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A simple parametrization of nuclear reaction cross sections in terms of resonance parameters is

obtained from the expansion of a modified A matrix. The latter is defined in such a way that it has
no other singularity in the complex energy plane than its poles. When expanded in terms of these

poles, it can be used to analyze and parametrize low-energy data on resonance reactions. The pole
energies Eq are the resonance energies without shift (except when there is a nearby threshold of a
closed neutron channel), and the residues are the products of reduced width amplitudes g, z. These
two sets of parameters (Ez,g,z) are independent of the channel radii and no boundary condition
constants are involved in their definitions. Also, few-level approximations of the expanded %' ma-

trix retain the unitarity of the S matrix. These properties add more reliability to the extrapolation
of data to lower energies, as often necessary for reactions of astrophysical interest.

I. INTRODUCTION

An important part of the present low-energy nuclear
experiments aims at obtaining data required by open
problems in nucleosynthesis. ' In many cases, the effective
stellar energy is too low to allow a direct measure of the
cross section. One must then turn to theoretical ap-
proaches. One of them consists in parametrizing higher-
energy data in order to obtain by extrapolation the cross
section at astrophysical energies.

Several parametrizations are now available for that
purpose. The simplest consists in expanding the collision
matrix S in terms of its poles in the complex energy
plane. This is certainly a very appropriate way to intro-
duce the resonance energies and the corresponding total,
reduced, and partial widths into the parametrization.
But, in practice, since only few-level approximations are
used, the corresponding approximate S matrix has lost its
unitarity property. This could make the extrapolation
unreliable at low energies.

On the contrary, the few-level approximation of an R-
matrix parametrization retains the unitarity property of
the S matrix. ' But, on the other hand, this type of ap-
proximation introduces a dependence of S on the channel
radii. Moreover, the advantage of parametrizing the real
R matrix in terms of real parameters is made at the price
of introducing energy eigenvalues which are not exactly
the observed resonance energies. Like the reduced
widths, they strongly depend on the boundary condition
constants and on the channel radii. Useful and sensible
prescriptions have minimized these drawbacks, but they
are not simple and most applications have been con-
cerned with the one-channel case only.

The aim of the present paper is to introduce an alterna-
tive and simpler parametrization retaining, to the extent
this is possible, the best of the above S and R parametriz-
ations. We show that, if the conventional K matrix is
modified in an appropriate way, mainly at negative-
channel energies, the resulting modified %' matrix has
only pole singularities in the complex energy plane. Ac-

cordingly, its poles and their residues, i.e., the resonance
energies and the reduced widths, are independent of the
channel radii. Being real and symmetrical, its few-level
approximation retains the unitarity of the S matrix. No
boundary condition constants are introduced. The very
definition of %' eliminates de facto the closed channels,
except the neutron ones.

A very brief account of this parametrization has been
given in two earlier papers, ' when it was used to
parametrize the data on ' C(a, y)' 0 and ' C(a, a)' C, in
order to obtain the astrophysical S factor at 0.3 MeV, i.e.,
well below the lowest energy at which data have been ob-
tained ( —I MeV).

Our general hypotheses are the conventional ones, as
they are explained in the review paper by Lane and Tho-
mas. In short, we assume (I) the hermiticity of the po-
tential energy in the Hamiltonian, so that there exists a
unitary and symmetrical collision matrix, (2) the com-
pound nucleus does not decay into more than two frag-
ments, and (3) the configuration space of all the nucleons
can be divided into an "internal" region and a channel re-
gion. This is briefly explained in the next section where
our notation and definitions closely follow those of Ref. 4.

In Sec. II, we also introduce the collision matrix S and
the conventional K matrix, the latter as a generalized col-
lision matrix. In Sec. III, we analyze the singularities of
the energy dependence of the S and K matrices, so that in
Sec. IV we can successively define a pair of linearly in-
dependent radial Coulomb wave functions F&, G&, which
are entire functions of the energy E, and hence another
generalized collision matrix, R. This so-called "modified
%' matrix" is a meromorphic function of E. In the same
section, we also give its relation to the S matrix, while its
expansion in terms of its poles is justified in Sec. V. In
Sec. VI, we obtain the S matrix corresponding to a one-
level approximation of %' and introduce the associated
partial and total widths. We observe that only the closed
neutron channels can introduce an energy shift in the
corresponding approximate S matrix of the Breit-Wigner
type. In Secs. VII and VIII, we discuss the closed-
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channel and bound-state problems, respectively. Simple
results of practical importance are obtained. In Sec. IX,
we observe that not all the poles are always associated
with a resonance. The so-called echo poles, when there
are any, contribute to the background part of%', they are
easily recognized in the elastic channel at energies where
the phase shift is decreasing. Finally, Sec. X contains
some concluding remarks related to the practical fitting
of the parametrized%' matrix to experimental data.

