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Anomalous signature-dependence of rotational bands
in odd- A nuclei explained in terms of y vibration
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The anomalous signature-dependence of proton h&lz& rotational bands in '"""Ho, "Tm,""" 'Lu after the first band crossing is described in the framework of a model of particles plus

symmetric rotor. %'e take into account rotor's degree of freedom that it undergoes y vibration

about an axially symmetric equilibrium deformation. By using a set of moments of inertia such that
the largest one is around the shortest axis, the essential features of all the energy spectra are repro-
duced. We have calculated magnetic dipole and electric quadrupole transition strengths with the
wave functions obtained, and have found that virtually every characteristic feature of the available

experimental data is well reproduced.

I. INTRODUCTION

It was found in 1981 that the energy spectrum of the
negative-parity yrast rotational band of ' Tm is anoma-
lous in its dependence on a quantum number called signa-
ture. ' Since then the same kind of anomaly has been
found in ' 'Ho ' 7Ho " ' 'Lu ' ' Lu ' and

Lu. ' ' This anomaly has long challenged us for an
explanation. Recently we have proposed a model, in
which the anomaly of ' Ho has been well reproduced in
a natural way. ' In this paper we will extend numerical
calculations to the other nuclei and compare the theoreti-
cal results with the experimental data. In order to test
the validity of the model, magnetic dipole and electric
quadrupole transition strengths will be calculated by us-

ing the wave functions obtained and the predictions will
be compared with the available experimental data.

We will devote the present section to a brief descrip-
tion of the phenomenon of interest. Signature is a quan-
tum number related to the invariance of a system with
quadrupole deformation under its rotation by 180'
around a principal axis. Thus we can call the symmetry
turn-about invariance. When the system is axially sym-
metric, only the turn-about around principal axes other
than the symmetry axis can be used to define the signa-
ture quantum number. Signature takes on only two
different values in odd-A nuclei, according to the total
spin. It is customary to assign

1
( 1)t—1/2

(XI

as the signature quantum number to a state of spin I of
an odd-A nucleus.

In Bohr and Mottelson's strong coupling model, a rota-
tional band is characterized by its intrinsic structure and
is a sequence of levels differing in spin by 1A. Signature
now splits such a rotational band into two families, each
consisting of levels differing in spin by 2R according to
Eq. (1.1).

The significance of signature is easier to see in the low-

lying negative-parity rotational bands of the odd-A Ho,

Tm, and Lu isotopes which we are interested in. The in-
trinsic structure of these bands is such that the last odd
proton moves in the orbitals originating from h»&2.
They are called unique-parity orbitals because they are
isolated in energy from other orbitals of the same parity
and therefore are rather pure in j quantum number. To a
good approximation we can assume that j is a good quan-
turn number in these orbitals. Then, each of these bands
is split into I—=j (mod2) and I—=j+ 1 (mod2) families ac-
cording to signature. It is observed that the energy spec-
trum and the reduced M1 transition probabilities of a
unique-parity rotational band depend on signature in
characteristic ways. The I—=j (mod2) sequence is shifted
downward in energy against the other. This is why the
I =—j (mod2) sequence is customarily called the favored
band and the other, unfavored. B(M1;I~I—1)'s are
larger in many nuclei when the state I is a favored state
than when it is an unfavored state. The simple model of
a particle coupled to a symmetric rotor predicts such a
dependence of energy spectra and B (M 1)'s on signature
as a consequence of the Coriolis coupling, in accordance
with a great deal of experimental data. We will call such
a dependence of energy spectra and B (M 1)'s on signa-
ture normal signature dependence.

It is important to note that the signature quantum
number is directly connected with the characteristic ener-

gy shift and alternating enhancement of M1 transitions
and that these are well understood theoretically in terms
of the simple particle-rotor model.

When we go up along such a negative-parity yrast band
we come across a discontinuity, sharp or broad, in the en-

ergy versus spin diagram. The widely accepted interpre-
tation of this discontinuity is that it results from the
crossing of two bands. One of them is just the rotational
band whose structure we have already discussed above.
It should be noted that the angular momentum of the last
odd quasiproton, which moves in the orbitals originating
from h»&2, aligns itself with the total angular momentum
to some extent. In the other band two quasineutrons are
excited in addition. They move in the orbitals originating
from the spherical i&3/2 and align their spins with the to-
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tal angular momentum. It may be appropriate to call the
former band (mh»zz)' and the latter (1rh»zz)'(vi&3&&) .
Despite the difference between the configurations of the
two bands, the particles plus symmetric rotor model pre-
dicts that the correspondence of the signature quantum
number to energy favoredness or unfavoredness invari-
ably persists.

To our surprise the opposite to this prediction is ob-
served in ' ' Ho, ' Tm, and i6i, i63, i65Lu after the band
crossing: the I —j=even levels are found to lie higher in
energy than the I —j=odd levels where j stands for
h»zz. We illustrate the energy spectra of those isotopes
in Fig. 1 in the form

E (I) E(I——1)eI 2I
(1.2)

where E(I) is the energy of the state of spin I. In Fig. 1

black points are given to ez's when I belongs to the
favored band and open circles otherwise. The signature
dependence is normal when the open circles are above the
black points in the illustration. We see that the signature
dependence is normal up to the band crossing and that it
gets inverted after that for a rather wide range of spin.
Since the signature inversion is rather subtle and hard to
see, the spectra in the region of signature inversion are
magnified in the insets. This anomaly constitutes the
problem of signature inversion and seems to provide us
with an opportunity to learn about unknown aspects of

nuclear structure.
Through the introduction of an equilibrium triaxial de-

19formation or dynamical triaxial fluctuations around an
equilibrium axially symmetric deformation into the
particle-rotor model we have learned that the triaxial de-
gree of freedom influences the signature dependence of
electromagnetic transition strengths. We have pursued
the dynamical view of Ref. 20 and proposed a model for
the signature inversion in a recent paper, ' which is a
straightforward extension of the model of Ref. 20. We
applied the model to ' Ho and reproduced its anomalous
energy spectrum.

In this model the (1rh»&z)' and (mh, 1&&)'(vi»&z)
quasiparticle configurations are taken into consideration
explicitly. In addition to them we let the rotor undergo
y-vibration around the equilibrium axially symmetric de-
formation.

In classical language, y-vibration introduces time-
dependent deviations of the system from axial symmetry
and gives rise to two effects.

(1) It changes the mean field felt by quasiparticles lead-
ing to particle-vibration coupling.

(2) It allows the system to undergo three-dimensional
rotation. This gives rise to rotation-vibration coupling.

