PHYSICAL REVIEW C

VOLUME 42, NUMBER 4

OCTOBER 1990

Comparison of relativistic and nonrelativistic approaches to the collective model treatment
of p +%°Ca inelastic scattering

S. Shim, B. C. Clark, E. D. Cooper, and S. Hama
Department of Physics, The Ohio State University, Columbus, Ohio 43210

R. L. Mercer
Thomas J. Watson Research Center, International Business Machines Corp., Yorktown Heights, New York 10598

L. Ray
Department of Physics, University of Texas, Austin, Austin, Texas 78712

J. Raynal
Service de Physique Theorique, Centre d’Etudes Nucleaires, Saclay, F- 91191, Guf-sur-Yvette CEDEX, France

H. S. Sherif
Nuclear Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2N5
(Received 23 May 1990)

Elastic and inelastic observables for the scattering of 500 MeV protons from “’Ca are calculated
using either the first-order relativistic or nonrelativistic impulse approximation for the diagonal po-
tentials and a collective model for the transition potentials. The calculations are done using either
Dirac or Schrédinger coupled channel programs. The relativistic approach reproduces the inelastic
observables better than the first-order nonrelativistic impulse approximation model.

I. INTRODUCTION

We have previously shown' that a simple collective
model based on the relativistic impulse approximation® >
(RIA) could successfully reproduce elastic and inelastic
p +4Ca observables at 500 MeV. In this paper we com-
pare the results of that relativistic calculation with a
similar collective model based on the first order nonrela-
tivistic impulse approximation of Kerman, McManus,
and Thaler (KMT).*%7 We use as far as possible expres-
sions for the RIA and KMT optical potentials that con-
tain the same physics. For example, no medium effects
are included in either case, and the calculations are done
in the local “¢p” approximation. This simple approach,
in our view, allows more direct comparison between the
two model calculations.

In our earlier work' the diagonal Lorentz scalar and
vector potentials were calculated using the approach
given in Ref. 3. The input to the calculation consists of
the SP88 NN amplitudes of Arndt® expressed in a
Lorentz covariant form as in Ref. 9 and relativistic mean
field densities of Horowitz and Serot.!® A simple collec-
tive model was used in determining the transition poten-
tials which were either taken to be proportional to the
derivatives of the diagonal RIA potentials or obtained
from folding the derivatives of the densities with the in-
variant NN amplitudes. The differences in the two ap-
proaches were slight and in this work we consider only
the first procedure. The parameters in the collective
model are the scalar and vector deformation lengths §;
and §,, which were chosen to fit the inelastic cross sec-
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tion and analyzing power data. The RIA tensor was not
included as its effect on elastic and inelastic observables
at 500 MeV was slight.!! The analysis showed that the
RIA based calculation could successfully reproduce the
inelastic observables for the low lying collective states,
and that the inclusion of these states within the coupled
channel formalism produced considerable improvement
in the agreement with large angle elastic data. Similar re-
sults have also been obtained using purely phenomeno-
logical direct potentials as the input to the collective
model calculations.'?

In this work we consider the same experimental data
treated using the nonrelativistic KMT approach de-
scribed in Ref. 4 for the diagonal potentials and calculate
the transition potentials using the collective model. In so
far as possible the input for the RIA and KMT calcula-
tions are identical, the SP89 NN amplitudes are used in
both. In the relativistic calculations the scalar and vector
densities of Ref. 10 were used; only the vector densities
are used in the KMT calculations. The central and spin-
orbit KMT optical potentials are deformed to give the
transition potentials. Full deformed spin-orbit coupling
was included. Different deformation lengths, &, and 8,
could be used in general for the real and imaginary parts
of the transition potentials for a maximum of four param-
eters, the same number as in the RIA. The KMT optical
potentials were input to a set of coupled Schrodinger
equations and the deformation parameters were deter-
mined by fitting the inelastic data. Relativistic kinemat-
ics were used in the calculations.

We consider three questions. First, how do the first-
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order KMT and RIA coupled channel predictions for the
large angle elastic scattering compare with each other
and with the data? Second, how well does the KMT
based model describe the low-lying collective states of
40Ca? Third, are differences between the RIA and KMT
inelastic results due solely to the use of the coupled chan-
nel Dirac equations rather than the coupled Schrodinger
equations?

In the next section we briefly describe the collective
model results and in Sec. III we give our conclusions.

II. RESULTS OF THE COLLECTIVE
MODEL CALCULATION

The RIA Lorentz scalar and vector (time-like) optical
potentials are written
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where the subscripts S and V refer to scalar or vector
quantities, the superscripts » and p refer to neutrons and
protons, P, is the laboratory momentum for the in-
cident proton, R (q) is the kinematical factor required to
obtain the NN amplitude in the Breit frame as defined in
Eq. (B3b) in Appendix B of Ref. 4, F(q) is the invariant
NN scattering amplitude, and m is the mass of the pro-
ton. The corresponding transition potentials between the
ground state and the excited state with quantum numbers
A and p are given by,

Uh(r)= 8t dUs(r) Q) a3)
STET T a0 ar e

N 8% dUy(r)
UbH(r)=— Y1,(Q), @)

QA+DYV2  dr

where A refers to the multipolarity of the transition and
8" and 8 are the scalar and vector deformation lengths.