II. THE SAND K MATRICES

E=E,+E (2.1)

Let 4 be the wave function of all the nucleons involved
in a nuclear reaction. We assume that their center of
mass is at rest and that their fragmentation into more
than two nuclei can be disregarded. We can then also as-
sume that the configuration space of all the nucleons can
be divided into two parts: an "internal" region corre-
sponding to all the nucleons being close to one another,
and an "external" region, or channel region. The latter
corresponds to the nucleons being divided into two nu-
clei, with the distance r, of their center of mass being
large enough (r, )a, ) so that they interact only because
of the Coulomb and centrifugal forces; a, is the so-called
channel radius for channel c. Let 4;„„4,„, designate the
wave function '0 in the internal and external regions, re-
spectively.

In channel c, the total energy E can be decomposed as

face function as

cp~, I ~ =q'~„,&'Y( (r, )/r,

in the channel spin representation (asl vm ), and

v+m =M

(2.6)

(2.7)

f y,*y„dS=f p,'g„dS, =5,d,.

where

(2.8)

dS= gdS, = ga, dq„dq„dQ,

implies that, on each channel surface r, =a„ the integra-
tion is performed over the internal coordinates of both
fragments and only over the angles of their relative
motion.

Accordingly, in the external region, the general wave
function for a two-fragment nuclear reaction has the
form

in the total spin representation (aslJM ).
The notation c,d, . . . is used for any of the two com-

plete sets (aslvm ) and (aslJM), or for part of these
quantities when no confusion can arise, e.g. , u, stands for
~al& I"c for 1'~.

Having excluded fragmentations into more than two
nuclei, there is no overlap of the two-nuclei channels and
we can assume the surface factors y, to be a complete
orthonormal set on the boundary surface S. We then
have

where, in terms of the reduced mass

M, =M, M /(M +M ), (2.2)
4,„,= g (x,o,. +y, J, ), (2.9)

(I&I&i&i2~sv)% I; 0'
+& =v

1 2

(2.3)

with I, +I2=s, ~I, Iz~ ~s ~I, +I2, —and a standing for
a, , a2. The wave function of the relative motion can be
given the form

E, =Pi k, /2M, is the kinetic energy of the two nuclei in

the center of mass system, while E =E +E is the
1 2

sum of their internal energies.
Under such conditions, the surface 4 separating the

internal and external regions of the configuration space is
composed of partial surfaces S„with r, =a„and corre-
sponding to the various fragmentations of the nucleons
into two nuclei. Let 4, I, (i = 1,2) be the internal wave

l l

function of one nucleus, with a; specifying the fragmen-
tation and the energy state of that nucleus, and I„i, its
spin state. We first define a channel spin-wave function
as

where G„J, are the outgoing and incoming wave func-
tions in channel c, Normalized to unit Aux through a
sphere of large radius r„ they are

O, =y, O, (r, , k, )U,
'~

J', =p, I,(r„k, )v,
'

(2.10)

V, = [A'/(2M, )' ]fy,*+;„,dS, (2.11a)

D, =[Pi/(2M, a, )' ]f q,* grad„(r, 4;„,)de, (2.11b)

where the r, factor is contained in q&„v, =6k, /M, is
the relative velocity, while O„I, are the particular solu-
tions of Eq. (2.5) corresponding to an outgoing and in-
coming wave, respectively.

Let us define the radial factors V„D, (for value and
derivative) related to the value of 4,„, on and near the
surface S„namely

i'Y, (r, )u, (r„k, )/r, .

The radial function u, satisfies the Coulomb equation

[d /dr, —l(l+1)r, +k, —U, ]u, =0,

(2.4)

(2.5) +,„,= gg, u, (r„k, ) (2.12)

where grad„stands for the normal derivative to S. Both
V, and D, depend on the energy E. Since they must
match the radial factors of

where U, =Z Z e 2M, A r, '.
1 2

It is convenient to define, as in Ref. 4, a so-called sur- on 0'„ i.e., on the surface r, =a„we have
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V, = [fi/(2M, )' ]u, (a„k,),
D, = [A'/(2M, )' ](du, ldr, )„

or, according to Eqs. (2.9) and (2.10),

V, =(A'/2k, )' [x,O, (a„k, )+y,I,(a„k, )],

(2.13a)

(2.13b)

(2.14a)

with the radial factors V, ', D," satisfying the real
boundary conditions

W( V,'",G, ;a, )=0 (all etc) . (2.25)

Kd, is an element of the conventional E matrix related to
Sby the equation

OI =GI+iF), I( =GI —iF( . (2.15)

With A '= d A /dr, these functions satisfy the Wronskian
relations

W(GI, FI ) =GIFI' G(FI =—k, (2. 16)

D, =(A'/2kc)' [x,(dO, /dr, )„,+y, (dI, /dr, )„,] .

(2.14b)

The normalization adopted for O&, II is given by their
relations to the conventional Coulomb radial functions,
FI, GI, namely,

S=(1+iK)(1 i—K) (2.26)

III. THE SINGULARITIES OF S AND E MATRICES

The S and E matrices are unambiguously defined when
the channel energy R k, /2M, is positive in all channels.
But, negative and even complex energies must also be
considered, and the radial Coulomb wave functions
FI, GI, II, 0& have singularities at k =0 and for imagi-
nary values of k, i.e., for k &0. Let us display these
singularities and see how they can best be accounted for.

Introducing the Sommerfeld parameter

W(I, , O, )=2ik .