The isotopes of interest are supposed to have axially
symmetric deformations. The dependence of the mo-
ments of inertia on y in the neighborhood of a prolate ax-
ially symmetric deformation is very crucial. We have
found in Ref. 18 that the moments of inertia in the irrota-
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FIG. 1. Experimental energy spectra of " '"Ho, '-' Tm, and '"'' '' -'Lu in the form
and white points correspond to I=favored and unfavored, respectively. Black points
A part of the spectra is illustrated with a four times larger scale in insets.

of O„which is defined in Eq. (1.2). The black
above white points mean signature inversion.
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tional flow model (IRF) do not lead to an anomaly of the
energy spectra. An important feature of the IRF mo-
ments of inertia is that the largest moment of inertia is
around the axis of intermediate length. To reproduce the
anomalous signature dependence we need a set of mo-
ments of inertia such that the largest and intermediate
moments of inertia are around the shortest and inter-
mediate axes, respectively. The longest axis is the sym-
metry axis when y =0' and the moment of inertia around
the symmetry axis must be zero. Hence, the moment of
inertia around the longest axis is expected to be propor-
tional to y in the neighborhood of y =O'. We will refer
to this kind of moments of inertia as the Largest-around-
Shortest (L-a-S) moments of inertia in this paper. This is
the same feature that the classical rigid body moments of
inertia have. It should be understood that presently we
are not interested in the global behavior of the moments
of inertia but only in their behavior in the neighborhood
of a prolate axially symmetric deformation.

The model, which we know is able to reproduce the
anomalous signature dependence of the energy spectrum
of ' Ho, should be tested further. First we will apply it
to the above-mentioned Ho, Tm, and Lu isotopes to see
whether or not the model is able to describe the anomaly
in those isotopes. Then we will use the wave functions
obtained to predict M1 and E2 transition probabilities.
The predictions will be compared with experimental data
when available. This is expected to provide a good way
to test the model.

1)j+n
jQ j, —0 (2.4)

In Eq. (2.3), A. stands for the Fermi energy and 6, for
the pairing energy gap. Using the Bogoljubov transfor-
mation

evc —u n ( n, .n 0), (2.5)

3Q —j,(j,+1)
q,p . (r=pn),

8 vr
' j (j +1)

(2.7)

where

q, = —fico()( N, + —', ), (2.8a)

with

fioi =A'oi (1——', 5 ——"5 )COp
—Np (2.8b)

and

we express H +H„ in a diagonal form with respect to
the quasiparticle operators a and n:

Hq. p.
= X X Q(e j n J.—)'+ ~' &j' n&, n .

r=pn 0

The Nilsson energies in Eq. (2.3) are given to a good

approximation as

e, n =q.P(j.III Yz, o lj.&)

II. THE MODEL

A. Hamiltonian

1/2
3 5

AYoo=41A ' MeV, 6=—— P .
4 m

(2.8c)

The present model is a straightforward extension of the
model of Ref. 20 to include not only one-quasiparticle
configurations but also three-quasiparticle configurations.
We write down the total Hamiltonian of the particles
plus symmetric rotor model with the y-vibrational degree
of freedom as

In Eq. (2.8a), N =5 and N„=6 for the rotational levels
under study.

H „ in Eq. (2.2) represents the effective interaction be-
tween proton and neutron:

Hpp P ( Jpius Jn vI Vpn lJpfr Jn Q ) 'c& pcj &cj gcj
v~Cn

HPartlcle +Hc +Hint (2.1) (2.9)

The first term, H „„,~„ is separated into the energy for
protons and neutrons in the unique-parity orbitals
(jp=h„~z, j„=i,3/p) and the effectiv interaction be-
tween them:

Hpa1 t jc/e Hp +Hg +Hpn (2.2)

The Hamiltonian for protons (r=p) and neutrons (r=n)
is expressed as

H, = g (e, n
—A.,)c, „c,„

where:: denotes the normal product with respect to the
quasiparticle vacuum. As for the effective proton-
neutron force we adopt the quadrupole-quadrupole force

2

Vp„= —g g ( —1)"rp Y& „(9,$ )r„Yz „(8„,$„) .

(2.10)

The second term in Eq. (2.1) is the sum of the rotation-
al energy and the kinetic (T ) and potential energies of
y-vibration of the rotor:

i5 g (cq ncj n+cJ ncJ n)

with r=p, n, (2.3)

3 f2
H, = g (I„—J„) +T + —,'Cry (2.11)

where c and c are creation and annihilation operators,
respectively, for particles of the indicated quantum num-
bers. We use the following phase convention for time re-
versal: 2,=4P (Bo B,cosy„—Bzcos2y,—)sin y„, (2.12)

where J,=j +j„. In the present model we start with
the general form of moments of inertia which were given
by Belyaev for quadrupole deformations: '
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where y, =y ——', xi~(x=1,2,3). In this expression, 80, 8„
and B~ can be any function of the invariants p and

p cos3y. In this study we assume these factors to be con-
stants for simplicity.

Expanding the moments of inertia around @=0' and
keeping only the lowest and second lowest order terms in

y, we obtain

where

fi 1 8

2p'8', y ar dry

8' =Bo Bz——8&cos3y= z
+O(r' ) .

3 2

(2.2O)

(2.21)

J,=J 1+ —a y+O(y )
2

3
(2.13a)

Thus we have constructed an approximate Hamiltoni-
an for y-vibration as

Jz= J 1 — —a y+O(y )
2

3 r

J3=—', J'y +O(y ),

(2.13b)

(2.13c)

H vib
1 a a

2P'8, r ~y By

$2

8PB,, y
(2.22)

where

2=3p (80+ ,'8) + ,'B—q), —

J =3P (Bo 8& B~)

ar =(80—
—,'8, +28~)I(80+ ,'8, + —,'B~—).

(2.14)

(2.15) H.a 0~.(r)=E~.OA. (r ) (2.23)

(2.16) Their eigenvalues are obtained to be

where 8 means 8' (y=0') of Eq. (2.21). In Eq. (2.22)
we replace I3 —J3 =—R 3 with eigenvalues A
(A=O, +2, +4, . . . ). Then the wave functions of y-
vibration are solutions of

2 $2

v=1
(I,—J„) =H„„+H„,„;b, (2.17)

where

The choice of Bo=const and Bi =B2=0 corresponds to
the IRF moments of inertia and leads to a =1. On the
other hand an appropriate choice of Bo, B&, and B2 gives
a negative value to a, which is a characteristic of the
L-a-S moments of inertia. We assume a~= —1 in our
study. This value of a ~ corresponds to Bo+—,

' B,
+ —,'B2 =0.