Us(r)=— f d’qge” @ ’R—(g-)—F q) These potentials are input to a set of coupled Dirac equa-
4” M i=pn ( tions.!!~1 In the calculation the static Coulomb poten-
X f d3rei T pd(r") (1) tial is obtained from the empirical charge distribution.
s ’ We do not include the anomalous magnetic moment term
_ (g) nor the corresponding electromagnetic spin-orbit poten-
Uy(r))= 477_ m 2 f d’qe'a" R(0) F(q) tial term in the KMT calculations. Both terms are
I=pn insignificant for this case.'*
X f d’relTpP(r), () The first order KMT potentials are given by*
J
Uetn="2"0 =1 5 [ dlge™anliq) [ direwrpr) 5)
A (2 i =p,n
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A _1 3 — ts 0. ( 3 (
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1 d
=——V . 6
dr <o (7) (6)

Here A is the number of nucleons in the target, 7. and
t,, are the central and spin-orbit NN amplitudes in the
Breit frame obtained from the SP89 Arndt amplitudes, k
is the proton-nucleus c.m. momentum and 6 is defined by
q =2k sin(6/2); q is the momentum transfer. The cen-
tral and spin-orbit transition potentials between the
ground state and the excited state with quantum numbers
A and p are written'’

82 dUc(r)

UhlH(r)=—
) (QA+1)12  dr
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where A is the multipolarity of the transition. These di-
agonal and transition optical potentials are used in a set

of coupled Schrédinger equations.'®

The computer code ECIs87'” was used for both compu-
tations. Checks were made using the Dirac coupled
channel code CENITH,'? the Dirac elastic scattering code
RUNT!® and the Schrodinger elastic scattering code
KMT-80."°

The collective model described here, can accommodate
from one to four free parameters, for either RIA or KMT
based calculations. For example, the observables shown
in Figs. 1-4, were calculated with §, =8, and 6. =6, , so
that only one parameter remained in the search. For the
RIA model we found that almost equivalent fits (in the
chi-square sense), to the inelastic data could be obtained
using one, two (real and imaginary deformation lengths
taken equal), three, or four free parameters. However,
we point out that when more than three parameters are
used there is considerable ambiguity in the results. For
example, the extracted §’s from the four parameter fit can
differ from the two parameter results by an order of mag-
nitude. This clearly indicates that one should restrict the
number of parameters if they are to be given any physical
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FIG. 1. RIA (solid line) and KMT (dashed line) elastic cross
sections for p +%°Ca at 497.5 MeV. The 3~ state is included.
The data are from Ref. 20.

interpretation. In order to appreciate the origin of this
ambiguity, consider a DWBA calculation. Since the
overall phase of the T matrix is not observable one can
see that it is possible to obtain at most three parameters
from the search. Even for the three parameter situation
there exist ambiguities regarding which three parameters
are being included in the search. In view of this, we
present results for one and two parameter searches only.
In fact, we found that the addition of one more parame-
ter did not improve the fit. In the searches discussed in
this work only one excited state was coupled to the elastic
channel at a time.

In the KMT calculation, increasing the number of free
parameters from one to four did not produce agreement
with the inelastic spin observables although the chi-
square per degree of freedom was decreased. The inabili-
ty of this model to give good agreement with the inelastic

Gc'm'(deg )

FIG. 2. The analyzing power and spin rotation function for
the two cases shown in Fig. 1.
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FIG. 3. Calculated inelastic “’Ca(p,p’) cross sections for the
2%,37, and 5~ states using RIA (solid line) and KMT (dashed
line) optical potentials in the calculation. The data are from
Refs. 21 and 22.
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FIG. 4. Calculated analyzing powers for the states shown in
Fig. 3. The data are from Refs. 21 and 22.
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TABLE 1. The deformation lengths determined from the one parameter fits to the 497.5 MeV
“Ca(p,p’) data. The KMT, RIA, or RIA-SE optical potentials were used in the collective model calcu-

lations.
Xz,cs Xg,Ay ,’(iQ Xlz,cs X:z.Ay
State 5 (fm) N N N N N
3” SkmT 1.756 764 263 73 546 209
(3.74 MeV) Sria 1.352 91 48 5 60 49
SRria-sE 1.318 94 69 10 56 45
2+ Skmr 0.477 935 250 70 18 27
(3.90 MeV) Sria 0.392 84 52 6 27 10
OR1A-SE 0.388 84 53 7 27 9
57 SkmT 0.975 942 251 71 1414 336
(4.49 MeV) Sria 0.833 80 48 5 300 97
OR1A.SE 0.807 79 55 7 246 70

scattering data is not surprising in view of the failure of
this simplified form of the KMT to reproduce the elastic
spin observables. The results shown in Figs. 1-4 illus-
trate this point where KMT and RIA calculations are
compared to the data.2? 2 Just as in the RIA case there
are ambiguities when the number of parameters is in-
creased beyond three.

