

In terms of the solutions to the radial equation for the
R motion,

to find, within irrelevant common factors,

l 'g
(1 p) rn (d p)s, 2 &/2 (d, p)p m(I+g )

(38)

(0) (1)
T(d, p), 5 (d, p) [d,p) (39)

where mz is the magnetic quantum number of the bound
neutron. The total cross section is found by summing the
cross sections for different mz. Here, the first term
comprises the s-wave contributions already calculated in
Eqs. (13), and (14),

I3(R,R') =—M R g C(R)
U,'(R ') ln

R ' BR f (R)

and the second is the subject of the present discussion,

(0) (])T d p)p T(d p)p, + T(d, p)p, (40)

X f V'(q)(t('d(q)F, „(R& )H(,„(R & ) .
0 K

(35)

The incoming deuteron and outgoing wave functions are
given by Coulomb wave functions. For low energies, the
incoming wave function is s wave, and the outgoing nu-
cleon has I =l~:

yd(R') =F0(kdR') I(kdR')

and

CI(R ) =Fi(k „R)/k

where kd="((/4EdM, k „=(/2E „M the wave vector
of the outgoing nucleon, p or n, and E „ is its energy,
E „=Ed+Q.

E. P-wave contributions

F((kdR )
yk+'(R') =4' gi'e ', Y(m(kd ) Y(~(R ') . (36)

To estimate OP effects on the p-wave cross section, we
take the incoming deuteron wave function to be a
Coulomb-distorted plane wave, whose partial wave ex-
pansion is

For the zeroth-order p-wave contribution, we find,
after doing the angular integrals,

T'id'
)

=
—,
' g(21((+ 1)(21'+1)

X (1((l'00~ 10)(l((l'm(( —
m(( 10)

X f dR f(((R)C('(R)F, (kdR )IkdR, (41)
0

where I'=i&+1 is the angular momentum of the outgo-
ing proton. We find the OP correction by using the ex-
pansion (36) in Eq. (22) and considering the p-wave con-
tribution. The R ' integral now yields terms proportional
to both R and kd, so we expand the gradient as

(j r I

BR R BO
(42)

The vector 6) can be written as

8=cotOR —cosec0kd, (43)

A A
of which only the kd part is needed since 8 R=O. The
components of the Green's function expansion of Eq. (32)
that are retained are now go and g2„. We thus find the
p-wave OP correction to the (d,p) reaction to be

T(1)
(d, p)p, m& Q(21~ + 1)(21'+ I)( l((l'00~ 10)(ls l'ms —m(( l

10)
6~

C, , F, (kdR')
X J f~C(, ln J q'dqV'(q)(t('d(q) J R'dR'U, '(R'), [go„+2gp ]R BR ((

' kdR'

F](kdR')+ f f~C(' fR'dR'U, '(R') f q dqV'(q)(t('d(q)
r2 d

X f dR[Y(* Yi*,„.—Yi' Y(* ]cosecO[go + ', &4vr/5Yzo(R)gz ] .— (44)
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Our schematic calculations presented below show that
the zeroth-order p-wave amplitude is significant ( =20%
of the s-wave amplitude for Li when I'=2, although less
than 10% for other partial waves), but that the OP
correction to it is still small, = 10

III. CRITIQUE OF PREVIOUS CALCULATIONS

Reference 3 presents two different estimates of the OP
effect on I in Li+d reactions. One of these is based on
a shift in the effective energy at which the transfer occurs
due to Coulomb polarization of the deuteron. The other,
more microscopic, approach is an attempt to correct the
DWBA. The first method significantly overestimated the
OP effect relative to what would be required to explain
the data, while the second was very small and so could
not reproduce the decrease of I with decreasing bom-
barding energy. We believe that both of these estimates
are Aawed, independent of whether or not they explain
the experiment. Our reasoning is given in the following
paragraphs.