Using the moments of inertia of Eqs. (2.13) we can
write the rotational energy as

E~A„=(2n + —,
' IAI+1)E~ (n =0, 1,2, . . . ),

where
' 1/2

Ip

(2.24)

(2.25)

We define the matrix element of y between the vacuum
and the y-vibrational state as

b=(A=2, n =OlyIA=O n =O&

= f" e20(r)rl~(r)lyldy, (2.26)

where we assume ttA„(y)'s are normalized. Then we ob-
tain

H„„= (I —I, )
— (I+J +I J+)

2 3 2

b2
I pl v'B, c,

(2.27)

+ (J+J +J J+ ),4J (2. 18)

+(J++J )] . (2.19)

Q

H„„„;b=—— — y [(I+ +I ) 2(I+J+ +I J—
)b—

Once we assign definite values to the parameters p, J',
E, b~, and a, then Bo, 8, , and Bz of Eq. (2.12) are
determined uniquely. In Appendix B we give explicit ex-
pressions of Bo, B, , and B2 in terms of the parameters.

The third term in Eq. (2.1) represents the particle-
vibration coupling:

Following Eq. (9.25) of Ref. 21 we express the kinetic
energy of y-vibration for small y's,

int Hp -vlb+ ~n -vib &

where

(2.28)

H. .b=q, p (cosy 1)g(j,&IY2olj.&&c, nc, n+ —»ny g &j,II'IY22+Y2, —2jl.II&c, nc, n

1—q,py g (j,Q'IYz &+ Yz zlj, Q&c~ nc, n with r=p, n .
n'n

Summing up the partial Hamiltonian described above, the total Hamiltonian is written as

(2.29)
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H Hq p
+Hrpt +Hy +Hprl

where H represents the sum of all the y-dependent terms:

y vib rot-vib Hp -vib+ Hn -vib

Explicit forms of the Hamiltonian matrix elements are given in Appendix A.

(2.30)

(2.31)

B. Model space

[$~»(co)g~„(y)a, ~lo&+( —1) '2)M»(co)g ~ „(y)a lo&] (K =p+A) 0),

The basis functions consist of one-quasiproton states with the y-vibrational degree of freedom:
' 1/2

lqplM»
&

2I+ 1

p, An (2.32)

and one-quasiproton and two-quasineutron states with the y-vibrational degree of freedom
' 1/2

[&M»()fg. (y)a)~ pa)~.a,', lo&+( 1—) '&M», (—ro)4 A.-(y, ) aj, -p )a~, —.a,', —,lo&]

(K =p+ a +r+ A )0, cr )r), (2.33)

where p, 0., ~, and A denote the projection of the spins of quasiparticles and y-vibration on the symmetry axis of the ro-
tor. In the present model we take into account the vacuum (A=n =0), and the state of one y-vibrational quantum
(A=+2, n=o).

When we work in the space of two-quasineutron configurations of the BCS approximation, the spurious states related
to violation of particle number conservation inevitably creeps in. The spurious states are of one-quasiproton and two-
quasineutron configurations and can be written as

(E„—(olA'„lo& )le,',„&, (2.34)

where 8'„ is the number operator for i, 3/2 neutrons. We have rigorously eliminated them out of the basis functions in
this study.

C. Magnetic dipole transitions

The M1 operator in the laboratory system assumes the form
1

At„(M I ) = g 2)„'„(co)At,'(M 1 ), (2.35)

where At„'(M 1 ) is the Ml operator in the intrinsic system:
' 1/2

At„'(M 1 ) =p~
3

[g~I„+(g,, gR Vp„+(—g,„gR)Jn„]— (2.36)

where p~ is the nuclear magneton. In terms of the spin and orbital g factors we write the g factors of quasiparticles in
unique-parity orbitals as

[[j,(j,+1)—l,(l, +1)+3]g,(r)+[j,(j,+—1)+l,(l, +1)——,']g&(r)), with r=p, n . (2.37)
2j,j,+1

In the present study we assume g~ =Z/3 for the rotor and the bare values for g, and gI.
Matrix elements of the M 1 operator are reduced to the expressions

1/2

(4 „ llAt(MI)ll+ „&=p (2I+1)

X 6I 16~ ~6p p6A Ag~ &I(I + 1)

1

+(g —g~) 5„~ g 5»»+ 5 ~ +,(IKlvlI'K+v)(ola +j,a, lo&
P v= —

1

I' —j
(
—1) 5»,»5», ~25', p+ )5A, ~(I,' 1 —1 lI' ——,

')—
'

1

x ( l o. a. .j, , 'allo& (2.38a)
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' 1/2

('I/p, A. Il~(~1)lll~p. , A. & =I x (»+I) (gr
—gR». .

5K K+ 5 +, ,(IKlvlI'K+v)(ol j„a a, lo)
v=+1

+( —1) "5K'K5K, 1/25p'. —p5 +., 15A', —«I-'' ll
' 2')(Olj. -iar -a, —.+ilo&

I' —j

(4 ., A„.ll31(M1)ll+, A„) =PA, (2I+1)
' 1/2

(2.38b)

x 5r'r 5K'K 5q'p5~ ~5~r5A'Age I (I + 1)

1

+(gr —
g~ ) 5 ~ 5~,5A A g 5K K+„5p +,(IKlv I'K+v)(olar p+jq, ar. qlo)

v= —1

I' —j+( —1) '5K'K5K, 1/25 ', — +l5 ', —58 5A A(I ,'1 —llI' ——
—,')

1

+(g grt ) 5—~ 5A.A + 5K K+„(IK1vlI'K +v)
v= —1

x(5.. .+„5...(ola +„j„„ar' lo)+5..5„+(Ol ar, +j„~ 'Jlo))
I' —j+( —1) 5K K5K &/25 5„. A(I—,'1 —1II —

—,
'

)

x(5. ,5.. .+, (ola. . .j„,a,'.lo)

+5., „,5, .(Ola. . .j„,a,', lo&) (2.38c)

where

(Ola) p~a,'„lo&=ju (r=p, n),

1
(Olar „+j,+,a, „lo)=+ —(u, „u, „+,+u, „U, „+,)gj,(j,+ I)—p(@+I) (r=p, n),

(2.39a)

(2.39b)

(Olj„+,a, a, +, lo) =+ —(
—1)" (u, U +, —U, u +, )Qj„(j„+I) o(cr+I )

—. (2.40)

D. Electric quadrupole transitions

We can write the E2 operator as

Jkf„(E2)=e,p , cosy')„0(co)+ —siny[2)„2(co)+2)„2(co)] =e,p S„o(co)+ —y[2)„2(co)+2)„2(co)], (2 41)

where the effective charge of the rotor e, is assumed to be

= 3
e, = eZRO, (2.42)

with

Ro ——1.231/3 fm . (2.43)