Introducing the notation

W( V„I,;a, ) = V, (I,')„, D, (I, )„—

(2.17)

(2.18a)

W( V„O„a,)= V, (O,')„, D, (O, )„—, , (2.18b)

r(=a/k, a=Z, Z2e MA' )0

and the conventional notation

p=kr, x =(Sr')'~ =(8c(r )'~

let us define the auxiliary functions of g:

Co(ri)=[21rr(/(e "—1)]'~

(3.1)

(3.2)

(3.3a)
solving Eqs. (2.14) for x„y, gives u((r()=(1+re )(1+4g ) (1+1 r( ), uo= 1,

x, =i(2Rkc) ' W(V„I,;a, ),
y, = —i(2trik, )

' W( V„O,;a, ) .

(2.19a)

(2.19b)

Let us now consider a particular wave function 4"
having an incoming part in channel c only. If this incom-
ing part is normalized to unit flux, %",„', has the form

e, (g) =q(C, (q)u, (q)'"/I!, e((0)=1,
h ( ri) =

—,
' p(1+ ir()+ -,

'
1t (1 i ri) lnr(,——

f(r() =27!CO (g)h(r() =—(e ""—1)h (r(),1

(3.3b)

(3.3c)

(3.3d)

(3.3e)
'P,„,—g (2„5d, —OdSd, )

d

with, according to Eqs. (2.9) and (2.19),

(2.20)
where g is the digamma function. ' With these
definitions, FI, GI can be given the form"

Sdc

xg' W( Vd"&Id&, ad )kd
'

W(VI) O')k
C c ~ c~ c c

(2.21)
F —(e k(+1) 1 i!~—I —1(x /2)2(+2q) (x ri

—
2)

G (e k() —
1( i!)

—
let((x /2)2(+2

(3.4a)

This ratio Sd, is an element of the collision matrix S. Ac-
cording to Eq. (2. 19b), the radial factors V(",D,'c) of +"
satisfy the boundary conditions

X [ (h)r((u( )741((x,g )+Q((x, g )]

=fF(+(c(k') '(1!) 'a'(x/2) '+ Q((x, rj ) .

(3.4b)

(3.5)

W(V,",O„a, )=0 (all etc) . (2.22)

W(Inew Onew)/k (2.23)

has the same value in all channels. The ratio correspond-
ing to the right-hand side (rhs) of Eq. (2.21) is then an ele-
ment of a generalized collision matrix. In particular,
when II"'",OI"'" are chosen to be the real functions
FI, —GI, the ratio (2.21) becomes

~I KV(cj F . ~k
—1/2

W(KV(c) G . )k
—1/2 (2.24)

Equations (2.9)—(2.14) and (2.20) —(2.22) can also be ap-
plied when II, OI are defined as linear combinations of
FI, GI different from Eqs. (2.15), provided

On the one hand, Nl, Ql are entire' functions in q, i.e.,
they have no singularity at real or complex values of k if

~

k2~ & eo. But, on the other hand, it is obvious that FI, GI
have an infinite number of singularities for finite values of
k: singular branchpoints in Cou(' and poles in g(1+i 7I ),
while k =0 is an essential and logarithmic singularity.

Under such conditions, the K-matrix element (2.24) has
no simple pole expansion that could be used to
parametrize cross sections. One can isolate the singular
threshold factors FI, G( [the first factors in Eqs. (3.4)] and

I +1 ldconsider expanding the ratio I( d, /c. ,k, ' cdkd", rather
than Kd, itself, as it has been done for Sd, in Ref. 13.
But, that does not retnove the singularities of h(g) in
c.lk'GI, so that cuts must be introduced in the complex E
plane. However, a much simpler parametrization can be
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achieved if the singularities of h(ri) are eliminated by
substituting an ad hoc linear combination of F/ and G/ for
6(. This is possible because of the very form of the rhs of
Eq. (3.5), h(21) being in the f factor only.

Two linear combinations of F(,G( which are entire
functions of k (i.e., without singularity for ~k

~
( oo ) are

F/=( m'kr) J/+)y2(kr)

G/=( —)'( —,'mkr)' J / )q2(kr) .

(3.13a)

(3.13b)

Dividin~ these functions by their threshold factors, k'+'
and k, respectively, we obtain

F, =F, /E, k'+'=
—,'1!a ' '(x/2) '+ 4/(x 21 ) (3.6a)

G/=(I!) 'a'(x/2) '+ [h/v(rt)u/(rt)C)/(x, rt )

F/=('mr)' k ' ' J ~2(kr),

G/=( —)/( ,'mr)—)z2k/+ i 2J i&2(kr) .

(3.14a)

(3.14b)

+Q/(x, rt )] (3.6b)

=e/k/G/ —2(1!) a '+'u/(rt)[h(rt) —h/v(rt)]F/ (3.7a)

(3.8)

Both are entire functions of k, as is easily seen from
their respective power expansions. They also satisfy Eq.
(3.12).

IU. THE MODIFIED JY MATRIX

where h/v(ri) is a Polynomial of degree I)I in ri whose
precise definition is given in the Appendix, while

f/v(q) =2r/Co (3.9)

In short, the functions F(, G( differ from F(,G( by the fact
that they have been divided by their respective
dependent threshold factors and also by the polynomial
h/v(rt) having been substituted for the singular function
h ( rt ) in G, .