In the effective energy argument, the authors note that
polarization of the deuteron a distance R from the target
corresponds to a net energy gain of

Z 2e 2

AE = ——'a
R4

where +=0.64 fm is the static polarizability of the
deuteron. They then assert that "the energy available for
the reaction" should be increased by ~AE for the (d,p)
reaction and decreased by ~bE for the (d, n) reaction
(when the proton is closer to the nucleus). To implement
this idea, the authors compute an average AE for a given
Ed using the conventional DWBA to estimate the proba-
bility that the transfer occurs at different distances. The
respective DWBA cross sections are then evaluated at
Ed+DE to compute I . Although AE is small, the rapid
energy dependence of the cross sections means that the
effect can be large; a shift of AE =2 keV at Ed =100 keV
will result in I =0.75.

Apart from being unjustified by reaction theory, the
difficulty with this prescription is that the polarization
energy b E is independent of the orientation of the deute-
ron. Indeed, as the ground state of the deuteron has a
definite parity, it cannot by "oriented' to bring the proton
closer or further from the target. This can only be done
by explicitly introducing odd-parity components in the
relative wave function, as we have shown in the previous
section. Although such admixtures are implicit in 0., an
explicit treatment is needed to enhance the probability
that the proton is, on the average, further away from the
nucleus than is the neutron. Hence, simply ascribing
different energies to the (d,p) and (d, n) reactions does
not account for the OP effect.

The more microscopic approach to the OP process
presented in Ref. 3 is similar to that we have presented in
Sec. II. However, the authors have inexplicably substi-
tuted IV for V „ in our Eq. (10c). [More precisely they
have used the dipole approximation to O', Eq. (11b), in-
stead of V „ in Eq. (14).] This error results in a term that
is second order in 8', rather than first. Although in-

correct, it does allow a simple zero-range approximation:
relative p-wave motion in the deuteron is only implicit,
and the net result is just a renormalization of Do as
defined in Eq. (17). There is thus no need for the more in-
volved derivative formulation we have introduced in Eq.
(20). However, as in the polarization argument above,
isospin asymmetry must be made explicit in order to have
an OP effect at all.

IV. SCHEMATIC CALCULATIONS

Although it is clearly possible to perform sophisticated
calculations of the OP correction we have derived (suit-
ably generalized to arbitrary incident angular momenta),
our goal in the present work is to judge qualitatively
whether the OP process is large enough to account for
the measurements of Ref. 3, and whether the OP effect
plays any role at all in low-energy d+d interactions.
The schematic calculations of I that we present in this
section are sufficient to provide a negative answer to both
of these questions.

A. Computational details

For our estimates we take a Hulthen form for the inter-
nal wave function of the deuteron,

e
—ar —Pr

4d(r)=No
r

where

(45)

a/3(a+ P)
(46)

27Tp

with a=+FdM =0.231 fm ', P=5.39a=1.247 fm
and @=a—13=1.102 fm '. The corresponding internu-
clear potential is

with

Pf'

V„(r)= Vo
1 —e

(47)

1y'(q) = —8~a'oq (a+q )

1

(P2+q 2)2
(48)

and

V'(q) = 32vrp Voq
„=, (np+q )

We take the bound-state wave function to be

(49)

f (r)=k' e (50)

with ks = '(/ 2es M and ez =Ed +Q the wave number and
binding energy of the captured nucleon; we have omitted
here unimportant constant prefactors. The magnitude of
our results (but not their energy dependence) is somewhat
sensitive to the form we choose for f.

In the following, we will consider Deuterium, Li, and

Vo= —(13 —a )/M=62. 27 MeV .

Taking the Fourier transform [Eq. (29)] and
differentiating with respect to the argument q, we find
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work presented by Cecil et al. in Ref. 3. Schematic cal-
culations show that the OP e6'ect modifies the relative
cross sections for (d,p) and (d, n) reactions at the few per-
cent level in an energy-independent manner. These re-
sults are in agreement with data on d +d interactions at
low energies, but disagree with experimental results for
Li targets.
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