In this expression it is assumed that the rotor has a uniform charge distribution. In Eq. (2.41) we have ignored the con-
tribution from the quasiparticles. This is a reasonable approximation because the E2 transition in the isotopes of in-
terest are dominated by the contribution from the collective rotation.
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Matrix elements of the E2 operator are of the following forms:

(e,', ,',„,llew(E2)lie,',„)=e,Pv'2I+ 1

X 5, 5».„5A.„5„„(IK20lI'K)

+ — g 5»' »+v5A p +v(A+ v& n 1 lAn )(IK2v I K +v)
v=+2

+ —(
—1 ) '5»»+25 5„~+2(A—2, n'lylAn )(IK2 —2lI'K —2), (2.44a)

(4, A.„ l
A(E2)l 4,A„) =e,p&2I+ 1

(2.44b)

X 5 5 ~ 5„5»»5~ A5„„(IK20lI'K)

+ — g 5», »+.5. ,,+,,«+., 'I) l«)(IK»lI'K+. )
v=+2

+ —( 1) 5»»+25& &5 5 . 5A' A+2(A 2 n l&lArt )

X (IK2 —2l I'K —2) (2.44c)

III. NUMERICAL RESULTS AND DISCUSSION

A. General

We first summarize the parameters involved and de-
scribe how we fix them. The parameters involved are axi-
ally symmetric equilibrium deformation p, Fermi ener-
gies A, and A,„, energy gaps 5 and 6„, reciprocal mo-
ment of inertia A' /2J, excitation energy of y-vibration
E, the matrix element of y between the vacuum and y-
vibration b, and the strength of p-n quadrupole interac-

tion y. Experimental values are first given to them, when
available, and kept throughout fixed or varied slightly to
obtain a good fit to the data. Energy gaps are derived
from the binding energies of the neighboring nuclei and
are kept fixed. We use the average of deformations of the
neighboring even nuclei obtained from B(EZ)'s (Ref. 23)
as a starting value of the deformation p and vary it to
some extent to achieve a good fit to the experimental
data. The values of p actually used are listed in Table I
together with the starting values. The starting values of
the Fermi energies are obtained by putting the selected

TABLE I. The values of the parameters used. We have started with the values listed in the lower column for p, I,'s, and fi2/2J.
They are obtained from the B(E2) measured for the neighboring even-even nuclei (Ref. 23), by putting the proper neutron and pro-
ton numbers in the ordinary Nilsson diagram and from the energy spectra of the adjacent even-even nuclei. Then they are varied to
obtain a good fit to the experimental data. The values actually used are given in the upper column. A, s are given in the form of [n, cr]
where A, =e„+o(e„+1—e„)with n taking on 1,2,3, . . . , for 0 = —', —,', —,', . . . . 6's are estimated from the binding energies of the adja-
cent even-even and odd-A nuclei, and kept fixed. E~ s are the average of the experimental excitation energies of y-vibration in the
adjacent even-even nuclei (Ref. 24). b is about 1.6 times of the measured values for "Gd (Ref. 25).

$2
(MeV) (MeV) (MeV) E,, (MeV) b'

155
67Ho88

157
67Ho 90

15969™90

161
71 Lu90

163
7 1 Lu92

165
7 1 Lu94

0.23
(0.21)
0.27
(0.27)
0.25

(o.24)
0.22
(o.21)
0.25

(0.24)
0.27

(0.27)

[3,0.8]
([4,0.0])
[3,0.9]

([4,0.0])
[4,0.0]

([4,0.3])
[4,0.2]

([4,0.4])
[4,0.2]

([4,0.5])
[4,0.2]

([4,0.6])

[1,—1.0]
([1,—0.5])

[2,0.0]
([2,0.0])
[1,0.0]

([2,0.0])
[1,0.0]

([1,0.0))
[2,0.0]

([2,0.0])
[2,0.2]

([2,0.5])

0.045
{0.057}
0.024

(0.028}
0.031

(0.036}
0.035

(0.044}
0.029

(0.031}
0.024

(0.024)

1.4

1.2

1.3

1.3

1.2

1.2

1.3

1.2

1.2

1.2

1.2

1.03

0.89

0.82

0.84

0.86

0.06

0.06

0.06

0.06

0.06
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neu ron number on theeformation and proton or ne t b
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i sson diagram. Then we varied them

'
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o t e neig boring even-even nucle t1 0

(3.1)

(r ) =0953 ~ fm4,where

B (E2;2+ —+0+ )b=
B (E2;2s+ —+0+ )

In some nuclei B(E2;2+~0+)'s have been
b 0 038*0001 ( Gd), 0.025+0.001 (

' Gd)
0.017+0.002 (

' Gd) 0.014+0.004
Er . We have found that these values are

too small to re rodp duce the signature inversion in our

lar er
model and used b =0.06. Th e use of a value for b
arger than measured may be justified toi e o some extent as

ows. e have introduced only one state to represent
y-vibration, while its strength is actuall fra

s a es. t is, therefore, reasonable to assign a
larger value than measured to b in ordo in order to let the y-

'
ra iona state introduced represent the actually frag-

mented strengths. We assume th f 11e o owtng value for y:

4m omV M

A(r'& 5 A(r') ' (3.2)

V, =130 MeV,

(r ) =0.87M fm, and Acoo=41A ' MeV. T '

gg s e y ohr and Mottelson, and gives -0.004
Finally the moment of inertia at

o aine rom the ground-state rotational bands of the

e isted in Table I. It is satisfying that the phe-
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B (M 1 )'s.
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B. Energy spectra

The calculateated energy spectra are presented in Fi . 2.
We readily see that th e c aractenstic signature inversion
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experimental data for all the nuclei studied here. The
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BI(H; ) = [(IiH; iI ) —(I —1 iH; I —1)]l(2I), (3.3)

where H; is either Hot Hqp Hy or Hpp We immedi-
ately notice that H„, works to produce the normal signa-
ture dependence in the present calculation as is expected,
and that the oscillation of BI(H„,} grows with spin.
What we see here is the well-known effect of the Coriolis
interaction. On the other hand, the quasiparticle energy
term (H ) is found to work for the anomalous signa-
ture dependence. This can be understood as follows.
First we should note that the rotor carries an extra
amount of angular momentum in an unfavored state.
This is because the difference of the total spin I and the
particle spin j, ~I —j~, is an odd integer in an unfavored
state; while the spins of the ground-state band of the ro-
tor, which constitutes dominant components in an odd- A
nucleus over the y band, are even integers so that the
minimum value of the rotor spin, R;„,is I —j + 1 in an

the theory. This disagreement is supposed to come main-

ly from the assumption of rigid rotation in the model.
Aside from this limitation, it is remarkable that the
anomaly is described in terms of the present simple mod-
el. We denote the wave functions obtained here as %L, s,
which we naturally propose as proper wave functions.