Defining also

h+(71) =h(ri)+im/(e " 1), —

it is useful to rewrite Eq. (3.7a) in the form

G/ =E/k'(G/+iF/)

—2(1!) a '+'u/(ri)[h+(rt) —h/v(21)]F/ .

(3.10)

(3.7b)

h(rt) —h/v(ri)=0 (k )0)
at positive energies, and in Eq. (3.7b),

h +(q) —
h/v(21 ) =0 (k & 0)

(3.11a)

(3.11b)

The very definition of the Polynomial h/v(21) is such
that at finite positive energies ~h (ri) —h/v(g) ~

is arbitrarily
small, so that h(rt) —h/v(21) is numerically negligible. At
f/nite negative energies [k =ib (b )0), i rt=P) 0]

h "(21)=p(/3)+ —in',1

2

and it is ~h +(ri) —
h/v(21 )

~
that is arbitrarily small. So, nu-

merically in practice in Eq. (3.7a), we have

I(k ', O(k ' F(, —G(

are made in Eqs. (2.14). This gives

x, = (2/fi)' W—( V„F,;a, ) .

y, = —(2/A')' W( V„G,;a, ) .

(4.1)

(4.2a)

(4.2b)

Let V,", D,'" be the radial factors corresponding to
the wave function having an "incoming" part (in F, ) only
in channel c. They are functions of E and satisfy the con-
ditions

W(+ V"/, G,;,a) =0 (all etc ) (4.3)

which correspond to Eys. (2.22). From Eqs. (4.2), the
amplitude ratio —xd" / yd" is

W( Vd', Fd,'ad )

W(A V/c) G ~ a )
(4.4)

as also results from the direct substitution (4.1) being
made into Eq. (2.21). This is an element of the R matrix.
It gives the amplitude of an "outgoing" wave (in Gd) in
channel d generated by an "incoming" wave (in F, ) of
unit amplitude in channel c. From Eq. (4.3), we also have

A V( )yG
Rd, = "od,F, /G, — —

~ / )W( V,'",G„a, )
(4.5)

The generalized collision matrix R corresponds to the
choice of F(, —G( as a pair of linearly independent
Coulomb functions in the channel region. The value of
the Wronskian of this pair being, like that of the pair
I(k ',O(k ', the same in all channels, the matrix ele-
ments ofR are obtained when the substitutions

W(G, ,F, )=1 . (3.12)

at negative energies; in both Eqs. (3.7), u/(rt), F/ remain
bounded at finite energies.

From Eqs. (2.16), (3.6a), and (3.8), the Wronskian rela-
tion satisfied by F(,G( is F/=g/I/k 'i +A./0/k

G/ —g/I/k +y/O/k
(4.6)

In order to obtain the relation between the S and %'

matrices, we must find the coefficients in the linear rela-
tions

Up to now, in this section, we have assumed a) 0.
When a=0, i.e., in a neutron channel, we have q=0 and
hence'

Defining, when n) 0,

)k / + ) /2

they are given by

(4.7)
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~(= ~'pt

,'—i t—[1 &—(f f—w )]

Xt= ,'i—t[—1+t(f I~—)] .

(4.8a)

(4.8b)

V. THE POLE EXPANSION OF R

From Eq. (4.4), we see that the poles Ez of%'z, satisfy
the equation

We also define
IV( V" G a )=0 (5.1)

p( = g( —'4 =p('[I t (f—f)v— (4.9)

k 1+1/2 k 21+1
Pi ~ Pl (4.10)

Let us also introduce a matrix notation for the func-
tions just defined, so that p, g, A, , . . . stand for diagonal
matrices with elements p„g„A,„.. . in channel e, respec-
tively.

The relation between the S matrix and the generalized
collision matrix R is

S =(yR —
A, )(g —gA)

hence,

T= 1 —S= —2ip%'( 1 ipR—) 'p

2ip (
—1 i%'p—) 'Rp

and

(4.11)

(4.12a)

(4. 12b)

Because e&(r))~1, f(ri)~0 for ri~0, the formulas
(4.6)—(4.9) remain valid for a neutron channel provided 0
is substituted for fN(ri) in Eqs. (4.8b) and (4.9). In this
case, we have

W( V„G„'a,)=0 (all e) . (5.2)

Accordingly, the pole E~ of A'~, and the corresponding
wave function )Ii"(E&) are independent of the entrance
channel c. Hence, we can use the notation 4z for
(II"(E),), and 0'), has no "incoming" part in any channel.

From now on, we use the notation

Ag=(A)E (5.3)

so that V,z, D, ), designate V,"(Ez), D,"(E&), re-
spectively.

The E& are assumed to be simple poles, real or com-
plex. When E& is complex, E& is also a pole according to
the property (4.14). Let us designate the corresponding
wave function by )p z=%(Ez ).