The RIA and first-order KMT predictions for elastic
scattering are shown in Figs. 1 and 2 in comparison with
the data.”® Channel coupling to the 37,3.74 MeV state
was included in both calculations. The very good
description of the data provided by the RIA model (solid
curves) is essentially the same as that shown in Ref. 1.
The forward angle predictions of the first-order KMT
model (dashed curves) are consistent with that shown
elsewhere.>* At large angles greater than 30°, the
diffractive structure in the KMT predictions is shifted
outward relative to similar calculations given in the
second paper cited in Ref. 20, which do not include chan-
nel coupling. For example, the angular positions of the
predicted and measured diffractive minima in the

differential cross section shown in Fig. 1 agree (particu-
larly for the minimum near 38 , ) whereas they do not in
the uncoupled KMT predictions. However the predicted
minima are too deep and the overall magnitude of the
predicted differential cross section decreases too rapidly
with increasing scattering angle. The large angle KMT
A, predictions qualitatively describe the data but do not
provide as good a description as the RIA.

The values of the deformation lengths obtained in the
searches are given in Tables I and II. The RIA values ob-
tained in the one parameter searches, which produce the
observables shown in Figs. 1-4, are in good agreement
with previous work.! Because the KMT based model
produces rather poor agreement with the spin observ-
ables, comparison of the resulting &’s with the RIA &’s is
meaningless. If we allow the central and spin-orbit defor-
mation lengths to be free parameters in the KMT calcula-
tion we find that §, , becomes very large and that the
agreement with the inelastic spin observables is im-
proved. However, the RIA based model seems clearly su-
perior to the first-order KMT calculation. The RIA re-

TABLE II. The deformation lengths determined from two parameter fits to the 497.5 MeV
““Ca(p,p’) data. The KMT or RIA optical potentials were used in the collective model calculations.
2 2 2 2 2
Xe,CS X(’.Ay Xe,Q X!,CS X:. Ay
Stat 5 (fi _— —_— —= —— —_—
ate (fm) N N N N N
3- KMT S, 1.044 927 261 80 63 248
(3.74 MeV) S, 2.601
RIA 5, 1.154 89 56 8 57 14
5, 1.219
2 KMT 5, 0.547 932 252 72 17 6
(3.90 MeV) 8., 0.227
RIA S, 0.331 84 53 7 30 1.3
S, 0.350
57 KMT 5. 0.215 1015 252 74 191 46
(4.49 MeV) ;0. 1.587
RIA S 0.582 80 53 7 219 40
) 0.668
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FIG. 5. The central potentials for the KMT (dashed line) and
RIA-SE (solid line) calculations.

sults are quite similar to phenomenological work!' and
with the work of Hicks and Lisantti”® who compare
Dirac model predictions with a nonrelativistic model us-
ing Love-Franey?* NN amplitudes in the nonrelativistic
impulse approximation optical potentials.

Next we address the question regarding the necessity of
using coupled channel Dirac equations. In order to ac-
complish this we use a diagonal potential in the
Schrodinger calculation which produces agreement with
the elastic observables. This potential, shown in Figs. 5
and 6, results from the reduction of the Dirac equation to
second order form.?>?¢ The potentials, usually termed
the “Schrodinger equivalent” (SE) central and spin-orbit
potentials, were used as input to the Schrédinger coupled
channel calculation using the same & for the central and
spin-orbit terms. In Figs. 5 and 6 we show both the
KMT and RIA-SE central and spin-orbit elastic optical
potentials. The results of the analysis using the RIA-SE
potentials are given in Table I, and they show that if the
elastic data is well reproduced, and the state is collective,
then the inelastic data can be well represented regardless
of which set of coupled equations is used. Thus, we con-
clude that using either the Schrodinger or the Dirac cou-
pled equations in the analysis produces almost the same
deformation lengths and equally good descriptions of the
data. This implies that for this case a reduction of the
coupled channel Dirac equations in analogy with that
often done for the elastic channel would result in diago-
nal and coupling potentials that are essentially the same
as the “Schrodinger equivalent” potentials.
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FIG. 6. The spin-orbit potentials for the KMT (dashed line)
and RIA-SE (solid line) calculations.

III. CONCLUSIONS

We have compared the results of relativistic and non-
relativistic coupled channel calculations for elastic and
inelastic p +*Ca scattering observables at 500 MeV.
The diagonal potentials were obtained from either the
first-order KMT impulse approximation or the RIA
prescription. The off-diagonal potentials were calculated
from these elastic channel optical potentials using a sim-
ple collective model approach. We found that the RIA
predictions were superior to those of this simplified ver-
sion of the KMT with respect to reproducing the elastic
data at forward and large angles as well as inelastic spin
observables. Neither calculation contains Pauli blocking
or other medium effects which tend to improve the non-
relativistic model predictions for the elastic scattering.?’

We have also shown that the use of coupled channel
Dirac equations is not a necessary requirement for repro-
ducing these inelastic data. Finally, we demonstrated
that the failure of the first-order KMT impulse approxi-
mation collective model to describe the inelastic scatter-
ing data is due to the fact that the transition potential is
generated from the elastic channel optical potential
which itself fails to reproduce the elastic scattering data.
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