This overall success gives strong support to the present
model and motivates us to look into it in more detail. We
calculate the expectation values of the various terms of
the Hamiltonian with the wave functions obtained and
display the results for ' Ho in Fig. 3 in the form of

unfavored state and I —j in a favored state. This means
that the particle has more freedom in its orientation
within the given geometry between I, R, and j in un-

favored states. The particle or particles probably make
use of this extra freedom to lower the quasiparticle ener-

gy in unfavored states more than in favored states. We
find that (H „)works to produce the anomalous signa-
ture dependence also, although its magnitude is small. It
is important to note that (Hr ) makes a large contribu-
tion to the signature inversion and that the oscillation of
BI(H ) grows with spin at almost the same pace as that
of Bz(H„, ). Thus the inverse signature dependence com-
ing from (Hr ) competes with the normal signature
dependence produced by (H„, ) over a wide range of
spins. This behavior is essential for the successful repro-
duction of the signature inversion in the present model.
We show BI(H +H +H „}by dotted lines in Fig. 3,
which is seen to overcome BI(H„,).

We are very much interested in how the y-vibrational
excitation and the y dependence of the moments of iner-
tia influence various physical observables. To study such
effects, we prepare two other kinds of wave functions (1}
by excluding the y-vibrational excitation from the space
or (2) by replacing the L-a-S moments of inertia with the
IRF ones. In both cases the same values as given in
Table I are assumed for the parameters. We denote the
wave functions thus obtained as +goy and %&~F. Obvi-

ously these wave functions do not describe the energy
spectrum well but are expected to serve for comparative
studies. To avoid confusion we remark again that it is
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FIG. 3. Expectation values of H,«, Hy Hq p
and H~„, in the

form of ei(H;) for ' Ho. See the text for their definition [Eq.
(3.3)]. This is a decomposition of the spectrum shown in Fig. 2
and naturally the L-a-S moments of inertia are used.

FIG. 4. The same quantities as given in Fig. 3 but the IRF
moments of inertia are used. In contrast to Fig. 3, H„, shows a
stronger normal signature dependence and H~ has a normal sig-
nature dependence.



158 AKITSU IKEDA AND TAKAFUMI SHIMANO 42

O'L, s that we propose as proper wave functions.
We have calculated the quantities of Eq. (3.3) with the

wave functions O',R„and illustrate them in Fig. 4. This is
to be compared with Fig. 3. One can see that this time
er(Hr ) makes a contribution to the normal signature
dependence. This is a fundamental difference between
the use of the IRF moments of inertia and that of the
L-a-S ones, and this is why we need the L-a-S moments of
inertia. It is desirable to understand in a non-numeric
way how the signature dependence is related with the y
dependence of the moments of inertia employed. This
remains to be studied.

C. Magnetic dipole transitions

A great deal of observed magnetic dipole (M 1) transi-
tions connecting favored and unfavored rotational levels
show pronounced regular signature dependence. The
observed signature dependence is such that
8(M1;I~I —1)'s from favored to unfavored are larger
than those from unfavored to favored. The M1 transition
operator consists of the angular momentum operators of
the constituents and its matrix element between 0=—,

'

and 0= —
—,
' in the particle-rotor model contains the

same phase factor as that of the Coriolis coupling. Thus
the M1 transition is an observable that depends on signa-
ture as the energy spectrum does and it has been rather
well understood with the simple particle-rotor model.
Now we know that some nuclei show signature inversion
in their energy levels and that it can be understood if the
y-vibrational excitation is taken into account and if the
moments of inertia with a specific property are assumed.
Then it is very interesting to see how the y-vibrational

excitation and specific dependence on y of the moments
of inertia influence Ml transitions. Thus we have calcu-
lated M1 transition probabilities using the wave functions
obtained. We illustrate the result in Fig. 5 together with
the available experimental data.

First of all we should note that the 8 (M 1 )'s calculated
are in good agreement with experimental data with
respect to order-of-magnitude values both below and
above the band crossing in all the nuclei where experi-
mental data are available.

We will compare the 8(M1)'s calculated in more de-

tail with experimental data. Below the band crossing, the
B(M1)'s calculated have the normal signature depen-
dence for all the nuclei in good agreement with experi-
mental data. The signature dependence of the B(M1)'s
calculated compares well with the experimental data for
' 'Lu and ' Lu. The dependence looks somewhat too
large for "Ho and too small for ' Tm compared with
the data.

The signature dependence of the 8 (M 1)'s calculated is
seen not to be normal in some nuclei for a few transitions
immediately after the band crossing, as in the —", ~ —", ,

—", , and =", —", transitions of ' Ho. Except for
these few transitions, the 8 (M 1)'s calculated show the
normal signature dependence after the band crossing as
well as before it.

The experimental data on ' Ho obtained by Radford
et al. ' show the normal signature dependence in 12
transitions out of the 14 transitions from —", ~—", to

except for the two transitions of —", —", and

This agreement gives strong support to the

present model.
On the other hand the theoretical results do not seem
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FIG. 5. Calculated and experimental 8 (M1;I~I —1)/ 8 (E2;I~I —2) along the negative parity yrast bands of '"""Ho, "Tm,
and ' " ' Lu. Experimental data are taken from Ref. 10 for '"Ho, Ref. 5 for ' Tm, Ref. 12 for ' 'Lu, Ref. 13 for ' Lu, and Ref.
17 for '"Lu.
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in accord with the experimental data on ' 'Lu that show
inverted signature dependence for the 7 transitions from
—", ~—", to —", ~ —", . This is the only case where the present
calculation disagrees with experimental data. In the
present model we assign specific numerical values to the
parameters by referring to the energy spectra. Since the
level schemes of the nuclei under study are quite similar
to each other, the adopted values of the parameters are
similar and we obtain from them wave functions which
vary gradually from nucleus to nucleus. Therefore, it is
improbable that completely opposite signature depen-
dences will be predicted for ' Ho and ' 'Lu in the
present theoretical framework.

Now we investigate how the y-vibrational excitation
and the dependence on y of moments of inertia affect the
dependence of M1 transitions on signature. For this pur-
pose we have calculated the Ml transition strengths using
the wave functions %&RF and 4„,~ for the case of ' Ho,
and illustrate the results in Fig. 6 for comparison togeth-
er with those already given in Fig. 5 which were calculat-
ed with %L, s. Immediately we notice in the figure that
the y dependence of the moments of inertia has a close
relation with the dependence of the M1 transitions on sig-
nature: if the y-vibrational excitation is not taken into
account, the M1 transitions show a pronounced normal
signature dependence. If the IRF moments of inertia are
used, the y-vibrational excitation works to enhance the
normal signature dependence of the M1 transitions. On
the other hand, if the L-a-S moments of inertia are used,
the y-vibrational excitation seems to reduce, or even to
invert at least instantaneously, the normal signature
dependence in the M1 transitions. This effect to reduce
or to invert the normal signature dependence of the M1

transitions is, however, not very large so that the signa-
ture dependence of the M1 matrix elements gets reduced
in magnitude but remains normal except for a small re-
gion of spin after the band crossing in a few cases.