Under such conditions, and by analogy with the one-
channel case, ' we can expand the matrix element Rz, in

terms of its poles in the form'

Together with the conditions (4.3), this amounts to say
that the poles are the energies at which the general wave
function + satisfies all the boundary conditions

R=ip '[2+(S—1)pp ] '(1 —S)p

=ip '(1 —S)[2+p p(S —1)] 'p

(4.13a)

(4.13b)
, —g Ra, z (E), E), —

k=1
(5.4)

A'(E)=A(E") . (4.14)

Moreover, we assume that, as in the one-channel case, '

the existence of finite channel radii and our definitions
entail that, like F(,G&, the radial factors Vz", Dz~" (any
c, d) are entire functions of E. Consequently, the ele-
ments of A are merornorphic' functions of E, i.e., they
have no other singularities than isolated poles for
IEI & ~

Comparing Eqs. (4.4) and (4.5), we see that for dWc,
the amplitude ' V&"/6& is also an entire function of E.
Except for a factor —(2/A) ', this ratio, like the
numerator in Eq. (4.4), is the amplitude of the "outgoing"
wave in channel d, in which there is no "incoming" part
in F&.

I.ike the S matrix, the%' matrix is independent of the
channel radii because its elements are also ratios of two
amplitudes. ' ' This is in agreement with the fact that,
in the relations (4.12) and (4.13), both p and )M depend on
the q only.

The radial functions u&(rz, k&), I'&, Gz being real at
any real energy, so are the radial factors Vz', Dz' and
the R matrix itself. Hence, when the energy E is com-
plex, all these functions and the%' matrix have the prop-
erty

where R&,& are constants which, as we now show, can be
factorized in terms of the channel amplitudes.

As in other parametrizations, ' this is obtained from
Green's theorem. With E, ,E2 being two different total
energies E and )I)) =qi(E) ), %z =%(E2 ), it reads

(E2 E, )I +z)I))dc—o

= y [V;(Ep)D, (E) )
—D,'(E2) V, (E) )], (5.5)

g [JYV AD(c)(E) AD AV(c)(E)] (5.6)

Introducing the notation

L, =G ', (a„k, )IG, (a„k, ), L,)„=(L,)z z (5.7)

and taking Eq. (5.2) into account, the quantity inside the
brackets in Eq. (5.6) is easily rewritten as

where the integration extends over the internal region of
the configuration space. Here, we apply it with
'P) =0""(E) and %'z='(Il'(E& )=)P

& (if E& is real, we
simply have )I(2=% z=%z). Using Eq. (4.14), Eq. (5.5)
becomes

(E„E)f )Ii* qi"dco—
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V V"(E)[ D '(E)/ V"(E)—L ]
A V A Vlc)(E )(L L )

In matrix notation, with the vector g7, (g, l,gbI. , )

the expansion of R reads

JY p
W( V, '(E), G, ;a, ) .

G, (a„k, )

gz Xg&/(E& E—) .
A. = 1

(5.15)

Using Eq. (4.3), Eq. (5.6) now reads

(Ez E)—f iI7" z%""dao

V V" (E)(L,—L,I, )

PCr

W( V,'"(E},G, ; a, ) .
G, (a„k, )

(5.&)

VI. PARTIAL AND TOTAL WIDTHS, ENERGY SHIFT

In Eq. (4.12), R, p, and 777 are independent of the chan-
nel radii, but the very form of this matrix relation is simi-
lar to the one obtained in R-matrix theory, R being also a
generalized collision matrix. Here, from this analogy, we
expect pI to play the part of a penetration factor and i'pI
that of (aOI'/Oi)„, . Accordingly, let us define the real
and diagonal matrices S,P by

Successively taking the derivative d ldE of both sides of
this equation, making E =E&, and defining i'. =A'+iP . (6.1)

A =dA/dE, From the definitions (4.9), (3.3), (3.9), and (3.10), we have
5.9

we are left with
i127 =ip, +2(1!) a '+'ui(ri)(h —

hIv)

=2(1!) a '+'uI(2))(h+ —hlv),

(6.2a)

(6.2b)

+ dao= ' V&L,
Ci)

so that, from Eq. (3.11a), in an open channel c+, we have,
in practice,

W( '

V,'"(E),G„'a, )

g +=0, P ~ =pI,
while, from Eq. (3.11b), in a closed channel c

777 =4 =P =0
C C C

(6.3a)

(6.3b}
where G,&=G,(a„k,7).

From Eq. (4.5), the residue in Eq. (5.4) is

Rg I,
=

Vqi G g2' W( V,
"(E)G,;a)

provided c is not a closed neutron channel.
In an open neutron channel, according to Eqs. (4.10),

Eqs. (6.3a) still hold with pI =k '+', but in a closed neu-
tron channel with

(5.10)
we have

Ik )0 & =( —)77b»+I (6.4a}

Defining

v& = +*&%&du+ V,&I.,&
Cd

e

JI p2
qI' &+~dai+ g W(G, &, G,7„'a, )

Q 2

and

A

gci=

the expansion (5.4) now reads

(5.1 la)

(5.11b)

(5.12)

P (} g (
)I+lb2I+I

C C
(6.4b)

7(( 1 —i 777%' )

E~ —g S,g, 2 E i g P,g,—i —. (6.5)