D. Electric quadrupole transitions

Electric quadrupole (E2) transition probabilities with
a spin change of 1A were measured for ' Ho some years
ago and it was reported that quite strong signature
dependence was observed in 8(E2;I~I—1)'s; 8(E2;I,
favored~I —l,unfavored) are much stronger than
8 (E2;I,unfavored +I ——l,favored) before the band cross-
ing as well as after it. This report motivated theoretical
studies on the signature dependence of the
B(E2;I~I—1)'s. Calculations were carried out in the
model of a quasiparticle coupled to a triaxial rotor and it
was concluded that such signature dependence is evi-
dence that the nucleus has an equilibrium triaxial
shape. ' Then the problem was studied in the model of a
quasiparticle coupled to an axially symmetric rotor which
undergoes y-vibration. It was found that the dynami-
cal fluctuation in the y direction gives rise to rather
strong signature dependence in the 8 (E2)'s, which is of
the same size as that obtained by assuming a permanent
triaxial deformation. However, both of the models pre-
dicted a weaker signature dependence of the 8(E2)'s
than was measured. Recently Radford et al. performed
a spectroscopic experiment on ' Ho and measured vari-
ous observables including the 8(E2;I~I —1)'s. ' The
newly obtained B(E2;I~I—1)'s show a weaker depen-
dence on the signature than those of the previous experi-
ment, with no obvious discrepancy with the predictions
of the dynamical or the static triaxial models.

Now in this study we ascertain that the IRF moments
of inertia are not appropriate in y dependence, and that a
correct set of moments of inertia must be the L-a-S ones.
In Ref. 20, however, the IRF moments of inertia were
adopted and rather strong signature dependence was pre-
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dieted for the 8(E2;I~I —1)'s. Thus we might ask
whether the conclusion of Ref. 20 is still correct or not
and whether different signature dependences are predict-
ed or not for the 8(E2;I~I —1)'s with the L-a-S mo-
ments. We have calculated the 8(E2;I~I —1)'s with
the wave functions O'L, s as well as %'&RF and 0'„, &, and
the results are presented in Fig. 7 in the form of Q"'
which is defined as

C4

C3

C5

2

157Ho

' 1/2
I;I 16m. 8 (E2;I +I —i )—

(IK201I iK—)
2

(I' = 1,2), (3.4)
I ~ ~ ~ I I I ~ I ~ I ~ I 4 I I I I ~ I I I ~0 I I I I

11 21 31 41 51 61 I2 2 2 2 2 2
11 21 31 41 51 61 I2 2 2 2 2 2

(&) (&)g I g I

(gill +gl1) )f2
(3.5)

reaches approximately 37% in the case of lllL, s while

only 20% for Ip,„„.The other is that the 8(E2)'s de-
crease more rapidly for 0'&RF than for O'L, s.

In Fig. 8 we present the results calculated with 4'„,s
for all the isotopes studied in this paper together with the
experimental data for ' Tm. We notice that the
8 (E2;I~I —1)'s predicted look quite similar for all the

where E is set equal to —,'for "Ho. As was found in

Refs. 19 and 20, the particle plus symmetric rotor model
without the y-vibrational excitation predicts practically
no signature dependence in the B(E2;I~I—1)'s. We
find that PL, s as well as %'&R„predict quite similar and
recognizable signature dependence in the B(E2)'s, i.e.,
the 8(E2;I~I —1)'s are predicted to be larger for the f
(favored) to u (unfavored) transitions than for u to f by
both of them. There are two different features between
the B(E2;I~I—1)'s calculated with qlL, s and IptR„.
One is that the signature dependence predicted by OL, s
is larger than that by %,„Fbefore the band crossing, i.e.,

FIG. 9. Calculated and experimental B (E2;I~I —1)/
8(E2;I~I —2) for '"Ho and '6'Lu in the form of Q"'IQ'~',
where E is set equal to

2
for '"Ho and —, for ' 'Lu. Experimen-

tal data are taken from Ref. 10 for ' Ho and Ref. 17 for ' 'Lu.

isotopes. We observe also a sort of regularity in the
8(E2) s. This is a reffection of the similarity and regu-
larity of their energy spectra. Unfortunately the experi-
mental information is not sufficient enough to say any-
thing conclusive about the regularity. In Fig. 9 we illus-
trate Q'"lg' ' for "Ho and ' Lu for which experimen-
tal data are available. ' ' Although the theoretical
values are within the error bars, it is hard to derive a
meaningful conclusion from the comparison because of
large error bars.

We will see how 8(E2;I~I —2)'s are inffuenced by
the y-vibrational excitation. In Fig. 10 we show the
8 (E2;I~I—2)'s calculated with IPL, s, qll„„, and Ill„,
in the form of Q' '. The y-vibrational excitation gives
rise to weak but noticeable signature dependence in Q' '

before the band crossing. The difference, Qf f Q„' ' „,
does not exceed 8% of their average. In Fig. 11 we
present our prediction for the Q' 's together with experi-
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dash-dotted lines show the calculations with the y-vibrational
excitation with the L-a-S or the IRF moments of inertia, respec-
tively.

mental data for ' Ho" and ' Tm. The prediction and
the experimental data are consistent in the sense that
they do not show any strong signature dependence, but
are not in the sense that the experimental data on ' Ho
seem to indicate quite irregular behavior around I = —", ,
I =—", , and I =—", while the theoretical values vary regu-

larly with spin.

We have performed a numerical study in the frame-
work of the model proposed in a previous paper with the
intention of determining whether the model contains in it
the essential degrees of freedom involved in the signature
inversion observed in the light Ho, Tm, and Lu isotopes
by applying it to various nuclei.

The model is an extended version of the particle-rotor
model. The system is assumed to have an axially sym-
metric equilibrium deformation and to undergo y-
vibration around it. Two types of configurations are ex-
plicitly taken into account: an h»&2 quasiproton is
present in one and two i13/2 quasineutrons in addition to
an II»zz quasiproton in the other. These configurations
are necessary to describe the proton h»&2 band of the nu-

clei of interest and its band crossing. We have first calcu-
lated the energy spectra of ' ' Ho, ' Tm, and
161,163, 165Lu by employing the Largest-around-Shortest
moments of inertia, and successfully reproduced the sig-
nature inversion of these isotopes by adjusting the in-
volved parameters to some extent. It should be noted
that the adopted values of the parameters are all around
what are expected from circumstances. These successful
results give strong support to the conclusion derived in
the previous paper: the y dependence of the moments of
inertia influence the signature dependence of the energy
spectra decisively and the irrotational flow model mo-
ments of inertia are inappropriate. The appropriate y
dependence of the moments of inertia is such that the
largest one is around the shortest axis of a triaxially de-
formed shape and the next to the largest is around the
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axis of intermediate length. Up to recently we had prac-
tically no knowledge about the y dependence of the mo-
ments of inertia. We have learned through the present
study that the signature inversion observed in these nu-
clei provides an opportunity to discuss this subject.

We have obtained the wave functions by referring only
to the energy spectra concerned. It is, therefore, interest-
ing and meaningful to see what the model predicts for
other observables and to see how the predictions compare
with experimental data when available. First we have
studied 8(M1;I~I —1). When we calculate 8(M1)'s
with no y-vibrational excitation taken into account, they
are predicted to have quite a strong normal signature
dependence. If we take into account the y-vibrational ex-
citation and assume the IRF moments of inertia we see
an enhancement of the normal signature dependence in
the calculated 8 (M 1 ) s. If the y-vibrational excitation is
considered in combination with the L-a-S moments of in-
ertia we find that the calculated 8(M1)'s have normal
but weaker signature dependence. Thus the y-vibrational
degree of freedom works to enhance or reduce the normal
signature dependence depending on the moments of iner-
tia employed. A very important point of the results is
that the predicted signature dependence of the 8(M1)'s
is normal everywhere before and after the band crossing
in most nuclei studied. There are a few exceptions where
a few transitions just above the band crossing show the
inverted signature dependence. Thus, the present model
almost always predicts the normal signature dependence
for the 8 (M 1 )'s in spite of the signature inversion in the
energy spectra. This prediction is in good agreement
with the experimental data on ' Ho. The agreement is
good for ' Tm also. The result for ' 'Lu seems to
disagree with the data. It is inevitable that the present
theory predicts very similar behaviors of 8 (M 1)'s for

Ho and for ' 'Lu, because the wave functions are gen-

crated by referring only to their energy spectra which are
quite similar to each other. The present theory predicts
an appreciable amount of increase of the 8(M1)'s at the
band crossing in association with the rotation alignment
of (vi&3/p ) quasiparticles. This is in excellent agreement
with all the experimental data.

We have then calculated 8(E2;I~I —1) with the
wave functions obtained. An important feature of the
calculated B(E2) s is that the y-vibrational excitation
gives rise to an appreciable amount of signature depen-
dence and that quite similar signature dependences are
obtained with either the IRF moments of inertia or the
L-a-S moments of inertia. No disagreement is observed
between the calculated 8(E2)'s and the experimental
data. The 8(E2)'s must be measured with higher pre-
cision for more critical discussion.

In conclusion, the present study has shown that the
characteristic signature inversion of the energy spectra of
the Ho, Tm, Lu isotopes as well as most of the M1 and
E2 transition probabilities can be described by taking
into account the y-vibrational excitation around an axial-
ly symmetric deformation and assuming the L-a-S mo-
ments of inertia.
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APPENDIX A: MATRIX ELEMENTS OF HAMILTONIAN

In this appendix we give explicit forms of the matrix elements of the Hamiltonian. To express these matrix elements
compactly we define the following abbreviations:

E, „—:Q(e, „—X, ) +5, (~=p, n),

(uu)„'—= (u, „u, „,+u»v, „,)Qj,(j,+1) p(p 1) (r=p—, n), — (A2)

(uv)„'—= (
—1) ' (u, „u, „,—v „u „,)Qj,(j,+1) p(p 1) (~=p—, n), — (A3)

[(uu) ]„':—
—,
' [[(uu)„'] +[(uu)„'+, ] —[(uv)„'] —[(uv)„'+1] ] ( rp, n),

[(uu)(uu)]„':——,'[(uu)„'(uu)„', —(uu)„'(uv)„', ] (7.=p, n),

[(uu )(uu)]„":—
—,
' [(uu )„"(uu)„",+ (uu)„"(uu),", , ],

&uu &„'—:(u „u „~—v „v „z)&j„p—2l Yz zjl,p& ( pr, n),

(uv &„"=(—1)" (u „u „~+v „ui „p)(j„,p —21&p pjl„p&,

V „(p',pcrr) =( —1)'" '(u u, u, u, —v u, v, u, ,) &j~p',j„rl V~„ lj~pj„~ &,

V „(p'cr';po ) =(u .u u u +v .v v u )(jap', j„o''l &~„jl~p, j„&&

—( —1)
'

(u v, u u +u u, v ~u, )(jp'j„~l V,„jlpj„—o'—
& .

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A 10)
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In the formula below the quantum numbers, A and n, are to specify the wave functions of y variable.
(i) Matrix elements between one-quasiproton states (K' =p'+ A' & 0, K =p+ A & 0, K' ~ K):

$2
(+,', A'. lHl+,', A'. & =5» »5, ,5„5„„&,,+&',„+ [I(I+1) K—']+ [(uu)']p

2g
2 I —

g

2g [5»', K —1 p, p
—15A A+ ( 1) '5» »5», 1/25p, —p+15A A]5„„ I (I + 1) K—(K —1)(uu )p

a 2 I —j
K', K —25p'p5A', A —2+ ( ) 5K', —K+25p', —p5A', —A+2]

X (A —2, n'~y~An )&[I(I+1) K—(K —1)][I(I+1)—(K —1)(K —2)]
2a ]/ g2

2g [5»', K —16p', p+ 15A', A —2+ ( ) 5K'K 5K, 1/25p', —
p

—15A', —A+2]

X ( A 2,—n'~ y ~An )&I(I +1)—K (K —1)(uu)P+,

2Qy
5» «I5 +25A A 2(A 2,—n'~y ~An )[(uu)(uu)]P+2

+5 25A A+2(A+2, n'~y~An )[(uu)(uu)]P}

+ —q p5»K(5 25A A 2(A —2, n'~y~An &(uu &p+,
1

+5 5 (A+2, n'~y~An )(uu )P), (A11)

where A = n =0 stands for the ground state of y-vibration and A =+2, n =0 for the state of one y-vibrational quantum.
(ii) Matrix elements between one-quasiproton states and three-quasiparticles (one-quasiproton and two-quasineutron)

states (K'=p'+A'&0, K =p+o+r+A) 0, cr ) r):
2

(+p, A, IH %p ~, A„) — [[5»»—15p'p5A'A+( 1) 5»'»5», 1/25p', —p5A', —A]5~+~, 15
2

X 1/I(I +1)—K(K —1)(uv)"