The physical consequences of these results are best
seen when considering the one-level approximation of the
%' matrix, i.e., by assuming that, in the neighborhood of a
real pole EI, a good approximation to %' is

gi Xgi, /(EI, E). The matr—ix inversion is easily per-
formed in that case and one obtains

R~, = g grig, l /(EI E) . —
A. =1

(5 1 3) Let us introduce partial and total widths defined as

2p gi, 12. Xl 2. (6.6)
This result proves the symmetry property of the modified
R matrix. The independence of JV on the channel radii
entails the same property for Ez, g&z, g,z, and vz. But,
for the latter quantity, this independence can also be
verified directly, as in Ref. 16, using here the relation

where, according to Eq (6.3b), the sum extends over open
channels only, and the level-shift function 5& as

(6.7)
2M,

W(G„G„r,)= — G, . (5.14)
with the sum extending over closed neutron channels
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only, according to Eqs. (6.3b) and (6.4b). For an element
of the T matrix, we have

Using block matrices to represent A, D, and N, we
have

I 1/2I 1/2
dA, cA,

E (—Ei+bi)+ ,'i—Ii
(6.8)

D++ D+—
(7.2)

The shift 5& is neg1igible when closed neutron channel
thresholds are not too close above E&. This results from
the fact that, in g, i, defined by Eq. (5.12), the factor G,z'

becomes negligible when

—ik, &a, =b,&a, ))1 .

From Eq. (3.14b), we have'

Considering the cofactors of D, we see that its inverse N
has the same form

(7.3)

hence,

1 1/2 I +1/2
G,i=( —)'( ,'na, —) b, i I I,~ (2b, ia, ) (6.9a)

X++N++ m++N+ +++-—
1~" ™~-+N" ~ N+ +-~-

=( —)
'
,'b, 'ie—xp(b,ia, )[l+O(1/b, ia, )] . (6.9b)

On the other hand, in g, &, both the numerator and the
denominator of V,i/vi~ depend primarily on the interi-
or wave function 0;„„and this ratio has no exponential
energy dependence. In the one-channel case, for a square
well potential with depth Vo and range a, we have
verified it analytically. We obtained

gli =8a [Vo (bIifi /2—Ma ) Vo ']

XbIi 'exp( 2b&ia) —X[1+0(1/bi&a)] . (6.10)

So, more often than not, in a Breit-Wigner cross section
deduced from a modified %' matrix, there is no energy
shift and no distinction is to be made between formal and
observed widths.

When E& is complex, the terms in E& and E& must ob-
viously be associated with a single resonance character-
ized by twice the number of parameters (their real and
imaginary parts) introduced by a real pole. In practice, it
is very unlikely that as many parameters should ever be
required to fit an observed resonance.

VII. OPEN AND CLOSED CHANNELS

We now consider the element Td, of the matrix defined

by Eq. (4.12a); it reads

Td, = 2'„gRd, Ncc—pc, (7.1)

where N„ is an element of the matrix N=D ' with
D= 1 —ipJY The ph.ysically interesting elements of T
are, of course, those with c,d being both open channels,
but the sum over e must be extended over all open and
closed channels as well. As we shall now see a major
simplification arises because, by an appropriate choice of
h~(g), p, has been made arbitrarily small and numeri-
cally negligible in closed channels. However, since this
does not apply to neutron channels, let us, in this section,
divide all the channels into two groups, characterized by
+ and —signs, and having p, &0 and p, =0, respective-
ly. According to Eqs. (6.2) —(6.4), this implies that all the
neutron channels (open or closed) are in the same group
as the open channels in which the particles are both
charged.

Since detD =detD++ and N++ =(D++ ) ', we have

(7.4)

VIII. BOUND STATES

Let us now see that the %' matrix is well adapted to
fitting data on a reaction when the compound nucleus has
a bound state below the threshold of the entrance channel
c. At first sight, a %'-matrix parametrization does not
seem better adapted than a more conventional one, since
the very form of the condition (5.1) satisfied by the Ei
seems to be unrelated to a bound-state condition, i.e., to a
vanishing denominator of Sd, in Eq. (2.21).

Assuming that c is a charged-particle channel whose
threshold energy 6', is above the energy Ez of a real pole,
we have

Ei —O', =A' k, q /2M, & 0,
with

(8.1a)

ik, i =b,i )—0, i ri, i =P,i )0 . (8.1b)

According to Eqs. (2.15), (3.7b), and (3.lib), at negative
energies in channel c, Eq. (5.1) can be given the form

gqRy(c) O .a ) 0 (8.2)

which is, in fact, a bound-state condition. The radial
factors V,", D,"are matched at r, =a, with functions

[%'( I

ipse—

V ) ']++ =R++(1 i p+—%'++
)

' . (7.5)

With the same channel separation also being applied to
the S and T matrices, we now have

+ +
1 g + + 2' +++ +

( 1 i p +g( + +
) lp +

(7.6)

This result is important. It shows that the e channels
do not contribute to the sum in Eq. (7.1), or equivalently,
that the closed channels of charged particles are not in-
volved in a 8-matrix parametrization. The "closed-
channel elimination" is here embedded in the very
definition of the modified %' matrix, as far as charged-
particle channels are concerned. Equation (7.6) is, of
course, the one to be used in the parametrization of a
cross section in terms of a%' matrix.
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in O„O,', respectively, with

0, ~ exp[ik, i,r, —iri, iln(2k, zr, )]

~ exp[ b—,&r,
—P, i ln( 2b, &r, ) ] (8.3)

is included in 5&. In the expansion

2

g EI~ —E' (9.5)

when b,zr, »1. Consequently, if a bound state of a com-
pound nucleus has been observed at some excitation ener-

gy E&, the same energy must be taken as that of a real
pole in the expansion of the R matrix.

We also note that when a real pole Ez is below the
threshold of a charged-particle channel e, 6,& is ex-
ponentially decreasing at large r„according to Eq. (8.3).
In vi defined by Eqs. (5.11), we can then as well extend
the volume integral into that channel e, i.e., to r, ~+ ao.
If this is done at all such channels, we then have

(8.4)

we have

2

gii. =
2M

[ui(a ku)/Gi(a ku)] vii.
2 & — 2-i

with

2

vii = f ui (r, k&i, )dr+ ui (a, kii )Lli.
0

and from Eqs. (9.4) and (9.5) we easily obtain

d i 1

"E E='I pi'«ii. )a'~

(9.6)

(9.7)

(9.8)

v&= %&%'& cu&0 . (8.5)

Hence, we can conclude that, in this case,

(8.6)

where co& designates the extended domain of integration,
while e designates all the other channels, i.e., the
charged-particle channels for which the condition
E& —6', (0 is not satisfied and all the neutron channels.

Moreover, when E& is below all channel thresholds,
and if the neutron channel thresholds are well above E&
so that they can be ignored, E& is a bound state of the
compound nucleus and we have

From the latter result, we see that the only real poles EIz
associated with a resonance are those for which g&& & 0,
i.e., vii & 0, since only then is the phase shift 5& increasing
through ir/2+(mod m. ) at E=Eii,. For various square-
well potentials, several examples have been given of
poles El& for which vI&&0. They are in no way related
with a resonance behavior. They parametrize the back-
ground part of%'i which is important for this type of po-
tential. The phase shift is decreasing at these energies.

Since the first term of v&i in Eq. (9.7) is positive, vli
can be negative only when the second term is large and
negative. Except for s-wave neutrons, this cannot happen
at positive energies close to the threshold, because at
such energies Lii is positive. With x =(8aa )'~, we have

in all channels. The importance of this result will be seen
in Sec. IX.

IX. RESONANCES AND ECHO POLES

(fi /2M)Lii =2a[xK21+, (x)]

E21+1 t t 'dt+0 k (9.9a)

In the expansion of the diagonal element R„, the pole
terms have the form g, i /(Ei E). Is g, i alw—ays positive
when Ei, is real'? According to Eq. (5.12), this depends on
the sign of vz. This can be more easily discussed if we
first turn to the elastic scattering by a central potential.

In this case, both%' and S are diagonal. We have

IV( V Fi, I)a

IV( Vi, Gi, a)
(9.1)

and, above threshold, the corresponding S-matrix ele-
ment reduces to

Si = (1+ipi~Ri )/(1 ipse Ai )—
=exp(2i5& ),

hence,

(9.2)

(9.3)

(9.4)

With the definition (2.15) of I&, Oi neither of the Coulomb
phases

cri=argl (i+ I+i )),icoi=cri —o()

when there is a Coulomb repulsion, and

(iri /2M )L&i =a /(2l —1)+O(k&& ) (9.9b)

in the case of a neutron channel. On the contrary, in
both cases, at large positive energies, LI& is negative,
since with g~0, we have

(fi /2M)L&i, = ,'ak,PG ii [I+—O—(ku )] (9.10)

and vl& can then be negative.
The physical interpretation of these results is obvious

and it can be extended to the general case of a nuclear re-
action proper with vi defined by Eq. (8.4): At the energy
of a true resonance, the wave function +& is very large in
the interior region, making the first term of v&, which is
positive, much larger than the second one which is a sur-
face term. This does not apply when the pole Ez is not
associated with a resonance and v& can then be negative.
The poles for which v&(0 have been called echo poles,
because they are related to the "echoes" analyzed in
several papers by McVoy ' and collaborators. Here, the
echo poles contribute to the nonresonant or background
part of the %' matrix. To some extent, in the elastic
channel, their contribution to the phase shift corresponds
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to the hard-sphere phase shift in an R-matrix parametri-
zation.

now projected, including the use of the matrix A=%'
in a multichannel effective range expansion at low energy.

X. FITTING THE JV MATRIX
TO EXPERIMENTAL DATA

A parametrized cross section is obtained from the S
matrix derived, by means of the relation (4.12), from the
parametrized R-matrix expansion (5.15). In practice,
however, fitting the expanded R matrix to a set of experi-
mental data can only be done over a finite range of energy
and using only a few-level approximation of the complete
expansion of R. The corresponding S-matrix elements
are given by
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Sd, =fid, +2ipd g A'd, [(1—ipli ) ']„p, . (10.1) APPENDIX: THE ENTIRE FUNCTION 6

The only elements of S having a physical interest are
those with channels d, c both open. Although the sum
over e extends, in principle, over all open and closed
channels, we have seen in Sec. VII that it suffices to ex-
tend it only over the open channels and the closed neu-
tron channels. The modified%' matrix is defined at any
energy below, as well as above, any channel threshold. In
order to retain the unitarity of S, the approximate R
needs only to be real and symmetric.