+5»' »+15 ' 5~+ 15A A5—n nI(I'+1) K(K+1)(uv)~+1}
$2

5» K5A A5„„[5 p5(r+7 0[(uu)cr( u)nv+( u)u~+1( u)v +01]

+5 +,5 +, ,(uu)p+, (uv)" +5,5 +, , (uu) (uv)" +, I

2a

2g [ [5»', K —15p'p5A', A —2 ( ) 5K'K5K, 1/25p', —p5A', —A+2]5(r+r, —
1

X «—2, n'lylAn )&I(I+1)-K(K—1)(»)".„
+5». »+,5, 5 +, ,5„,A+2(A+2, n' y An )1/I(I+1)—K(K+ 1)(uv)" }

2a],+ — 5».»[5 [5 +, 25A A 2(A —2, n'~y~An )[(uu)(uv)]" +2

+5 +, 25A A+2(A+2, n'~y~An )[(uu)(uv)]" ]

+5 ~ +,5 +, , 5A A 2(A —2, n'~y~An )(uu) +,(uv)" +,

+5, ,5 +, , 5A, A 2(A++2, n'~y~An )(uu ()Pvu)" }

—q„P5»»5pp(5. +, 25A, 2(A 2, n'IylAn &(—uv &."+2

+5, 5„(A+2,n'~y~An)(uv)")

+5« »5A'5. .[v,.(p"po r) 1/,.(p' pr o)—] . — — (A12)

(iii) Matrix elements between three-quasiparticles (one-quasiproton and two-quasineutron) states
(K'=p'+o'+r'+A') 0, o'&r', K =p+o+r+A&0, o &r, K'~K):
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f2
=5» »5 5 ~ 5~,5 A A5„„E, +E +E, ,+E]A„+ [I(I+1)—E ]

$2
&I(I +1) SC (S—C —1)

2

X I5», K 15A.A5„.„[5 ~ 15 ~ 5q, ( uu) pp+5pp5 ~ ]5y,(uu)" +5p p5~ 5y, ,- ]( uu),"]
I —j+( 1) 5K'»5K 1/25A' —A5 ' [ ' +1 ' r' ( +]

+5 ~ 5 ~,+]5~ (uu),"]j

$2+ 2~5»»5AA5„„[5pp(5 5,,I[(uu) ]Pp+[(uu) ] +[(uu) ]",j

+(5 ]5~,+]—5,+]5q ])(uu)"(uu)", +, +5 +]5p, ](uu)" +,(uu)",

+5.+, ,5.+, , (uv)". (uv).."+5.„,5.„,(uv)"..„(uv)."„)
+5 ~ +,(uu )p+][ 5 ]5„(uu)"+5 5+, (]u u),"]

+5 ](uu) [5 ~ +]5 (uu) +1+5 5 +](uu) +]]]
2

[5K',K —25p'p5cr'cr5c'r5A', A —2+ ( ) 5»', —K+25p', —p5cr', —r5r', —cr5A', —A+2]

X & A 2, n—'~y ~An )c/[I(I+1) K(K —1—)][I(I+1)—(K —1)(E—2)]

2ay+ — & A —2, n
'

~ y i An ) ]/ I (I + 1 ) I].' (I]. —1 —)v'3 2S

X [5» »,5„A 2[5 ~ +,5 5„(u~ u)P+]+5 5~ ~ 5+p],( uu) ~]++5 5p ~p~5 ,r+( ]uu),
"

+]]

+( ) 5»'»5» 1/25A' —A+2 [5 ' — —15cr' —r r' —cr(uu~+] 5 ' — cr' —r c' —cr —1( )cr+1

+5 5, ]5~ (uu),"+,]j
2Q& g2

5»'K [5A', A —2& A —2, n
'
ly I «&

X(5ppI5 +25',[(uu)(uu)]" +2+(5 ~ 5, ,+2
—5,+25' )[(uu)(uu)]", +2

+5 +]5y,+](uu)" +](uu),"+]+5 +y]5 +, 1(uv)" (uv)" +]j

+5p,p+l(»)p+1[5n, v+15~.(»)".+1+5 5~„+1(»)",+1]

+5 ~ +25 ~ 5+,[(uu )( uu ) ]p+2 )

+5A', A+2 & A+ 2, n
'

1 y I An &

p'pI ( cr', cr —25r'r 5cr'r5r', cr —2)[(uu)(uu)]cr+5cr'cr5r' r —2[(uu)(uu)]z

+5,5. . .(uu)" (uu),"+5 +, ,5 +, , (uv)" +,(uv)" j

+5,(uu)p[5 ]5„(uu)"+5 5~, ](uu)", ]+5p p 25 ~ 5y,[(uu (»)]pp)]

+ —qpP5»»5 5+,(5 +25A A 2&A 2, n'~yiAn—) &uu )P+2+5, 25A A+2&A+2, n'~y~An ) &uu )Pp)

+ &- q.P5»'»5p'p I5A', A 2& A 2, 'lylAn —)[5. —.+,5„&»)."+,+(5..5„+,—5., „+,5,.)&» &;+,]

+5, &A+2, 'lylA &[(5,5, ,—5,5,)& )"+5 ~ 5, ,& )",]j

+5» »5A A5„„[5+,Vp„(p'o ', po ) 5,Vp„(p'~';po —
) 5& Vp„(p'o', p~—)+5 ~ Vp„(p'~';p~)] . (A13)
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Equations (Bl) and (B2) lead to

B —B —B =
0 1 2 P2E b2

(B3)

We can solve Eqs. (2.14), (2.16), and (B3) with respect to
Bo, B, , and Bq..

12J+ 1
{B4)

3p 3A' Ebr

APPENDIX B: RELATION BETWEEN MOMENTS
OF INERTIA AND PROPERTIES OF y-VIBRATION

8r and C appearing in Eq. {2.22) are related to F.
and b through Eqs. (2.25) and (2.27). Eliminating C
from these equations we obtain

$2
B

P2+ b2
r

On the other hand, Eq. (2.21) gives

8 =8' (y =0') =8 —8 —8

60'
FIG. 12. The dependence on y of the moments of inertia

used for '"Ho. The unit is g [see Eq. (2.14)]. Only their values

and first derivatives at y =0' play roles in the present model.

4A 2 ay 22
9P' 6

2X' 2a, —1 2S
9P 6 fi

1

E br

1

Q2

(B5)

(B6)

The values of p, 2, F. , and b used in the calculation
for ' Ho and a = —1 give B0=149, B& =12.8, and

8z = —121 in units of fi /MeV. The moments of inertia
corresponding to these B's are illustrated in Fig. 12.
They are not symmetric under the y~60' —y transfor-
mation, reAecting nonvanishing B, term.
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