Accordingly, all the elements of A used when fitting a
set of data should be given the form

~d X gdig i, /(+i. + )+Bd
tI. = 1

(10.2)

The finite sum, where A is never very large, must account
for the observed resonances, while Bd, ( =B,d ) must ac-
count for the nonresonant part of Ad„ if any. In particu-
lar, B&, can contain an echo pole if this is suggested by
the decreasing trend of the phase shift in an elastic chan-
nel. Bz, can also contain a slowly varying function of the
energy to account for the distant levels (A, )A) not intro-
duced explicitly into the parametrization.

Recently, in the simultaneous parametrization of the
data on ' C(a, y )' 0 and ' C(a, a)' C, an echo pole plus
a linear term in E has been used as a background term of
R. But, as it has been done in the R-matrix parametriza-
tions of the same data, the contribution from distant
levels could have been introduced by means of another
pole term, with a fixed large energy E~ well above the en-

ergy range of the data.
As seen in Sec. VI, the energy of an observed resonance

corresponds exactly to the energy of a pole F~ (A. &A),
without shift, except if a closed neutron channel has its
threshold just above E&. The reduced width amplitudes

g, &, associated with a resonance energy E&, have, accord-
ing to their very definition, a unique value. They are not
dependent on the choice of a boundary condition con-
stant. According to Eq. (5.12), g, ~ is proportional to the
amplitude V,&/G, & of the "outgoing" wave in channel e
at the energy Ez.

These properties, together with the unitarity of the
corresponding S matrix give the R-matrix analysis of ex-
perimental data a good physical basis.

Other applications than the one already published are

h(ri)- g-

where the B2, are the Bernoulli numbers. For a repulsive
field ( k i) =a )0), its domain of validity is

~
argk

~

& m /2 —6 & vr /2 (A2)

(where 5 is arbitrarily small). It does not include the
imaginary k axis where h(rt) has an infinite number of
poles.

Using the reflection property of the P functions, we ob-
tain

h+(q):—h(r))+i rr/(e " 1)—
=P(ir))+ —ln(e' rt) .

1

21'g

This function h + also has the asymptotic expansion (A 1),
but it now holds for

(A3)

~ arg( e ™/2r))
~

& ~—5 & m. .

Hence, it holds, in particular, on the positive imaginary k
axis and more generally for

—m. /2+ 6 ~ argk ~ 3~/2 —5 . (A4)

Introducing the notation 6'=i) ( ~E), let H(6') be a
function defined as follows for real 8 only: H(N)=h(q)
at positive energies (6') 0, rt) 0), and H(6) =h+(r)) at
negative energies (E~'&0, i7)=P) 0). It is then obvious
that for real energies, the function H( @) for 6~+0 has
the divergent asymptotic expansion

H(&)- g 2$

So, despite the fact that both h(g) and h+(i)) are singu-
lar for i)~ oo, i.e., for A'=0, the function H(A ) and its
derivatives of finite order are defined and continuous for
D~+0 and 6~ —0. %e have

To obtain the entire function GI, we have multiplied G&

by c.&k' in order to remove its threshold factor and substi-
tuted the polynomial in i),hz(g) for the singular func-
tion h(7)) defined by Eq. (3.3d)

For i)~ oo, i.e., k ~0, h(i)) has the divergent asymp-
totic expansion
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H(0) =0,
d'H( 6')

dA'
&' =0

=
—,'(s —1)!I&i,l

(1

(A6)

IH(A') —h~(1) I

~ e

for any nonvanishing but arbitrarily small c. We assume
that c. has been chosen small enough so that on a finite in-
terval [—6o, 6'o], with 6o) 0, the Eqs. (3.11) are satisfied
to this approximation. The fact that, to the same approx-
imation, from Eqs. (3.7) and (2.15), we also have

On the real 6 axis, H(D) has no other singularity than
6'=0 for INI & ~. Accordingly, from Weierstrass
theorem, on any finite interval of the real P' axis one can
find a polynomial h~( l) of degree N in 1, with N
sufficiently large, such that

Gt =Etk'Gt (in c+),
6( =cIk OI (in c ),

(A8a)

(A8b)

Gt=(l!) 'b'I (I+ I+p)W &t+&&2(2br),

where b = ik—&0 and P=ig=alb &0.

(A9)

should not be misunderstood: the latter equations are
valid numerically, but obviously not analytically. The
numerical computation of h~(q) is not required when
parametrizing data. The mere existence of h~(g) suffices
to justify the R-matrix parametrization derived in Sec. V.
The actual computation of h~(g) is required only in or-
der to obtain numerical values of GI at complex energies,
since at real energies, positive or negative, numerical
values of Gt can be obtained from Eqs. (A8). In a closed
channel, however, it is useful to rewrite ctk'OI in terms
of a Whittaker function, namely
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